

This publication must be cited as:

 Morales-García, J., Bueno-Crespo, A., Martínez-España, R., Posadas, J.

L., Manzoni, P., & Cecilia, J. M. (2023). Evaluation of low-power devices for

smart greenhouse development. The Journal of Supercomputing, 79(9), 10277-

10299. https://doi.org/10.1007/s11227-023-05076-8

The final publication is available at:

 https://doi.org/10.1007/s11227-023-05076-8

Copyright ©:

 Springer

Additional information:

https://doi.org/10.1007/s11227-023-05076-8

Springer Nature 2021 LATEX template

Evaluation of low-power devices for smart

greenhouse development

Juan Morales-Garćıa1*, Andrés Bueno-Crespo1, Raquel
Mart́ınez-España2, Juan-Luis Posadas3, Pietro Manzoni3

and José M. Cecilia3

1*Computer Science Department, Catholic University of Murcia
(UCAM), Av. de los Jerónimos, 135, Murcia, 30107, Murcia,

Spain.
2Information and Communications Engineering Department,
University of Murcia (UM), C. Campus Universitario, 11,

Murcia, 30100, Murcia, Spain.
3Computer and Systems Informatics Department, Universitat
Politècnica de València (UPV), Camino de Vera, s/n, Valencia,

46022, Valencia, Spain.

*Corresponding author(s). E-mail(s): jmorales8@ucam.edu;
Contributing authors: abueno@ucam.edu; raquel.m.e@um.es;

jposadas@disca.upv.es; pmanzoni@disca.upv.es;
jmcecilia@disca.upv.es;

Abstract

The combination of artificial intelligence and the Internet of Things
(AIoT) is enabling the next economic revolution in which data and imme-
diacy are at the key players. Agriculture is one of the sectors that can
benefit most from the use of AIoT to optimise resources and reduce
its environmental footprint. However, this convergence requires com-
putational resources that enable the execution of AI workloads, and
in the context of agriculture, ensuring autonomous operation and low
energy consumption. In this work, we evaluate TinyML and edge com-
puting platforms to predict the indoor temperature of an operational
greenhouse in situ. In particular, the computational/energy trade-off of
these platforms is assessed to analyse whether their use in this con-
text is feasible. Two artificial neural networks (ANNs) are adapted

1

Springer Nature 2021 LATEX template

2 Evaluation of low-power devices for smart greenhouse development

to these platforms to predict the indoor temperature of the green-
house. Our results show that the microcontroller-based devices can offer
a competitive and energy-efficient computational alternative to more
traditional edge computing approaches for lightweight ML workloads.

Keywords: Artificial Intelligence, Edge computing, Time-series forecast,
TinyML, CPU-GPU Performance, Power consumption

1 Introduction

The Internet of Things (IoT) is a major player in the digital revolution,
enabling devices and humans to interact with each other in real time [1]. This
interaction generates large amount of data whose analysis can provide insights
from uncovering hidden patterns, correlations between variables, etc [2]. How-
ever, knowledge is only valid as long as it is generated at the right time to
enable the right decisions to be made. Therefore, enabling efficient analysis
of this huge amount of data generated by the IoT is crucial to transform this
deluge of data into meaningful information.

Machine Learning (ML) algorithms are showing their potential for extract-
ing knowledge from large amounts of data [3]. Traditionally, ML algorithms
have been executed in supercomputers, where performance prevails over
energy efficiency [4]. However, when performance is not the only concern,
other approaches are feasible. For instance, edge/fog computing [5] has been
approached towards decentralization, where initial computations on data are
carried out in (or close to) the data capture devices. In fact, the edge computing
paradigm is providing (1) energy savings by avoiding sending and processing
data in the cloud, (2) highly responsive applications and services for mobile
environments, (3) highly scalable systems, thanks to the distribution of pro-
cessing units, (4) guaranteed privacy policies for the IoT and (5) disconnection
tolerant systems as transient connection interruptions can be masked.

IoT devices have a limited power budget at this level of the network, as
they typically rely on batteries or energy harvesters, leading to ultra-low power
approaches. This limited power scenario translates into a major limitation
for many components of the architecture, especially energy-intensive compo-
nents such as wireless transmitters or even processing capabilities [6]. A new
trend, called TinyML [7], has recently emerged at the intersection of ML, IoT
and computing platforms. This trend aims to leverage microcontroller units
(MCUs) that are available in all devices across the IoT ecosystem, from sensor
data collection and actuation, to information transfer and reception [8]. In the
IoT ecosystem, MCUs had been relegated to information transfer, without tak-
ing advantage of the existing computational potential for heavier workloads,
which was transferred to the edge, fog or cloud. A major factor restricting the
computational use of MCUs is the limited memory size of these devices. In

Springer Nature 2021 LATEX template

Evaluation of low-power devices for smart greenhouse development 3

particular, for running ML workloads such as Deep Learning (DL) [9], artifi-
cial neural networks (ANNs) [10], or reinforcement learning [11] that require
a certain amount of memory space.

In this paper, we evaluate different edge computing and TinyML platforms
for the execution of several ANNs for time series forecasting. Performance and
power evaluation is provided for up to four edge computing devices, namely
Arduino microcontrollers, Raspberry PI and two Nvidia Jetson edge computing
platforms. Particularly, two widely used neural network models are anal-
ysed; i.e., multi-layer perceptron (MLP) and the convolutional neural network
(CNN) for the prediction of the indoor temperature of an operational green-
house. The development of smart greenhouses is a great benchmarking to assess
the intersection between edge computing and artificial intelligence. These envi-
ronments are often isolated and in very aggressive meteorological conditions
(e.g. high temperatures), and where internet access and power supply are not
always guaranteed. Therefore, the development of smart greenhouses must be
designed with these constraints in mind, guaranteeing the autonomy and con-
tinuous operability of the greenhouse. Therefore, the research question of this
paper focuses on finding out if it is possible to have neural network-based time
series prediction systems in fully autonomous greenhouses. Our initial hypoth-
esis is that with the use of Edge computing/TinyML platforms enable ML in
the greenhouse, avoiding cloud-based services and without overly penalising
the overall power consumption of the greenhouse.The main contribution of the
paper are the following:

1. A comprehensive analysis is provided to assess the limitations of different
TinyML/Edge computing platforms to serve a real operating environment
such as a greenhouse. Several datasets introducing climate variability typ-
ical of semi-arid climates are defined to train and validate the predictive
models evaluated.

