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Abstract
We are witnessing the digitalization era, where artificial intelligence (AI)/machine learning (ML) models are mandatory to
transform this data deluge into actionable information. However, these models require large, high-quality datasets to predict
high reliability/accuracy. Even with the maturity of Internet of Things (IoT) systems, there are still numerous scenarios where
there is not enough quantity and quality of data to successfully develop AI/ML-based applications that can meet market
expectations. One such scenario is precision agriculture, where operational data generation is costly and unreliable due to
the extreme and remote conditions of numerous crops. In this paper, we investigated the generation of synthetic data as a
method to improve predictions of AI/ML models in precision agriculture. We used generative adversarial networks (GANs)
to generate synthetic temperature data for a greenhouse located in Murcia (Spain). The results reveal that the use of synthetic
data significantly improves the accuracy of the AI/ML models targeted compared to using only ground truth data.

Keywords Deep learning · Synthetic time series data generation · Generative adversarial networks · Time series forecasting

1 Introduction

Modern technologies provide sustainable and feasible solu-
tions to many real-world problems. One area where these
technologies have provided solutions in recent years is agri-
culture. Precision agriculture applies innovative technologies
to the agricultural world to reduce costs, increase profit and
achieve sustainability [1]. A comprehensive review of the
state of the art use of artificial intelligence (AI) in smart
greenhouses is provided by [2]. This review focused on the
optimization of crop yields, reduction of water consumption,
fertilizers, diseases, pests, and the search for improved agri-
cultural sustainability. Therefore, the status of various AI
technologies in smart greenhouses is reviewed by discussing
the extent to which technologies have been successfully
applied in an agricultural context and the options for opti-
mizing their usability.

Among the challenges facing precision agriculture is the
adaptation of processes to climate change [3]. To monitor
crop status to face sudden weather changes that occur mainly
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in semi-arid climates, farmers use technologies such as the
Internet of Things (IoT) to monitor their plots and/or green-
houses [4, 5]. The data generated by these systems also feed
into decision support systems to perform intelligent and auto-
matic actions on the plots. Several leading examples for these
include climate control in greenhouses [6] or frost prevention
in a fruit orchard through smart irrigation [7].

Although decision support systems have numerous advan-
tages and can make decisions in anticipation of future
climatic conditions, they have the disadvantage of needing
to create local models to achieve high accuracy in predict-
ing climate variables [8, 9]. This disadvantage translates
into the need to have historical data on the location of the
plot to train and create an accurate model according to the
farmer’s needs. This would mean installing the IoT system
to collect data but not accurately using the prediction system
until there is sufficient historical data to create the predic-
tion model. In [10], the authors review four bio-inspired
intelligent algorithms used for agricultural applications, such
as ecological, swarm intelligence-based, ecology-based, and
multi-objective-based algorithms. Some observed that no
universal algorithm could perform multiple functions on
farms; therefore, different algorithms were designed accord-
ing to the specific functions to be performed.
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Despite being in the era of Big Data, there is still a lack of
quality data to address local problems such as the one men-
tioned above [11]. Recently, AI techniques have emerged that
can generate artificial data of equal or higher quality than the
original data, thus solving the problem of the amount of data
needed to train local models [12]. Among these techniques,
generative adversarial networks (GANs) – deep artificial neu-
ral networks capable of generating artificial data – [13] have
obtained interesting results in different applications, includ-
ing image processing [14], speech recognition [15] and other
[16].

Within the field of precision agriculture, GANs have
recently been applied to image processing tasks such as
image augmentation [17, 18] and other tasks within com-
puter vision [19]. However, to the best of our knowledge,
synthetic data generation has not been applied to time series
data generation in precision agriculture for climate control.
In this study, we propose and evaluate synthetic data genera-
tion strategies to increase the accuracy of forecasting models
for greenhouse climate control.

Greenhouses are agricultural structures that must be
tightly controlled to avoid extreme weather conditions to
achieve high crop yields [20]. Therefore, farmers are increas-
ingly installing greenhouses controlled by IoT systems to
monitor their crops in real time. However, using these data to
generate a greenhouse climate model that allows intelligent
and automatic control to reduce resources usedwhile increas-
ing crop production is challenging. Therefore, to develop this
predictive model, the historical data set to train this model
is crucial. These data are not available for the specific loca-
tion where the greenhouse is installed until the IoT system
starts operating. To solve the data problem, this study pro-
poses the creation of synthetic greenhouse data using GAN
techniques, to design a prediction system for climatic vari-
ables, specifically focusing on temperature, as it is one of
the most influential monitored variables [21]. The findings
of this study include:

• Creation of synthetic datasets using GANs techniques
considering different time granularities.

• Study of the best prediction technique using neural
networks to predict the temperature of a greenhouse, con-
sidering various granularities.

• Analysis and comparison of the different models created
with both synthetic and original data, as well as with the
fusion of both types of data.

The remainder of the paper is organized as follows.
Section 2 summarizes state-of-the-art related studies regard-
ing synthetic data generation in a time series. Section 3
describes the proposedGAN technique for creating synthetic
time series data, as well as the techniques used for evaluating
such synthetic data, including the description of the data and

evaluation metrics used for the assessment. Section 4 shows
the results, analysis and discussion. Section 5 highlights the
conclusions and directions for future works

2 Related works

Data collection and capture is one of the mayor features
of an open and well-served society. Innovative technologies
allow us to capture, analyze and merge data from a variety
of sources. However, data are not always accessible, because
of privacy or because there is no local data collection system
for a problem [22]. In this situation, new AI technologies
provide tools and techniques capable of creating synthetic
data. Synthetic data is a simulation of ground truth data that
allows us to have a greater amount of information, to obtain
more robust and accurate techniques [23]. When creating
synthetic data, it is important to consider the type of data to
be created. The creation of synthetic image data is useful and
is widely used for health problems [24] or disease detection
in crops [25]. However, the need for larger data sets is not
exclusive to the world of image processing. Furthermore, in
all contexts that require data for ad-hoc training, they also
require large datasets, whether regarding IoT (where time
series data predominates) or open contexts (where tabular
data predominates). In [26], the authors review the role of
IoT devices in smart greenhouses and precision agriculture,
where variables such as the cost of agricultural production,
environmental conservation, ecological degradation and sus-
tainability have been analyzed. It shows how the economic
benefits of using IoT applications in smart greenhouses have
long-term benefits in commercial agriculture.

Focusing on the generation of synthetic data for time series
data, synthetic data generation methods based on long-short
term memory (LSTM) techniques are widely used. In [27],
using LSTM, a method for completing synthetic well logs
from existing log data was established. This method allowed,
at no additional cost, synthetic logs to begenerated from input
log datasets, considering variation trend and context informa-
tion. Furthermore, combining standard LSTMwith a cascade
system was proposed, demonstrating that this method gives
better results than traditional neural network methods, and
the cascade system improved the use of a stand-alone LSTM
network, providing an accurate and cost-effectiveway to gen-
erate synthetic well logs.

Another of the most widely used techniques for synthetic
data generation in recent years is GANs [28]. The use of
GANs in time series has been widely used to detect anoma-
lies, both in univariate [29–31] and multivariate models [32].
This scheme is widely usedwhenworkingwith unsupervised
learningwhere anomaly detection is of particular importance
for class labeling. The works on synthetic generation of time
series data are not focused on agriculture; they are general
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works where techniques are proposed and evaluated with
benchmarks or work focused on other areas. Yoon et al. [13]
proposed a framework for the generation of synthetic time
series data, where supervised and unsupervised techniques
are combined. Specifically, the authors propose an unsu-
pervised GAN with supervised training using autoregressive
models.

However, in agriculture, using time series GANs is rarely
used. Some studies have used agricultural data as benchmark
data [33, 34], but to the best of our knowledge, there are no
publications that focus on solving precision agriculture prob-
lems using GANs. In this study, the usefulness of synthetic
data is investigated by assessing whether they preserve the
distribution of individual attributes, the accuracy of the ML
models and pairwise correlation.

3 Materials andmethods

This section shows the datasets used and their characteris-
tics. The synthetic data generation model was introduced
before AI models were used to validate the effectiveness of
the synthetic data described. Finally, different training strate-
gies followed to achieve the objective are presented.

3.1 Dataset

The creation of synthetic data must first take a ground truth
dataset from the particular domain for which synthetic data
will be generated. In this case, the actual data are obtained
from an operational greenhouse located in a semi-arid region
of south-easternSpain (Murcia). ground truth data is obtained
from an IoT infrastructure that measures the inside temper-
ature (ºC) of this greenhouse, which has been in continuous
operation since 2018. This infrastructure sends 5 minutes of
data grouped into 15-minutes, 30-minutes and 60-minutes
respectively by performing the standard average.

Because the greenhouse is located in a semi-arid region,
the thermal differences between summer and winter are
remarkable; therefore, it has been considered that the ground
truth data should be divided into winter and summer peri-
ods as well. Table 1 shows the ground truth datasets we have
created for evaluation purposes. It shows the starting and end-
ing date of the data, and the total number of values available.
Datasets ending with aW indicate the end of the training data
in winter and datasets ending with an S indicate the end of
the training data in summer.

3.2 Synthetic data generation using GANs

For the generation of synthetic data, this study used Doppel-
GANger; a GAN architecture for sequential data proposed in
[35]. Figure 1 shows the GAN architecture used that is based

Table 1 Description of ground truth dataset

Datasets Start date End Date # Instances

GreenHouse-15m-S 18-12-18 06-06-21 86543

GreenHouse-15m-W 18-12-18 17-01-21 73103

GreenHouse-30m-S 18-12-18 06-06-21 43272

GreenHouse-30m-W 18-12-18 17-01-21 36552

GreenHouse-60m-S 18-12-18 06-06-21 21636

GreenHouse-60m-W 18-12-18 17-01-21 18276

on the established architecture of strawman GANs for time
series generation. It usesRecurrentNeuralNetworks (RNNs)
to generate synthetic time series data. The generative part of
DoppelGANger is based on a layer of LSTM cells with 100
units, following a batch generation strategy. Therefore, the
model generates, in each pass, S consecutive records of the
synthetic time series data, instead of a single one, as do most
of the traditional approaches (e.g., R1, R2, .., RS in Fig. 1).
According to authors, this allows us to better capture the
temporal correlation of long series and reduce the number of
passes required by the model to generate the synthetic data.
Furthermore, the GAN also includes a normalization mech-
anism for each input time series to tackle the well-known
model-collapse problem of many GAN models. Then, the
discriminator, which is a multilayer perceptron (MLP) with
up to five layers of 200 neurons each followed by a ReLU
activation function, uses the Wasserstein loss to report the
differences between the ground truth and the fake data.

3.3 Deep Learningmodels

To assess the impact on the accuracy of ground truth and
synthetic time series, four deep learning models have been
considered: (1) MLP, (2) CNN, (3) LSTM and (4) a combi-
nation of CNN and LSTM.

Fig. 1 Architecture of the DoppelGANger used for the synthetic data
generation
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• MultiLayer Perceptron (MLP): Themultilayer percep-
tron is an artificial neural network made up of multiple
layers that forms a directed graph through the different
connections between the neurons that make up the layers.
This neural network attempts to simulate the biological
behavior of neurons. MLP can solve non-linearly separa-
ble problems, because each neuron, apart from the inputs,
has a non-linear activation function. The MLP is based
on the backpropagation method. This method attempts
to adjust the weights of the network connections to min-
imize the prediction error between the output produced
by the network and the desired output. Layers can be
classified into three types: The input layer comprises the
neurons that input the data; no computation occurs in
these neurons. Hidden layers can be as numerous as nec-
essary depending on the complexity of the data; these
layers comprise neurons whose input comes from pre-
vious layers and whose output and settings are passed
on to subsequent layers. Finally, the output layer com-
prises neurons whose values correspond to the number of
outputs of the network. In this study, a three-layer MLP
comprising input, hidden and output layers are used. The
first receives the input features; the hidden layer is where
the inputs are processed so that the output layer gener-
ates the output of the MLP. The hidden layer learns any
complex relationship between the input and the output
due to the activation functions of its neurons [36].