2. Two different ANNs, namely the multilayer perceptron (MLP) and the con-
volutional neural network (CNN), are used, evaluated and parameterised to
predict the internal temperature of an operating greenhouse. These ANNs
are adapted to reduce their memory footprint by testing different neural net-
work architectures, adjusting their hyperparameters, reducing the accuracy
of the variables involved and migrating each model to the target low-power
devices.

3. The process of migrating these workloads to the targeted edge computing
platforms, including an Arduino family microcontroller, is shown.

4. A performance and energy consumption tradeoff of these platforms is under
study, showing clear advantages to microcontrollers for these lightweight
workloads.

The paper is organised as follows. Section 2 describes a set of related works
on prediction of climate variables with different machine learning techniques
executed in edge and tiny environments. Section 3 describes the datasets used,
as well as the models and methodology followed in the development of the

Springer Nature 2021 LATEX template

4 Evaluation of low-power devices for smart greenhouse development

work. Section 4 shows the results and the analysis and discussion of the results.
Finally, the conclusions and future work are shown in section 5.

2 Related Works

Weather forecasting has emerged as an important topic of research in the last
decades. Particularly the prediction of climatic variables is a topic of special
relevance in agriculture. In outdoor agriculture and greenhouses, knowing the
parameters of certain climatic variables helps farmers make decisions that opti-
mise their resources. Since time is non-linear and dynamic, the techniques used
must also be non-linear [12]. In the case of this work, we have focused on neural
networks to predict temperature. Moreover, given that the agricultural world,
especially small companies, cannot make large investments in technology, we
propose the study to evaluate the performance and consumption of low-cost
devices. In this section, we briefly study other works that have made predic-
tions of climatic variables, considering neural networks and their adaptation
to run in edge environments.

In [13], a technique is presented for predicting daily minimum, average
and maximum temperature using three types of artificial neural networks,
namely multilayer perceptron, recurrent neural network, and convolutional
neural network. The best temperature prediction result was obtained using
a convolutional neural network. Another work that uses convolutional neural
networks is presented in [14]. The authors present a hybrid model of con-
volutional neural networks and recurrent networks to predict temperatures.
The model uses daily data from mainland China and obtains an error of less
than 1 degree Celsius. In [15] Jung at al propose a comparison of various neu-
ral network techniques, with different hourly granularities to predict climate
variables, such as humidity and temperature, inside the greenhouse. The best
results were obtained with a combination of Recurrent neural networks and
Long short-term memory. These works, although related to temperature pre-
diction using neuronal networks, do not take into account the adaptability of
these models to be executed at the edge of network.

In [16] the authors present an approach to improve the management of
greenhouses and predict their internal variables using recurrent neural net-
works executed and adapted to the edge computing environment.Among the
variables they predict is the air temperature. The proposed model allows them
to anticipate the reading of the greenhouse sensors locally. Another work where
they also predict air temperature using neural networks and edge comput-
ing is presented in [17]. The authors forecast the anticipated temperature to
determine when a frost will occur. In the study, the authors make a com-
parison between running predictions in the cloud and in edge environments.
The conclusions indicate that the results in edge environments are satisfactory
and that for agricultural environments where connectivity cannot always be
ensured, edge environments are efficient. In [18], authors proposed the eval-
uation of three different types of neural network architecture, using different

Springer Nature 2021 LATEX template

Evaluation of low-power devices for smart greenhouse development 5

values of the sliding window associated with the input data run at the edge
to predict the indoor temperature of a greenhouse. In [19], authors presented
a study analysing advances in work using edge computing, demonstrating its
effectiveness in facilitating data analysis, future prediction and decision mak-
ing at the edge by avoiding the transfer of large volumes of data in classical
systems. Also in [20], a study was made for time series data forecasting, where
the different factors that influence the energy consumption of smart meters
are studied, analysing several issues, including temperature forecasting. This
study demonstrates the superiority of LSTMs over other models. From the
point of view of efficiency and speed, in [21], the authors used TPU accel-
erators at the edge, analysing three different types of TPUs. These models
allowed for faster and less time-consuming evaluations. In [22], they proposed
an adaptive CNN for low power consumption edge computing devices. They
proposed a novel adaptive architecture that used an output block predictor to
choose the base architecture for inference, providing similar or superior per-
formance to the classical architecture. Another work on Edge computing is
presented in [23], where the authors connected and managed IoT devices to
analyse information from strawberry crops to detect diseases in these crops.
In [24], authors used a model for workload forecasting with adaptive sliding
window and use temporal correlation by means of an adaptive sliding window
algorithm in order to achieve higher accuracy with lower overhead. In [25], tak-
ing into account that the use of cloud applications is becoming more and more
popular and specifically through containers, they presented a model for the cal-
culation of container similarity for scenarios presented in the cloud, providing
a new solution in workload prediction models for this type of containers.

Regarding TinyML, there are not many studies available about its use to
predict climate variables, yet. In [26], authors presented the design of a tiny
deep neural network to predict atmospheric pressure, embedded in a micro-
controller. The tiny neural network approach presented was compared with
the results of a non-tiny neural network, obtaining similar results. Further-
more, experiments demonstrated the performance of the approach in a real
environment.

Analysing the related works, the reader can figure out that there is no
assessment, analysis and comparison of the performance of climatic variables in
both edge and TinyML platforms. This is one of the main novelties presented
in this work, together with the discussion and measurement of the different
energy consumption.

3 Materials and Methods

3.1 Operational greenhouse

Fig. 1 shows the ETIFA’s operational smart greenhouse targeted for this study.
ETIFA1 is part of a group of companies with more than 40 years of experience

1https://www.etifa.com/

Springer Nature 2021 LATEX template

6 Evaluation of low-power devices for smart greenhouse development

Fig. 1: Targeted operational greenhouse located at Murcia (Spain)

providing agricultural services and technology, manufacturing and innovating
to adapt to the continuous demands of the agricultural market. ETIFA’s green-
house is placed in Murcia (South-eastern Spain); a semi-arid region where
water is very scarce resource (e.g. the average annual rainfall in the last years
is 132 mm) and average annual temperature is around 23 ºC. This green-
house has a surface area of 50 m2 and operates with the NUTRICONTROL
OPTIMUM® system for climate control and fertigation. NUTRICONTROL
is a R+D company that offers solutions for the analysis, design, manufacture
and marketing of control equipment for irrigation and climate automation in
greenhouses and outdoor irrigation installations. The OPTIMUM® system
consists of a data logger composed of a server system and several input/output
connections to plug-in several sensors and actuators, including temperature,
humidity, radiation, wind speed, just to name a few. Of particular interest to
us is the temperature of the air inside the greenhouse as this is the most impor-
tant variable for climate control. This variable is measured every 5 minutes in
the ETIFA greenhouse, providing near-real time (NRT) continuous measure-
ments to take actions that can increase/decrease the greenhouse temperature
to reach the ideal temperature of the crop being grown.