• Convolutional Neural Network (CNN): Convolutional
neural networks are a typeof supervised learning artificial
neural network that processes its layers bymimicking the
visual cortex of the human eye to identify different fea-
tures in the inputs. These layers perform operations that
modify the data to understand its particular character-
istics. The three most common layers are: convolution,
activation or ReLU, and clustering. The convolutional
layer applies a set of convolutional filters to the input
datawhere eachfilter activates different features. The rec-
tified linear unit holds positive values and sets negative
values to zero, allowing for faster andmore efficient train-
ing, also known as activation, as only activated features
proceed to the next layer. The clustering layer simpli-
fies the output by a non-linear reduction of the sampling
rate, which reduces the number of parameters the net-
work must learn. These operations are repeated in tens
or hundreds of layers; each layer learns to identify dif-
ferent features. After learning features in various layers,
the architecture of a CNN moves on to classification.
The penultimate layer is fully connected and generates a
K-dimensional vector. The final layer of the CNN archi-
tecture uses a classification layer to provide the final
classification output. The difference between a CNN and
a traditional neural network is that a CNN has shared

weights and bias values, which are the same for all hidden
neurons in a given layer. Although the use of convolu-
tional neural network models is more associated with the
image classification domain, they are also used in differ-
ent applications and domains, such as regression, where
they can be usedwith time series by transforming the data
to adapt them to the input of the convolutional network
[37].

• Long Short-TermMemory (LSTM): The LSTMmodel
has a recurrent neural architecture with state memory,
having the advantage of allowing long-term memory,
and is therefore widely used in time series. LSTM is
an evolution of standard recurrent neural networks, used
in machine learning problems where time is involved,
because their architecture as cells and loops allows the
transmission and recall of information in different steps.
LSTM comprises an architecture that allows information
to be stored over long time intervals. This is because
the memory cells of the network comprise several layers
with loss functions (instead of one as in usual recurrent
networks) of sigmoid type that allow us to bypass or add
information to themain information line of the neural net-
work, controlled by a hyperbolic tangent function. The
information passes from one cell to another, first passing
through a sigmoid layer, which is called the forget gate
layer. It compares input and output, and returns a value
between 0 and 1. If it is 1, the information is stored, if it
is 0, it is disregarded. The next step comprises the sec-
ond sigmoid layer and the hyperbolic tangent layer. It
is used to decide which new information will be stored
in the cell. The sigmoid layer called the input gate layer
decides which value will be updated, and the hyperbolic
tangent layer creates a vector of possible values decided
by the previous one to be added to the state. The last
step is a sigmoid layer that decides what the output will
be, followed by a hyperbolic tangent layer that decides
which values go to the network output according to the
sign by which they are multiplied [38].

• Convolutional Neural Network + Long Short-Term
Memory (CNN+LSTM): This model, known as ConvL-
STM, is a DLmodel that combines a CNN and an LSTM
network. The architecture of this technique shares parts of
the CNN and LSTM architectures with differences based
on the connection point. In the CNN model, the fully
connected end layer is replaced by the input layer of an
LSTM. Thus the LSTM would keep its complete archi-
tecture, described above, and the CNN modifies its last
layer. Therefore, theCNNnetwork automatically extracts
the input features, while the LSTM network obtains the
regression results. This combination allows for the ben-
efits of both models, creating a robust model for time
series problems [39].
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3.4 Preparation of datasets for training and testing

To accurately assess the impact of the synthetically generated
data, five training and testing strategies are proposed to assess
the performance of theMLmodels previously presented. The
first strategy (that is, the ground truth dataset) is based only
on the ground truth dataset (see Section 3.1). This dataset is
divided into two datasets: (1) the training dataset, comprising
all the data except the last day, and (2) the test dataset, com-
prising the last day of the available data. As these are time
series data, it is impossible to perform a cross-validation or
a validation with any other dataset than the latest values of
the time series. time series require preserving the order and
dependence between the data.

The second strategy for training and testing (namely, Syn-
thetic dataset) only relays on the synthetic data generated
with the GAN model previously presented. The synthetic
dataset is divided into two datasets: (1) the data used for
training, i.e., the synthetic data generated and the data used
for testing that, in this case, are obtained from the ground
truth dataset and (2) the data used for testing; i.e., the last
day of the time series. The evaluation data are removed, and
instead, the evaluation data are taken from the ground truth
dataset, so the impact of the synthetic data on a real scenario
can be rigorously evaluated.

The third strategy (namely, Synthetic + Ground truth
dataset) combines synthetic and ground truth data. The
ground truth dataset has been extended by adding data at
the beginning of the dataset from the synthetic dataset to
extend the time series and thus increasing the size of the
dataset for training. Likewise, the models are trained using
the entire dataset described above, removing the last day,
which is reserved for testing.

The fourth strategy (namely, Synthetic + Ground truth
with reinforcement learning dataset) is inspired by reinforce-
ment learning. It also uses synthetic data with ground truth
data but here, the training is performed by only using syn-
thetic data. Once the model has been trained, the model
is re-trained by using ground truth data. This is because
the greenhouse will be continuously operating, and thus,
data will be increasingly generated. Then, it can be used to
increase the performance of the models over time. Likewise,
the test strategy uses the last ground truth day to evaluate
accuracy.

The fifth strategy (Shuffled synthetic + Ground truth
dataset) uses synthetic and ground truth datasets. This test
is like the third strategy, but, the synthetic dataset is shuffled
before being concatenated at the beginning of the ground
truth dataset. Like previous strategies, the last day of the
ground truth dataset is used for testing. This strategy is used
to verify the validity of a criterion-generated time series, and
it would not be valid to introduce mere random data.

4 Evaluation and discussion

This study considers two dimensions of the problem: (1) the
use of GANs for synthetic data generation (time series data)
and (2) the impact on the accuracy of AI models depending
on whether ground truth or synthetic data are used.