3.2 Dataset

Table 1 summarises the description of the datasets that have been used to
carry out the temperature prediction. It shows the start date of the data, the
end date and the number of instances contained in each dataset. Each dataset
contains the temperature values each 15 o 60 minutes of a greenhouse between
the indicated dates.

Springer Nature 2021 LATEX template

Evaluation of low-power devices for smart greenhouse development 7

Datasets Start date End Date # Instances
DS-15 11-12-2018 23-03-2021 80018
DS-60 11-12-2018 23-03-2021 20005

Table 1: Dataset description

As the sensors return data approximately every 2-5 minutes, to obtain the
15-minute and the 60-minute datasets, an aggregation of the data has been
made, in which each value corresponds to the average of the values belonging
to that time interval.

(a) 7-Day line plot. (b) Box plot.

(c) Histogram plot.

Fig. 2: Exploratory Data Analysis (EDA) for the 15-minutes time serie.

Fig. 2 shows an exploratory data analysis of 15-minutes dataset. This
dataset includes 80,0018 different values with an average mean of 21.689°C
and standard deviation of 5.726°C. The maximum average value reaches up to
54.620°C. The time series of the internal greenhouse temperature is shown in
Fig. 2a which illustrates an example of the 7-day time series. Moreover, the
box-and-whisker plot (see Fig. 2b), and the distribution of its values (see Fig.
2c) are shown.

Similarly, Fig. 3 shows the description of the 60-minute dataset. It includes
more than 20,000 records with a mean of 21.689°C and a standard deviation
of 5.705°C . An example of the 7-day time series is also shown (see Fig. 3a)

Springer Nature 2021 LATEX template

8 Evaluation of low-power devices for smart greenhouse development

(a) 7-Day line plot. (b) Box plot.

(c) Histogram plot.

Fig. 3: Exploratory Data Analysis (EDA) for the 60-minutes time serie.

where a smoother data was appreciated. Finally, the box and whisker plot (see
Fig. 3b), and the distribution of its values (see Fig. 3c) are shown.

Finally, Fig. 4 shows the complete time series (see Fig. 4a) as well as the
result of applying Pettit’s homogeneity test [27] (see Fig. 4b), in which it can
be seen that the time series is not homogeneous, with a possible cut-off point
on 01-05-2020, dividing the time series in two: the first part whose mean is
20.76°C and the second part whose mean is 23.12°C.

Once the data has been collected as described above, it has to be pre-
pared for training and inference of ANN models. Specifically, we focus on the
prediction of a time-series, in this case, the internal greenhouse temperature.
Equation 1 shows the input and out layout of our dataset to cast and adapt
the data and to be trained by ANNs models.

input → output
[t1, t2, t3, ..., tn] → [tn+1, tn+2, tn+3, ..., tn+m] (1)

where n is the number of past elements that the network will have to infer
the next value. This parameter is often referred to as look-back. In addition,
m defines the number of instances to be predicted by the model. It should be
noted that depending on the input dataset (DS-15 or DS-60) each value to be
predicted means a different time granularity. For example, if the model predicts
the next 3 hours of greenhouse interior temperature, with DS-15 it means

Springer Nature 2021 LATEX template

Evaluation of low-power devices for smart greenhouse development 9

(a) Full time serie.

(b) Results of Pettit’s homogeneity test.

Fig. 4: Homogeneity of the time series.

generating 12 values (i.e., m = 12). However, if the model has been trained
with DS-60, the 3-hours forecast means generating 3 values (i.e., m = 3). Fig.
5 shows how the inputs are selected for each of the iterations in the DS-60 case,
where each of the three inputs corresponds to one hour. The output obtained
is the following three hours. For the DS-15 case, the scheme is the same but
instead of having three inputs and three outputs, there are twelve.

Finally, the last data transformation performed on the dataset to adapt
it to ANNs is the separation into training data and test data, i.e. data that
will be used to make the model learn (training) and data that will be used to
validate the accuracy of the model (testing). The percentages associated with

Springer Nature 2021 LATEX template

10 Evaluation of low-power devices for smart greenhouse development

Fig. 5: Inputs and outputs diagram to train ANN models.

each subset of data are 70% for the training data set and 30% for the testing
data set.

3.3 The ANN models

This section describes the evaluated ML models. They are ANNs-based mod-
els relatively simple as they have to fit in very reduce memory space. The
models chosen were the multi-layer perceptron (MLP) and the convolutional
neural network (CNN), both very simple models that are supported by the
tflite conversion that allow the execution on the microcontroller. A neural net-
work is an ML model that mimics the way a set of biological neurons works.
Although its use in classification is more widespread, it can also be used in
regression models. A perceptron simulates an artificial neuron, so that it rep-
resents a simulation of a logistic regression. When a group of perceptrons per
layer (MLP) is joined together, it is known as an artificial neural network
(ANN). The MLP used in this work is composed of three layers: input (receives
the input features), hidden (processes the inputs) and output (produces the
output). In the learning process, each layer adjusts its weights to relate inputs
to outputs, because they use an activation function that allows them to learn
non-linear properties in the network [28, 29]. The second model under study is
a Convolutional Neural Network (CNN). The CNN models are used in differ-
ent applications and domains, where they are most frequently used in imaging
for classification. However, they are also used in regression, where they can be
used using time series by transforming the data to adapt them to the inputs
of the convolutional network. A CNN is made up of blocks of filters, which,
through convolution operations, allow the relevant features to be extracted
from the input. One of the advantages of CNNs over conventional neural net-
works (ANNs) is the automatic learning of the filters, so that the necessary
and most relevant features are obtained from the input data [30, 31].

ANN models are supervised methods that consist of two main steps. The
first is training where a known data set, i.e. where the input and output are
known, is used to fit the model with a custom parameters. In our case, we
introduce the different temperature tuples prepared to serve as input (i.e.

Springer Nature 2021 LATEX template

Evaluation of low-power devices for smart greenhouse development 11

Fig. 6: Model used for the MLP scheme for the case of three-hour inputs
The MLP has three layers (input, hidden and output), where the hidden layer
learns the model that allows the output to be predicted from the input.

t1, ..., tn) to the different networks. The ANNs generate an output which is
compared with the previously known output (i.e. tn+1, ..., tn+m).

The ANNs compare the real output and the forecasted output, re-evaluate
the error value and update the weights of each neuron in the neural network
layers depending on how correct or incorrect the forecast is, so that the neural
network is adjusted in the training process, improving the performance of the
task it is learning.

The inference process is different from the training process. In inference, the
layers of the neural network are not re-evaluated and adjusted. Simply, knowl-
edge from a neural network model that has already been trained is applied
and a result is inferred without readjusting the weights of the neural network.

In our case, as said before, we use two different models, MLP and CNN.
This models have a custom configuration (a.k.a. hyperparameters) in order to
improve the performance of it forecasting.

The most important hyperparameters for a MLP in time-series regression
problem are:

• Units: Number of neurons used in one layer of the model.
• Optimizer: It is a function that optimises the learning of an ANN, updating
its neurons weights depending on the evaluation error

• Learning rate: It allows the speed of adaptation of the model to the problem
to be established.

• Loss function: Function used for evaluate the error of the model in each
epoch.

Regarding the MLP, we have used a hidden layer with 100 units, an Adam
optimizer, a learning rate equal to 0.000001, and MSE (Mean Squared Error)
as a loss function. Also, for training, the model is using a total of 100 epoch for
15-minutes dataset and 200 epochs for 60-minutes dataset. Fig. 6 shows the
scheme used for the MLP network for the three-hour case using 60-minutes

Springer Nature 2021 LATEX template

12 Evaluation of low-power devices for smart greenhouse development

Fig. 7: Model used for the CNN scheme for the three-hour input case, where
a new feature vector is obtained due to the convolutional layer. In this way,
the hidden layer of the network learns to generate the output from these new
features provided by the convolutional layers, unlike the previous case where
only an MLP is used with the direct input.

dataset, where the input is passed directly to the MLP network and the pre-
diction of the next three hours is obtained. For the 15-minutes dataset case,
the scheme would represent twelve inputs and twelve outputs.

The most important hyperparameters for a CNN in time-series regression
problem are:

• Filters: Sets the dimension of the output space.
• Kernel Size: Sets the width and height of the 2D convolution window.
• Padding: Add irrelevant pixels when a window is smaller than standard
window.

• Activation: Function to define how to transform the weighted sum of the
input into an output for a node or nodes in a network layer.

• Pool size: Window size over which to take the maximum.
• Optimizer: It is a function that optimises the learning of an ANN, updating
its neurons weights depending on the evaluation error.

• Learning rate: It allows to control how fast a model adapts to the problem.
• Loss function: Function used for evaluate the error of the model in each
epoch.

Regarding the CNN, we have used a convolutional layer with 16 filters, [2,
1] of kernel size, “same” padding, “ReLU” as activation function, [2, 1] of pool
size, an Adam optimizer, a learning rate equal to 0.00001, and MSE (Mean
Squared Error) as the loss function. Also, for training, the model is using a
total of 50 epochs for 15-minutes dataset and 20 epochs for 60-minutes dataset.
Fig. 7 shows the scheme used for the CNN network, where the input is passed
through a convolutional layer to obtain a feature vector that is used as input

Springer Nature 2021 LATEX template

Evaluation of low-power devices for smart greenhouse development 13

to the fully connected neural network. This figure represents the example of
three hours and prediction of the next three hours with 60-minutes dataset.
For the 15-minutes dataset case, the scheme would represent twelve inputs and
twelve outputs.

As a framework we use TensorFlow (developed by Google), which allows
us to build machine learning models.

3.4 TensorFlow Platform used to build the ML models

TensorFlow is a powerful open-source deep learning framework that can run
machine learning models on various devices, including Raspberry Pi and Nvidia
Jetson. Both Raspberry Pi and Nvidia Jetson are popular choices for building
intelligent embedded systems and IoT devices due to their low cost, small form
factor, and powerful processing capabilities.

When using TensorFlow on a Raspberry Pi, developers can take advantage
of the framework’s ability to perform complex machine learning operations,
such as image classification and object detection, on the device itself. This
allows for real-time processing of data, making it possible to build intelligent
applications that can respond to their environment in real-time. Addition-
ally, TensorFlow supports a wide range of hardware and software platforms,
including Linux and Android, which makes it easy to use on the Raspberry
Pi. This can be especially useful for projects that require low-level control of
the hardware, such as robotics or home automation systems.

Similarly, Nvidia Jetson boards are also powerful devices that can run
TensorFlow models with high performance. Jetson boards are based on the
NVIDIA CUDA architecture, which is specifically designed for running deep
learning workloads. This makes them ideal for applications such as computer
vision, object detection, and image recognition. The Jetson boards also have
a powerful GPU and a large amount of memory, which allows them to handle
large and complex models.

Using TensorFlow on both Raspberry Pi and Nvidia Jetson can be a great
way to take advantage of the framework’s powerful capabilities while still keep-
ing the costs and power consumption low. Additionally, TensorFlow allows
developers to use pre-trained models and a library of powerful algorithms to
train their own models, making the development process faster and more effi-
cient. It also allows developers to deploy the models on the device, which can
make the application more efficient, reliable and secure.

TensorFlow Lite is a lightweight version of TensorFlow. It is designed to
help developers deploy machine learning models on mobile and IoT devices
with limited computational resources, such as Arduino Nano devices. It has
been optimised for these types of devices, making it possible to run models on
devices with limited memory and processing power.

One of the key features of TensorFlow Lite is its ability to convert pre-
trained TensorFlow models into a format that can be run on mobile and IoT
devices. This conversion process, known as “model quantization,” reduces the
size of the model and enables it to run faster on these devices. TensorFlow Lite

Springer Nature 2021 LATEX template

14 Evaluation of low-power devices for smart greenhouse development

also includes a number of other performance optimizations, such as support
for hardware acceleration, to further improve the performance of models on
these devices. Additionally, TensorFlow Lite provides a user-friendly API that
makes it easy for developers to integrate machine learning into their mobile
and IoT applications.