4.1 Exploratory data analisys

All the hyperparameters that have been used for using the
GAN model are specified, described and explained in the
following list:

• Max sequence length: Length of time series sequences,
variable length sequences are not supported, so all
training and generated data will have the same length
sequences. Used value is: Lenght of the time serie for
one day (96, 48 or 24), deppends on the dataset.

• Sample length: Time series steps to generate from
each LSTM cell in DGAN, must be a divisor of
max_sequence_len. Used value is: Lenght of the time
serie for one day (96, 48 or 24), deppends on the dataset.

• Batch size: Number of examples used in batches, for both
training and generation. Used value is: min(1000, length
of the dataset).

• Apply feature scaling: Scale each continuous variable
to [0,1] or [-1,1] (based on normalization param) before
training and rescale to original range during generation.
Used value is: True.

• Apply example scaling: Compute midpoint and hal-
frange (equivalent to min/max) for each time series
variable and include these as additional attributes that
are generated, this provides better support for time series
with highly variable ranges. Used value is: False.

• Use attribute discriminator: Use separate discriminator
only on attributes, helps DGANmatch attribute distribu-
tions. Used value is: False.

• Generator learning rate: Learning rate for Adam opti-
mizer. Used value is: 0.0001.

• Discriminator learning rate: Learning rate for Adam
optimizer. Used value is: 0.0001.

• Epochs: Number of epochs to train model. Used value
is: 100000.

Table 2 shows the main statistical values of the ground
truth time series sampled every 15, 30 and 60 minutes
during two and a half years together with the same descrip-
tive statistics of the synthetic series over 288, 144 and 72
years.

Most are the usual statistical values. In particular, the
standard error of the mean (SEM) measures how much dis-
crepancy is likely in a sample’s mean compared with the
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Table 2 Comparison of ground truth and synthetic temperature time series distribution

GreenHouse-15m-S GreenHouse-30m-S GreenHouse-60m-S
ground truth Synthetic ground truth Synthetic ground truth Synthetic RMSE

Samples 86,543 10,091,520 43,272 2,522,880 21,636 630,720

Days 901,5 105,120 901.5 52.560 901.5 26.280

Min 9.57 9.85 9.65 10.18 9.70 10.00 0.3847

Q1 17.68 18.05 17.70 17.46 17.72 17.33 0.3426

Median 20.99 21.44 21.00 20.83 20.98 20.85 0.2888

Mean 21.47 21.84 21.48 21.45 21.48 21.27 0.2459

Q3 24.91 25.34 24.89 25.26 24.89 24.74 0.3370

Max 33.72 33.68 33.71 33.65 33.70 33.61 0.0629

Sem 0.0170 0.0016 0.0241 0.0033 0.0339 0.0065 0.0218

Std 5.1992 4.9553 5.004 5.18 4.99 5.18 0.2051

Kurtosis -0.52 -0.62 -0.52 -0.70 -0.52 -0.54 0.1194

Skew 0.34 0.27 0.34 0.32 0.34 0.31 0.0455

SMD (1) 0.073 0.006 0.041

population mean. Kurtosis is the degree of peakedness of
a distribution, if the value is close to 0, then a normal dis-
tribution is often assumed. Skewness is usually described
as a measure of a dataset’s symmetry, a value between -
0.5 and 0.5, the data are fairly symmetrical. The statistics
for skewness and kurtosis simply do not provide any use-
ful information beyond that already given by the measures
of location and dispersion but is another element to com-
pare in the last column. Root-mean-square error (RMSE)
is a frequently used measure of the differences between
values, in our case ground truth and synthetic predicted
values.

As can be observed, RMSE, calculated from the ground
truth and synthetic column of each sampling rate, is a notably

Fig. 2 Box plot comparing ground truth and synthetic data distributions
according to sampling frequency

small value for all statistical measures shown. In addition, we
can check the standardised mean difference (SMD) which
tests for differences in means between ground truth and
synthetic time series. Normally, a value of less than 0.1 is
considered a “small” difference.

Table 2 shows a notably statistical similarity between
the ground truth and synthetic values, especially because so
many years are artificially generated. The data to see the dis-
tribution of the time series helps identify possible numerical
anomalies such as outliers that would cause similar statis-
tical values for different distributions. That is why these
conclusions must be visually corroborated by looking at the
box-and-whisker diagram shown in Fig. 2, the Kernel Den-
sity Function shown in Fig. 3 and the three Q-Q plots shown
in Fig. 4 that compare the ground truth (line) and synthetic

Fig. 3 Kernel density function comparing ground truth and synthetic
data sets according to sampling frequency
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(plots) sampling frequency for the three sampling rates.

SMD = | x̄1 − x̄2 |√
(s21+s22 )

2

(1)

To corroborate the conclusion that the generated synthetic
time series will be useful to enrich the training of predictive

modelswith tens of thousands of samples that we lack in real-
ity, we compare on the timeline the three sets of generated
series. Figure 5 shows a comparison of one week sampled
every 15, 30 and 60 minutes between ground truth and syn-
thetic data sets.

Visually, the synthetic time series is adjusted to the peri-
odicity of each actual day. It is not perfect but significant

Fig. 4 Q-Q plot comparing ground truth and synthetic data sets according to sampling frequency
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Fig. 5 Comparison of the same week of the three sampling rates with respect to their corresponding generated time series

correlations between each pair of ground truth and synthetic
datasets are reported. However, they are not statistically sig-
nificant when analyzing the correlation month-to-month or,
year-to-year (see Table 3). A priori, this is not a problem for
the intention to use the synthetic results to improve predic-

Table 3 Average of correlations between ground truth and synthetic
data by time period and sampling frequency

Period of time Data source Corr. avg.
GroundTruth-Synth

Day GreenHouse-15m-S 0.8630

Day GreenHouse-30m-S 0.8329

Day GreenHouse-60m-S 0.7992

Month GreenHouse-15m-S 0.5380

Month GreenHouse-30m-S 0.5107

Month GreenHouse-60m-S 0.4722

tion models based on deep learning because the objective is
to advance the prediction in a close time period.