3.5 Training and deployment of ML models in Edge and
Tiny ML platforms

As mentioned above, ANN models are supervised models, so they are run in
two different steps: training and inference. Training is the most time-consuming
step and is a process that, to date, cannot be carried out on microcontrollers.
Therefore, the training process for the models targeted in this paper is carried
out on an High-Performance Computing (HPC) platform and it is exactly the
same procedure applied to every ML problem, i.e. pre-processing and transfor-
mation of the data, development of the ML model and then training with the
dataset. Once trained, the model is tested with the test set and if necessary,
the model is re-trained with different parameters.

Once the ANN models have been trained, they need to be transferred
to the platform where the inference is performed. This paper targets four
different computing platforms (see Fig. 8). Three of them can be classified as
edge/fog computing platforms; i.e., Raspberry PI Model B and two platforms
from Nvidia Jetson family. The Raspberry PI 4 Model B is a single-board
computer (SBC) that is extensively used in IoT infrastructure. It has a Quad
core Cortex-A72 (ARM v8) 64-bit SoC, running at 1.5GHz and endowed with
8GB LPDDR4-3200 SDRAM. Regarding the Nvidia Jetson edge computing
devices, we focus on the Nvidia AGX Jetson Xavier with 8-core ARM v8.2
64-bit CPU, 8MB L2 + 4MB L3, 512-core Volta GPU with Tensor Cores and
16GB 256-Bit LPDDR4x running at 137GB/sec, and Nvidia Jetson Nano that
has 5-core ARM Cortex-A57 MPCore CPU, 2MB L2, 128-core Maxwell GPU
and 4GB 64-Bit LPDDR4 running at 25.6 GB/sec.

The last device under study is the Arduino Nano 33 BLE Sense that can
be categorised as TinyML device since combines small factor, environment
sensing and allows ML models to be run using TinyML and TensorFlow Lite.
It is build upon the nRF52840 64MHz microcontroller, the memory is 256
KB SRAM, 1MB flash, and runs on ARM Mbd OS. It is important to note
that the main way to connect to this Arduino device is via Bluetooth Low
Energy although it is also equipped with some sensors to detect audio, colour,
humidity, temperature, motion, proximity and more.

As can be seen, the platforms have very different characteristics, with large
differences in computational capabilities. Therefore, it is necessary to make a
series of modifications to the artificial intelligence models so that they can be
adapted to the characteristics of all platforms. In particular, to achieve this
objective: (1) different configurations of hidden layers of the models have been
studied until we found a configuration that was compatible with all deployment
platforms, (2) an optimal hyperparameter configuration has been searched

Springer Nature 2021 LATEX template

Evaluation of low-power devices for smart greenhouse development 15

Fig. 8: Building a Tiny ML project.

to maximize the quality of the results obtained, minimizing the number of
trainable parameters of the model and (3) the model has been translated into
different programming languages depending on the platform on which it was
going to be executed, for example, for Arduino and Raspberry it has been
necessary to build the model in C while for the Nvidia Jetsons Python has
been used as programming language. In this way, models are obtained with a
reduced number of trainable parameters, with a reduced memory space and
with low computational requirements that allow them to be executed in each
and every one of the platforms that are the object of this study.

Springer Nature 2021 LATEX template

16 Evaluation of low-power devices for smart greenhouse development

To deploy the models on edge computing platforms, it is necessary to first
train the models on HPC computers and, using the library’s predefined func-
tions, export them to a .h5 file. Once the AI model has been exported to a
file, it is necessary to move the model file to the edge computing platform on
which it will run, load it (also using the library’s predefined functions) and
finally perform the inference. For the GPU versions of Nvidia’s Jetson family,
the procedure is similar with the difference of the value of an environment vari-
able, CUDA VISIBLE DEVICES, whose value was “” to force execution on CPU
or “0” to force execution on the GPU available on the system.

Deployment on the TinyML platform is not so straightforward. The trained
model must be converted to TensorFlow Lite [32]. TFLite is the framework for
deploying ML models on mobile, microcontrollers and other edge devices that
has a reduced memory space. FlatBuffers is how a TFLite model is represented,
where its extension is .tflite. It allows for a special, portable and efficient for-
mat. TFLite has advantages over the buffer model format of the TensorFlow
protocol, featuring faster inference because it accesses the data directly with-
out an additional parsing step, as well as a reduced memory size (small code).
These features allow TFLite to run efficiently on devices with limited process-
ing and memory resources. A TFLite model can be generated in several ways.
First, using an existing TFLite model available in the TFlite SDK 2. Second,
creating a TFLite model, using TFLite Model Maker to create a model with
your own custom dataset. It is noteworthy to highlight all models already con-
tain metadata. Third, converting a TF model to a TFLite model by using the
TFLite Converter. During conversion, several optimisations such as quantiza-
tion to reduce model size and latency with little or no loss of accuracy can be
applied. Models developed buy this last option no include metadata. In our
case, we chose the third option to get the TFlite model to load on the Arduino.
It is important to note that not all TF models can be converted to TFLite
models that is one of the reason why this work focuses on MLP and CNN mod-
els and not in other models such as LSTM. Finally, it is necessary to convert
the .tflite file to a byte array in C. in order to run the model on an Arduino.

The last part is represented by the inference process in the device to be
used. The edge computing devices receive the data through REST API server,
and once they have received the input data, they generate the forecast values.
On the other hand, the Arduino receives the information via bluetooh.

4 Evaluation and Discussion

This section shows the performance, energy and quality results obtained on
all targeted devices; i.e. Arduino Nano 33 BLE Sense, Raspberry Pi 4, Nvidia
Jetson Nano and Nvidia AGX Xavier by executing MLP and CNN models
previously presented in Section 3.3. The models developed are named with the
following abbreviations: MLP15min and MLP60min for the MLP model using
15 minutes and 60 minutes data aggregations, and CNN15min and CNN60min

2https://www.tensorflow.org/lite/examples

Springer Nature 2021 LATEX template

Evaluation of low-power devices for smart greenhouse development 17

Fig. 9: Execution time (miliseconds) in logarithmic scale of ML models on
different devices

for CNN models using the same data aggregations. We refer the reader to
Section 3.2 for insights on the dataset construction.

Fig. 9 shows the execution time for inference of MLP and CNN models
on all targeted platforms. The Arduino Nano 33 BLE Sense is the worst per-
formance platform as expected. The computational differences of the Arduino
against the rest of the platforms are clearly lower in the MLP inference, where
a maximum difference of 4.7X speed-up factor is reached, than in the CNN
inference, where a speed-up factor of more than two orders of magnitude is
reached (110X speed-up factor between Jetson AGX Xavier and Arduino).
MLP model inference is computationally lighter than CNN model inference
because it has fewer layers and the operations carried out are much simpler
than MLP. It is important to note that Fig. 9 is shown in logarithmic scale due
to the large difference in performance of the platforms under study. Indeed,
it is possible to clearly appreciate, for example, the great difference in time
between running the ML workloads on Jetson Xavier CPU or the Arduino one.

Computational differences between Arduino and other platforms are also
reduced by the number of elements to be predicted. In the 60-minute dataset,
the computational difference is reduced 4 times in terms of speed-up factor for

Springer Nature 2021 LATEX template

18 Evaluation of low-power devices for smart greenhouse development

Fig. 10: Energy consumption (Joules) in logarithmic scale of ML models on
different devices. Note that below 1, the larger the bar the lower the energy
consumption value.

CNN60min compared to CNN15min and 1.5 times for MLP60min compared
to MLP15min. Overall, the number of elements to be generated in the 60-
minute dataset prediction is 4 times smaller than in the 15-minute dataset
prediction.

It is also important to note the negative impact of the use of GPUs in this
context, reported by the Jetson family. ML models under study are extremely
lightweight to be executed on TinyML platforms such as Arduino ones. There-
fore, the computational needs of these workloads are not large enough to fill
all GPU resources, penalising the execution time of the inference. This penalty
is also highlighted in the inference of the CNN model that is clearly affected
by memory latency, as CNN has a higher number of memory access. Actu-
ally, this memory pressure is also shown by determining the best performing
platform, which for MLP inference is the Raspeberry 4 with little difference
(5-10%) to the Jetson AGX Xavier which has better technical specifications.
However, CNN model inference performs better in the Jetson AGX Xavier by
a wide margin since it benefit from the higher memory bandwidth.

Fig. 10 shows the energy consumption in Joules of the different platforms
analysed by running the ML model inference. Again, it is important to note
that the Y-axis is on a logarithmic scale and therefore below axis 1, the larger
the bar, the lower the value of energy consumed. To obtain these figures, the
Microchip’s PAC1934 power meter is used that provides instantaneous power
consumption, energy accumulation, etc., by plugging into USB type-C bus used
for power supply [33]. The power consumption is tracked when ML models are
running on the targeted devices and thus making predictions. Moreover, Fig.

Springer Nature 2021 LATEX template

Evaluation of low-power devices for smart greenhouse development 19

10 shows the maximum values reached during the execution of each ML model.
Fig. 10 is also shown in logarithmic scale given the wide range of values, as
was the case in Fig. 9

Regarding the power consumption (Watts) figures, differences are quite
large; the Arduino Nano consumes only 0.17 W, defeating Raspberry PI by a
wide margin as it consumes 3.5 W. Regarding Nvidia Jetson platforms, there
are also some important differences. The idle power consumption of Jetson
Nano is in the range of 1.3 W and 1.6 W. The power consumption of CPU-
based MLP and CNN models is in range of 2.4 W and 2.6 W. Whenever
the GPU is switched on, the power consumption of the Nvidia Jetson Nano
increases by a factor of 13.79%, reaching up to 2.9-3.1 W. The power con-
sumption of the Jetson AGX Xavier with GPU enabled reaches up to 10.15
W while with only executing the CPU version consumes 7.77 W. With this in
mind, the Arduino is by far the most energy efficient platform (about 1 order
of magnitude), followed by the Raspeberry PI, the Jetson in CPU mode and
finally, the least energy efficient platform for these workloads is the Jetson fam-
ily, using the GPU. As discussed above, the small difference in performance
between the platforms is not enough to hide the energy consumption of the
platforms. The Arduino would have a power consumption of 0.17 Watts. Once
the instantaneous consumption of the platforms was calculated, the energy
was calculated in a straightforward way, multiplying the execution time in sec-
onds, and thus being able to obtain a metric that shows the best model-device
combination in the trade-off between execution time and energy consumption.
Actually, according to the energy figures shown in Fig. 10, the most energy
efficient model-device combination is the MLP60min and the CNN60min,
running on the Arduino microcontroller. The Arduino microcontroller con-
sumes less power than the Raspberry although it takes longer to perform the
predictions. This result is exactly what was expected due to the hardware dif-
ference between the two devices and shows perfectly why TinyML, and more
generally bringing ML to microcontrollers, is so important and convenient.

Finally, Fig. 11 shows the accuracy of the models by forecasting the internal
temperature of the greenhouse for the next 3 hours. The metrics used in this
evaluation are as follows. The Root Mean Squared Error (RMSE) is the square
root of the average of squared errors. The Mean Absolute Error (MAE) is
the average absolute difference between the observed and the predicted value.
These two metrics are measured in Celsius degrees as they would be errors
in the temperature prediction. The lower the error, the better the result of
the technique obtained. Finally, the coefficient of determination R2 is used to
determine the goodness of the model. This value is estimated at 0 and 1, with
values close to 1 being a better fit and values closer to 0 a worse fit. Results in
Fig. 11 have been calculated for both the MLP and CNN techniques, dividing
into 15-minute and 60-minute datasets, and averaged them for each of the
devices used. In addition, the standard deviation obtained for each metric is
shown at the top of the graph.

Springer Nature 2021 LATEX template

20 Evaluation of low-power devices for smart greenhouse development

Fig. 11: Metrics (R2 score, RMSE and MAE) of ML models on different
devices. The bars show the mean of the metric in question for the different
platforms while the vertical line at the top of the bars shows the standard
deviation.

Analysing the results, the best model on the RMSE value is CNN15m as
expected. The CNN model is more complex ANN than the straightforward
MLP and can theoretically better capture the behaviour of the time series.
Moreover, the dataset with fifteen-minute measurements has a larger size, so
the models have more data to improve the training. In general, RMSE results
show that the mean deviation from the forecast values is between 2°C and 3°C.
MAE results, however, show that the mean difference between the forecast and
the observed temperature is between 1 °C and 2 °C. Since the RMSE-MAE
difference is not large enough, it means that large errors are unlikely to have
occurred. As for the R2 results, CNN15m and CNN60m reached a value
of almost 0.85, which means that the predictions of these models are quite
accurate, while MLP15m is 0.8 and MLP60 has the lowest score of 0.7. The
difference in terms of evaluation metrics between the two models is obvious
but it does not necessarily mean that MLPs are not a valid choice because,
as stated before, they are lighter and their execution is faster. Of the three
metrics shown in Fig. 11 and with respect to quality results, CNN15m shows
the best performance, followed by CNN60m, MLP15m and MLP60m.