In the following sections, this hypothesis is validated; i.e.,
that the generated data improve the training results of the
proposed predictive model.

4.2 Model evaluation

Table 4 shows the models and hyperparameters used for
assessment purposes.

The results of each model described in Section 3.3 using
the above parameters are presented next. We have used three
metrics to perform such an evaluation, the mean absolute
error (MAE), the root mean squared error (RMSE) and coef-
ficient of determination (R2). These are some of the most
common metrics used to measure accuracy for continuous
variables. MAE and RMSE are suitable for model compar-
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Table 4 Hyperparameters used for each model. (-) indicates model has no parameter

HYPERPAREMETER DESCRIPTION MLP CNN LSTM CNNLSTM

Units Number of neurons used in hidden layers 70 – 70 –

Filters Features detector – 64 – 64

Kernel size Filters matrix used to extract the features
from the dataset

– 1 – 2

Strides Number of pixels shifts over the input
matrix

– 1 – 4

Activation function Function that decide if a neuron should be
(or not) activated

Tanh Tanh Tanh Tanh

Batch size Size of bach used for training/forecasting 2880 2880 2880 2880

Epochs (+ EarlyStopping) Number of epoch used in training 15000 15000 15000 15000

Optimizer Function that optimises the learning of a
artificial intelligence model, updating its
neurons’ weights depending on the error
evaluation

Adam Adam Adam Adam

Loss function Function used for evaluate the error of the
model in each epoch

MSE MSE MSE MSE

Learning rate (+ ReduceL-
ROnPlateau)

Percentage change with which weights are
updated at each iteration

0.003 0.003 0.003 0.003

isons as they express the average model prediction error in
units of the variable of interest. Their definition is as follows:

MAE = 1

n

n∑
i=1

|yi − ŷi |

RMSE =
√√√√1

n

n∑
i=1

(yi − ŷi )2

R2 =
∑

(e2i )
n∑

i=1
(yi − ŷi )2

where, yi is the real (ground truth) value of the climatological
variable, ŷi is the predicted value, e2i is the error term and n
is the number of observations.

Table 5 shows the values of the metrics for the MLP
for the five train strategies described in seconds (secs.).
3.4. As seen, the strategy following a reinforcement learn-
ing approach achieved the best scores in most metrics and
time horizons. This is especially remarkable for the datasets
with a time frequency of 15 minutes (GreenHouse-15m-W
and GreenHouse-15m-S ). Furthermore, such a reinforce-
ment approach provided more accurate MLP models than
those solely relying on ground truth data. The R2 of the for-
mer approachwas 0.936 for GreenHouse-15m-Swhereas the
score of the latter strategy was only 0.644 given a 12-h time
horizon. Similar behavior was observed for the 24-h period
given the same dataset, 0.957 vs 0.835 R2. The strategy using

a shuffled version of the synthetic time series achieved larger
errors than the one combining the time series because the
GAN directly generated them. Concerning the sensitivity of
the results, the accuracy of the MLPs trained following the
synthetic or the synthetic + ground truth policies seem to
slightly decrease with the frequency increases up to 60 min.
For example, the R2 score of the synthetic dataset MLP was
0.913 and 0.886 for frequencies 15 and 30 min given the
summer dataset but it dropped to 0.749 when the frequency
is set to 60 min. However, this pattern is not observed in the
other policies in Table 5.

Table 6 shows the results obtained from the CNN model.
Here, the three strategies that incorporated synthetic data dur-
ing the training stage improve results than the one solely rely-
ing on the ground truth data. The combination of synthetic
and ground truth data strategies achieved the best scores for
all metrics and time horizons for the GreenHouse-15m-W
feed. A similar behavior was observed in GreenHouse-30m-
W. However, when the frequency increased to 60 min in the
winter feed (GreenHouse-60m-W), reinforcement learning
or only the use of synthetic data strategies provided better
results. However, the summer datasets showed, a slightly
different pattern. The CNN models trained with synthetic
or the reinforcement-learning strategies were more accurate
for the 30-min frequency (GreenHouse-30m-S dataset), but
the combination of synthetic and ground truth strategy pro-
vided the most accurate CNN model for 15-min and 60-min
frequencies. This reveals that combining the synthetic with
the ground truth data approach improved the training of the
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Table 5 Results of the MLP technique using ground truth, synthetic, a combination of ground truth + synthetic, ground truth + synthetic with
reinforcement learning and shuffled synthetic + ground truth datasets

Prediction hours 12h 24h

Metrics R2 RMSE MAE R2 RMSE MAE

ground truth dataset GreenHouse-15m-W 0.787 1.543 1.260 0.865 1.643 1.256

Greenhouse-15-S 0.644 3.755 3.445 0.835 3.379 3.001

GreenHouse-30m-S 0.909 1.543 1.319 0.909 1.749 1.369

GreenHouse-30m-S 0.479 3.939 3.518 0.808 3.205 2.717

GreenHouse-60m-W 0.800 1.766 1.535 0.884 1.659 1.354

GreenHouse-60m-S 0.831 3.448 3.048 0.822 3.512 3.157

Synthetic dataset GreenHouse-15m-W 0.814 1.459 1.132 0.811 1.984 1.561

GreenHouse-15m-S 0.913 1.863 1.535 0.951 1.497 1.164

GreenHouse-30m-S 0.918 1.393 0.847 0.862 1.878 1.285

GreenHouse-30m-S 0.886 2.890 2.362 0.941 3.761 3.188

GreenHouse-60m-W 0.828 1.460 1.063 0.792 1.941 1.490

GreenHouse-60m-S 0.749 2.913 2.558 0.878 2.764 2.438

Synthetic + ground truth GreenHouse-15m-W 0.818 1.899 1.487 0.890 1.647 1.316

dataset GreenHouse-15m-S 0.931 2.091 1.735 0.953 2.038 1.722

GreenHouse-30m-W 0.858 1.276 1.004 0.908 1.317 1.066

GreenHouse-30m-S 0.792 2.706 2.333 0.887 2.820 2.471

GreenHouse-60m-W 0.741 1.849 1.499 0.788 2.094 1.767

GreenHouse-60m-S 0.669 3.636 3.033 0.874 2.800 2.112

Synthetic + ground truth GreenHouse-15m-W 0.863 1.161 0.955 0.910 1.314 1.034

with reinforcement learning GreenHouse-15m-S 0.936 1.678 1.358 0.957 1.330 1.025

dataset GreenHouse-30m-W 0.864 1.778 1.567 0.922 1.645 1.415

GreenHouse-30m-S 0.816 2.685 2.350 0.921 2.629 2.306

GreenHouse-60m-W 0.864 1.444 1.216 0.921 1.504 1.206

GreenHouse-60m-S 0.898 2.708 2.074 0.938 3.257 2.782

Shuffled synthetic + ground GreenHouse-15m-W 0.912 1.430 1.100 0.899 1.750 1.283

truth dataset GreenHouse-15m-S 0.597 3.754 3.432 0.833 3.316 2.912

GreenHouse-30m-W 0.814 1.727 1.482 0.900 1.660 1.325

GreenHouse-30m-S 0.931 3.124 2.803 0.910 3.446 3.106

GreenHouse-60m-W 0.841 1.673 1.488 0.898 1.656 1.331

GreenHouse-60m-S 0.921 3.390 3.006 0.839 3.551 3.178

R2 (coefficient of determination) RMSE (root mean square error) MAE (mean absolute error). RMSE and MAE are measured in degrees Celsius
(◦C) for each 12 and 24 hours. The best value for each combination of dataset, metric and prediction hour is shown in bold

CNN with high time frequencies (15 min) but for lower fre-
quencies the other two synthetic-based approaches were also
suitable. In terms of sensitivity, the models following ground
truth or shuffled synthetic+ground truth approaches improve
results when the frequency increases from 15 min to 60
min. However, the other three approaches follow the opposite
trend with a slight accuracy improvement when decreasing
the frequency of the time series (e.g. the R2 score of the
MLP with Synthetic + ground truth approach moved from
0.798 to 0.869 when the frequency of the GreenHouse-60m-
S decreased from 60 to 30 min. This suggests that, for the

MLP model, the combination of synthetic and real data must
be better considered for time series with frequencies below
30 min.

Table 7 summarizes the evaluation of the LSTM model.
The three synthetic-based training strategies outperformed
the approach that only used ground truth data, consider-
ing most metrics, time horizons and datasets. For example,
the RMSE of the LSTM trained only using ground truth
data was 6.358 for the GreenHouse-15m-S dataset when
considering a 24-h time horizon the same model trained
with synthetic data achieved a much lower RMSE, 3.829.
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Table 6 Results of the CNN technique using ground truth, synthetic, a combination of ground truth + synthetic, ground truth + synthetic with
reinforcement learning and shuffled synthetic + ground truth datasets

Prediction hours 12h 24h

Metrics R2 RMSE MAE R2 RMSE MAE

ground truth dataset GreenHouse-15m-W 0.856 1.467 1.216 0.886 1.582 1.232

GreenHouse-15m-S 0.516 3.809 3.434 0.808 3.199 2.715

GreenHouse-30m-W 0.779 1.631 1.331 0.877 1.587 1.266

GreenHouse-30m-S 0.922 3.313 3.056 0.914 3.368 3.027

GreenHouse-60m-W 0.818 1.702 1.480 0.895 1.608 1.298

GreenHouse-60m-S 0.860 3.396 3.082 0.859 3.430 3.091

Synthetic dataset GreenHouse-15m-W 0.883 1.484 0.977 0.924 2.173 1.551

GreenHouse-15m-S 0.906 3.334 2.123 0.714 4.890 4.063

GreenHouse-30m-W 0.920 1.032 0.847 0.922 1.300 1.113

GreenHouse-30m-S 0.928 2.382 1.758 0.938 2.521 2.155

GreenHouse-60m-W 0.835 1.432 1.027 0.882 1.772 1.263

GreenHouse-60m-S 0.716 3.057 2.683 0.892 2.789 2.435

Synthetic + ground truth GreenHouse-15m-W 0.897 1.121 0.823 0.915 1.194 0.908

dataset GreenHouse-15m-S 0.869 2.111 1.753 0.910 1.821 1.441

GreenHouse-30m-W 0.930 0.946 0.722 0.932 1.036 0.843

GreenHouse-30m-S 0.835 2.483 2.095 0.728 3.069 2.730

GreenHouse-60m-W 0.808 1.659 1.099 0.882 2.411 1.741

GreenHouse-60m-S 0.798 2.668 2.312 0.913 2.406 2.060

Synthetic + ground truth GreenHouse-15m-W 0.862 2.326 1.771 0.880 2.743 2.337

with reinforcement learning GreenHouse-15m-S 0.951 2.251 1.833 0.942 2.297 2.014

dataset GreenHouse-30m-W 0.886 1.378 1.164 0.926 1.406 1.171

GreenHouse-30m-S 0.911 2.555 2.127 0.854 2.038 1.557

GreenHouse-60m-W 0.867 1.592 1.392 0.921 1.534 1.284

GreenHouse-60m-S 0.795 2.737 2.375 0.924 2.714 2.353

Shuffled synthetic + ground GreenHouse-15m-W 0.779 1.852 1.605 0.859 1.692 1.413

truth dataset GreenHouse-15m-S 0.036 6.785 5.397 0.562 7.135 6.352

GreenHouse-30m-W 0.793 1.899 1.648 0.877 1.691 1.397

GreenHouse-30m-S 0.575 3.929 3.579 0.839 3.286 2.851

GreenHouse-60m-W 0.890 1.486 1.249 0.913 1.654 1.273

GreenHouse-60m-S 0.949 2.835 2.476 0.910 2.904 2.514

R2 (coefficient of determination) RMSE (root mean square error) MAE (mean absolute error). RMSE and MAE are measured in degrees Celsius
(◦C) for each 12 and 24 hours. The best value for each combination of dataset, metric and prediction hour is shown in bold