It is important to highlight the great difference between the 15-minute
and 60-minute datasets. As we have already mentioned, the CNN technique
obtains the best result compared to MLP, the models obtained for the two
datasets have a similar behaviour. Better results are always obtained with the
15-minute dataset than with the 60-minute dataset. The reader may think

Springer Nature 2021 LATEX template

Evaluation of low-power devices for smart greenhouse development 21

that the models are over-fitted or under-fitted. But the reality is that the
15-minute dataset aggregates a lower granularity, so the deviation of the 15-
minute temperature is smaller than it does for 60-minutes dataset. This leads
to a lower prediction error in 15 minutes than in 60 minutes and this also leads
to a better system tuning. The 15min-MLP, 60min-MLP models are run with
the same parameters optimised to the average case. The same is valid for the
models 15min-CNN, 60min-CNN. Thus, we can conclude that when predicting
temperature it will always be better to have lower granularity, not only for the
improvement of the results, but from an agricultural point of view, to be able
to act and control the temperature in short periods of time.

With all of the above in mind and taking into account the perfor-
mance, energy and quality figures, we are tempted to highlight as the best
hardware-software combination the CNN60m model running on the Arduino
microcontroller. The CNN60m model offers similar quality numbers to the
CNN15m model but the energy used when running that model on the micro-
controller is lower. However, there are other factors to consider and these
depend on the particular application case where the infrastructure is deployed.
In an application such as smart greenhouse management, the energy consumed
is probably an important aspect while the accuracy of the model is not so-
critical as long as the error is under certain threshold. MLP models executed
on the Arduino microcontroller are a better choice as it offers almost an order
of magnitude lower energy consumption. Of course, if power consumption is
not an issue and power is available, we could scale up to edge solutions such as
Raspberry PI in order to optimise the execution time. We discourage platforms
with embedded GPUs in such energy-constrained contexts where workloads
do not take advantage of all the computational resources provided.

5 Conclusion and Future Work

Edge computing is leading the HPC-AI intersection in the IoT arena. However,
the computational gap between the two disciplines is still huge. It requires
simpler algorithms and platforms to offer novel solutions to emerging appli-
cations to make them viable in this context, i.e., meeting both runtime and
power consumption requirements. In this paper, we analyse a wide range of
edge computing platforms in the context of TinyML. In particular, we use
two lightweight artificial neural networks, namely MLP and CNN, for indoor
temperature prediction in greenhouses. We use them as benchmarks to eval-
uate four different edge computing platforms; an Arduino microcontroller, a
Raspberry-Pi, and two platforms of the familiar Nvidia Jetson.

Our results show that a balance between algorithmic complexity, the
accuracy of the results obtained, and energy efficiency is essential to obtain
robust and operational systems in real-world environments. We claim that the
best hardware-software combination for the problem analysed would be the
CNN1h model running on the Arduino microcontroller. We also observe the
low impact of introducing more computation at this level, as seen in the energy

Springer Nature 2021 LATEX template

22 Evaluation of low-power devices for smart greenhouse development

efficiency numbers of Nvidia’s Jetson family. Actually, the energy consumption
and thus the carbon footprint, is one a critical factor in greenhouses, while the
accuracy of the model is not so critical as long as the error is below a certain
threshold. That’s why MLP models running on the Arduino microcontroller
may be a better choice, as they offer almost an order of magnitude lower power
consumption. We also conclude that platforms with integrated GPUs in these
energy-constrained contexts may not be sufficiently fruitful, unless the model
run is sufficiently complex.

We recognise that the problem addressed in this paper is relatively simple.
When scaled up to a more complex problem, e.g., multivariate greenhouse mod-
elling or smart irrigation, more complex models will need to be developed to
achieve adequate accuracy and require computational power. We envision this
algorithmic complexity as a chance to also scale in computational horsepower
at the edge.

Declarations

Ethical Approval

Not applicable

Conflict of interest

The authors declare they do not have any conflict of interest.

Authors’ contributions

Conceptualization, J.M.C. and R.M.E.; methodology, J.M.C., R.M.E and
A.B.C.; software, J.M.G. and J.L.P.; validation, J.M.C., R.M.E., P.M and
A.B.C.; formal analysis, A.B.C., J.M.C., P.M. and R.M.E.; investigation,
J.M.G. and J.M.C.; data curation, A.B.C., R.M.E. and J.M.G.; writ-
ing—original draft preparation, J.M.G., J.L.P., R.M.E., J.M.C. and A.B.;
writing—review and editing, P.M. and J.M.C.; visualization, J.L.P., J.M.G.
and R.M.E.; supervision, J.M.C. and P.M.; project administration, J.M.C.;
funding acquisition, J.M.C.

All authors have read and agreed to the published version of the
manuscript.

Funding

This work is derived from R&D projects RTC2019-007159-5, as
well as the Ramon y Cajal Grant RYC2018-025580-I, funded by
MCIN/AEI/10.13039/501100011033, “FSE invest in your future” and “ERDF
A way of making Europe”.

Availability of data and materials

All data and materials are available on request from the authors of this paper.