Furthermore, the LSTM model exhibited differences in
terms of accuracy depending on the time frequency of the
model, as already observed with the CNN model. There-
fore, Table 7 shows that the reinforcement-learning approach
allowed the LSTM model to improve its accuracy for most
of the datasets with low time frequencies (GreenHouse-30m-
S, GreenHouse-60m-W and GreenHouse-60m-S). Further-
more, the approach that relies solely on synthetic data to
train the model generated more accurate predictions datasets
with higher time frequencies (i.e., GreenHouse-15m-W and
GreenHouse-15m-S) at least for the 12-h time horizon. The

training strategy based on a shuffled version of the synthetic
time series achieved larger RMSE and MAE values than the
three versions using the original synthetic time series, as well
as the LSTM model just trained only with ground truth data.
Table 7 also shows that all the models trained with the four
policies, including ground truth data, were sensitive to the
frequency of the input time series. The R2 score exhibited an
increase in the ground truth, synthetic, synthetic + ground
truth, and shuffled synthetic + ground truth policies when
the frequency of the time series moved from 30 to 60 min.
In contrast, a different behavior was observed for the LSTM
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Table 7 Results of the LSTM technique using ground truth, synthetic, a combination of ground truth + synthetic, ground truth + synthetic with
reinforcement learning and shuffled synthetic + ground truth datasets

Prediction hours 12h 24h

Metrics R2 RMSE MAE R2 RMSE MAE

ground truth dataset GreenHouse-15m-W 0.321 2.723 2.055 0.420 3.857 2.887

GreenHouse-15m-S 0.323 4.186 2.686 0.380 6.358 5.003

GreenHouse-30m-W 0.826 1.478 1.176 0.890 1.618 1.288

GreenHouse-30m-S 0.821 2.818 2.387 0.927 3.147 2.741

GreenHouse-60m-W 0.815 1.746 1.520 0.901 1.637 1.293

GreenHouse-60m-S 0.805 2.764 2.454 0.930 2.799 2.441

Synthetic dataset GreenHouse-15m-W 0.890 1.456 0.995 0.908 2.364 1.771

GreenHouse-15m-S 0.959 2.555 1.917 0.895 3.829 3.298

GreenHouse-30m-W 0.982 1.236 0.948 0.801 1.853 1.528

GreenHouse-30m-S 0.813 2.639 2.225 0.913 3.326 2.828

GreenHouse-60m-W 0.979 1.832 1.307 0.873 2.011 1.476

GreenHouse-60m-S 0.951 2.334 1.615 0.931 3.136 2.664

Synthetic + ground truth GreenHouse-15m-W 0.403 3.010 2.460 0.439 2.911 2.370

dataset GreenHouse-15m-S 0.225 4.552 3.866 0.123 4.642 4.021

GreenHouse-30m-W 0.485 3.122 2.533 0.546 2.645 2.102

GreenHouse-30m-S 0.862 2.865 1.913 0.893 2.291 1.645

GreenHouse-60m-W 0.938 0.855 0.645 0.921 1.389 1.109

GreenHouse-60m-S 0.931 2.418 1.596 0.945 2.478 2.035

Synthetic + ground truth GreenHouse-15m-W 0.863 1.475 1.251 0.923 1.435 1.163

with reinforcement GreenHouse-15m-S 0.196 6.785 4.579 0.090 9.619 7.930

learning dataset GreenHouse-30m-W 0.801 1.840 1.483 0.860 1.631 1.280

GreenHouse-30m-S 0.955 2.251 1.808 0.943 2.225 1.915

GreenHouse-60m-W 0.879 1.316 1.061 0.934 1.285 0.979

GreenHouse-60m-S 0.951 2.378 1.898 0.911 3.038 2.704

Shuffled synthetic + ground GreenHouse-15m-W 0.506 3.444 2.939 0.660 2.851 2.369

truth dataset GreenHouse-15m-S 0.570 3.281 2.751 0.651 3.748 3.253

GreenHouse-30m-W 0.594 2.565 2.157 0.753 2.161 1.697

GreenHouse-30m-S 0.726 3.083 2.693 0.900 2.786 2.401

GreenHouse-60m-W 0.799 1.566 1.307 0.882 1.745 1.366

GreenHouse-60m-S 0.857 2.814 2.521 0.942 3.038 2.690

R2 (coefficient of determination) RMSE (root mean square error) MAE (mean absolute error). RMSE and MAE are measured in degrees Celsius
(◦C) for each 12 and 24 hours. The best value for each combination of dataset, metric and prediction hour is shown in bold

solely trained with synthetic data, its more accurate results
were obtained with the frequency of the input time series was
set to 15 min.

Last, Table 8 comprises the evaluation results of the
CNN+LSTMmodel. The three training alternatives that used
synthetic time series improved results, than the one that was
based solely on ground truth data. Furthermore, we can see
that the strategy that combined ground truth with synthetic
data achieved the best results especially for the 15, or 30
min datasets. For example, the RMSE of the model for a
12-h prediction when trained was 0.932 for the GreenHouse-

30m-W. This was a lower error than the one obtained by the
variation trained only with ground truth data (i.e., 1.645).
Furthermore, the CNN+LSTMmodel, trained only with syn-
thetic data, achieves the best results for the two datasets
with a 60-min frequency. Unlike the previous models, the
reinforcement-learning strategy performed sligthly worse
than the other alternatives.Moreover, the training using shuf-
fled synthetic data, achieved slightly higher errors than the
other four alternatives in most cases. Regarding sensitiv-
ity, CNN+LSTM variations improved scores with the 24-h
time horizon than with the 12-h configuration. Furthermore,
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Table 8 Results of the CNN+LSTM technique using ground truth, synthetic, a combination of ground truth + synthetic, ground truth + synthetic
with reinforcement learning and shuffled synthetic + ground truth datasets