Springer Nature 2021 LATEX template

Evaluation of low-power devices for smart greenhouse development 23

References

[1] Feki, M.A., Kawsar, F., Boussard, M., Trappeniers, L.: The internet of
things: the next technological revolution. Computer 46(2), 24–25 (2013)

[2] Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things
(iot): A vision, architectural elements, and future directions. Future
generation computer systems 29(7), 1645–1660 (2013)

[3] Tahsien, S.M., Karimipour, H., Spachos, P.: Machine learning based solu-
tions for security of internet of things (iot): A survey. Journal of Network
and Computer Applications 161, 102630 (2020)

[4] Papadokostaki, K., Mastorakis, G., Panagiotakis, S., Mavromoustakis,
C.X., Dobre, C., Batalla, J.M.: Handling big data in the era of internet
of things (IoT). Springer (2017)

[5] Satyanarayanan, M.: The emergence of edge computing. Computer 50(1),
30–39 (2017)

[6] Capra, M., Peloso, R., Masera, G., Ruo Roch, M., Martina, M.: Edge
computing: A survey on the hardware requirements in the internet of
things world. Future Internet 11(4), 100 (2019)

[7] Warden, P., Situnayake, D.: TinyML. O’Reilly Media, Incorporated
(2019)

[8] Portilla, J., Mujica, G., Lee, J.-S., Riesgo, T.: The extreme edge at the
bottom of the internet of things: A review. IEEE Sensors Journal 19(9),
3179–3190 (2019)

[9] Deng, L., Yu, D.: Deep learning: methods and applications. Foundations
and trends in signal processing 7(3–4), 197–387 (2014)

[10] Guillén-Navarro, M.Á., Mart́ınez-España, R., Bueno-Crespo, A., Ayuso,
B., Moreno, J.L., Cecilia, J.M.: An lstm deep learning scheme for pre-
diction of low temperatures in agriculture, pp. 130–138. IOS Press
(2019)

[11] Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT
press (2018)

[12] Abhishek, K., Singh, M., Ghosh, S., Anand, A.: Weather forecasting model
using artificial neural network. Procedia Technology 4, 311–318 (2012)

[13] Lee, S., Lee, Y.-S., Son, Y.: Forecasting daily temperatures with different
time interval data using deep neural networks. Applied Sciences 10, 1609
(2020)

Springer Nature 2021 LATEX template

24 Evaluation of low-power devices for smart greenhouse development

[14] Zhang, Z., Dong, Y.: Temperature forecasting via convolutional recurrent
neural networks based on time-series data. Complexity 2020 (2020)

[15] Jung, D.-H., Kim, H.S., Jhin, C., Kim, H.-J., Park, S.H.: Time-serial
analysis of deep neural network models for prediction of climatic condi-
tions inside a greenhouse. Computers and Electronics in Agriculture 173,
105402 (2020)

[16] Codeluppi, G., Cilfone, A., Davoli, L., Ferrari, G.: Ai at the edge:
a smart gateway for greenhouse air temperature forecasting. In: 2020
IEEE International Workshop on Metrology for Agriculture and Forestry
(MetroAgriFor), pp. 348–353 (2020). IEEE

[17] Guillén, M.A., Llanes, A., Imbernón, B., Mart́ınez-España, R., Bueno-
Crespo, A., Cano, J.-C., Cecilia, J.M.: Performance evaluation of edge-
computing platforms for the prediction of low temperatures in agriculture
using deep learning. The Journal of Supercomputing 77(1), 818–840
(2021)

[18] Codeluppi, G., Davoli, L., Ferrari, G.: Forecasting air temperature on edge
devices with embedded ai. Sensors 21(12), 3973 (2021)

[19] Chang, Z., Liu, S., Xiong, X., Cai, Z., Tu, G.: A survey of recent advances
in edge-computing-powered artificial intelligence of things. IEEE Internet
of Things Journal (2021)

[20] Dubey, A.K., Kumar, A., Garćıa-Dı́az, V., Sharma, A.K., Kanhaiya, K.:
Study and analysis of sarima and lstm in forecasting time series data.
Sustainable Energy Technologies and Assessments 47, 101474 (2021)

[21] Seshadri, K., Akin, B., Laudon, J., Narayanaswami, R., Yazdanbakhsh,
A.: An evaluation of edge tpu accelerators for convolutional neural
networks. arXiv preprint arXiv:2102.10423 (2021)

[22] Rashid, N., Demirel, B.U., Al Faruque, M.A.: Ahar: Adaptive cnn for
energy-efficient human activity recognition in low-power edge devices.
IEEE Internet of Things Journal (2022)

[23] Cruz, M., Mafra, S., Teixeira, E., Figueiredo, F.: Smart strawberry
farming using edge computing and iot. Sensors 22(15), 5866 (2022)

[24] Feng, B., Ding, Z., Jiang, C.: Fast: A forecasting model with adaptive
sliding window and time locality integration for dynamic cloud workloads.
IEEE Transactions on Services Computing (2022)

[25] Ding, Z., Feng, B., Jiang, C.: Coin: A container workload prediction
model focusing on common and individual changes in workloads. IEEE

Springer Nature 2021 LATEX template

Evaluation of low-power devices for smart greenhouse development 25

Transactions on Parallel and Distributed Systems 33(12), 4738–4751
(2022)

[26] Alongi, F., Ghielmetti, N., Pau, D., Terraneo, F., Fornaciari, W.: Tiny
neural networks for environmental predictions: an integrated approach
with miosix. In: 2020 IEEE International Conference on Smart Computing
(SMARTCOMP), pp. 350–355 (2020). IEEE

[27] Pettit, A.: A non-parametric approach to the change-point problem.
Applied statistics 28(2), 126–135 (1979)

[28] Bishop, C.M., et al.: Neural networks for pattern recognition. Oxford
university press (1995)

[29] Tadeusiewicz, R.: Neural networks: A comprehensive foundation: by
Simon HAYKIN; Macmillan College Publishing, New York, USA; IEEE
Press, New York, USA; IEEE Computer Society Press, Los Alamitos, CA,
USA; 1994; 696 pp.; 69–95; ISBN: 0-02-352761-7. Pergamon (1995)

[30] Li, Y., Hao, Z., Lei, H.: Survey of convolutional neural network. Journal
of Computer Applications 36(9), 2508 (2016)

[31] Sahu, M., Dash, R.: A survey on deep learning: convolution neural network
(CNN). Springer (2021)

[32] Tensorflow: Tensorflow Lite for Microcontrollers. https://www.tensorflow.
org/lite/microcontrollers Accessed 2021-07-06

[33] Inc., M.T.: PAC1934 USB C POWERMETER. https://www.microchip.
com/en-us/development-tool/ADM00921

https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.microchip.com/en-us/development-tool/ADM00921
https://www.microchip.com/en-us/development-tool/ADM00921

	SPRINGER SUPERCOMP
	Supercomputing___TinyMLEvaluation
	Introduction
	Related Works
	Materials and Methods
	Operational greenhouse
	Dataset
	The ANN models
	TensorFlow Platform used to build the ML models
	Training and deployment of ML models in Edge and Tiny ML platforms

	Evaluation and Discussion
	Conclusion and Future Work