Prediction hours 12h 24h

Metrics R2 RMSE MAE R2 RMSE MAE

ground truth dataset GreenHouse-15m-W 0.881 1.565 1.364 0.918 1.548 1.245

GreenHouse-15m-S 0.667 3.570 3.246 0.847 3.060 2.629

GreenHouse-30m-W 0.862 1.645 1.448 0.916 1.619 1.300

GreenHouse-30m-S 0.937 3.097 2.880 0.945 3.128 2.806

GreenHouse-60m-W 0.882 1.411 1.244 0.928 1.493 1.209

GreenHouse-60m-S 0.934 3.110 2.896 0.945 3.310 2.985

Synthetic dataset GreenHouse-15m-W 0.746 2.603 2.015 0.753 2.019 1.495

GreenHouse-15m-S 0.940 2.751 1.947 0.740 2.626 2.088

GreenHouse-30m-W 0.885 1.042 0.852 0.935 1.052 0.825

GreenHouse-30m-S 0.887 3.093 1.956 0.815 3.044 2.183

GreenHouse-60m-W 0.863 1.156 0.860 0.906 1.260 1.008

GreenHouse-60m-S 0.932 2.141 1.556 0.910 2.865 2.447

Synthetic + ground truth GreenHouse-15m-W 0.916 0.907 0.742 0.930 1.028 0.821

dataset GreenHouse-15m-S 0.935 2.416 2.175 0.926 1.972 1.664

GreenHouse-30m-W 0.919 0.932 0.734 0.952 1.274 1.030

GreenHouse-30m-S 0.938 1.667 1.239 0.896 1.594 1.207

GreenHouse-60m-W 0.850 1.388 1.047 0.928 1.277 1.039

GreenHouse-60m-S 0.886 2.017 1.695 0.853 2.413 2.146

Synthetic + ground truth GreenHouse-15m-W 0.851 1.498 1.269 0.924 1.398 1.117

with reinforcement GreenHouse-15m-S 0.849 2.857 2.489 0.922 2.236 1.766

learning dataset GreenHouse-30m-W 0.831 1.583 1.339 0.914 1.593 1.277

GreenHouse-30m-S 0.915 2.186 1.915 0.950 1.932 1.648

GreenHouse-60m-W 0.843 1.382 1.152 0.919 1.435 1.131

GreenHouse-60m-S 0.920 2.598 2.112 0.951 3.182 2.719

Shuffled synthetic + ground GreenHouse-15m-W 0.843 1.599 1.370 0.916 1.623 1.309

truth dataset GreenHouse-15m-S 0.921 3.249 3.043 0.948 3.132 2.823

GreenHouse-30m-W 0.825 1.762 1.547 0.896 1.636 1.337

GreenHouse-30m-S 0.918 3.354 3.097 0.900 3.344 3.018

GreenHouse-60m-W 0.886 1.346 1.150 0.933 1.478 1.156

GreenHouse-60m-S 0.885 3.326 2.888 0.853 3.578 3.183

R2 (coefficient of determination) RMSE (root mean square error) MAE (mean absolute error). RMSE and MAE are measured in degrees Celsius
(◦C) for each 12 and 24 hours. The best value for each combination of dataset, metric and prediction hour is shown in bold

CNN+LSTM solely trained with ground truth data obtained
better results for the summer than for the winter feeds con-
sidering its R2 score (e.g., 0.928 vs 0.945 for the 60 min with
24 h as prediction horizon according to Table 8). This sea-
sonal sensitivity was also observed in the other four policies
incorporating synthetic data.

In this study, there are common patterns in the results of
the four evaluated models. 1) The training of the forecast-
ing algorithms leveraging the synthetic time series improved

their prediction capabilities regarding the alternative of rely-
ing on ground truth data. 2) Common behavior is that using
a shuffled version of the synthetic data did not provided
no meaningful improvement regarding the models with just
ground truth data. 3) The strategy combining ground truth
with synthetic data provided the most robust models for 15-
min and 30-min frequencies, at least for the CNN and LSTM
variants. For larger frequencies, the reinforcement learning
strategy provided more reliable predictors.
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Evaluating the strategies has also revealed a sensitivity
of the models to the frequency and season of the input time
series. However, how these two factors affect the accuracy
of the predictors strongly varies across models and training
strategies with no global sensitivity pattern. Although the
MLP andCNNwith ground truth data performed better in the
winter season, the other alternatives with synthetic data seem
to provide better results in the summer time series. However,
the CNN and CNN+LSTM alternatives do not follow such
seasonal trends and show slightly better results in summer
than in winter, regardless of the particular training strategy
used to compose the predictor.

This has important implications in operational terms as it
would be necessary to consider the relevance of the season
and the frequency of the time series in order to eventu-
ally select a training strategy and the predictive algorithm.
For example, in the case of greenhouse settings where the
summer season was the most important part of the year,
the evaluation showed that a CNN or CNN+LSTM instance
trained with a synthetic + ground truth policy would be the
most suitable configuration. The evaluation has shown that,
for example, the RMSE of the CNN+LSTM model solely
trained with ground truth data was above 3.00 for all the
summer feeds (Table 8) whereas the CNN+LSTM fed with
synthetic and ground truth data was below 2.42 for the same
summer feeds.

These findings confirm the main hypothesis of this work,
the usage of coherent synthetic time series, to enlarge the
training sets of a forecasting model, helps to improve their
final accuracy. Furthermore, shuffled series also shows that
this improvement does not occur becausewe addedmore data
to the training corpus, but because of the use of a synthetic
series that actually behave in a similar manner to the target
one.

5 Conclusion and future work

Precision agriculture is moving from tele-control systems
to intelligent control systems by exploiting the data gen-
erated from the IoT system for a more sustainable and
efficient crop management. This transition requires sub-
stantial amounts of reliable and ready-to-use data from the
deployment of the system to train ML/DL models that meet
expectations.

In this context, this novel study shows the reliability and
suitability of using synthetic time series to expand the train-
ing corpus of deep-learning to forecast algorithms. The goal
of these algorithms is to predict the internal temperature of
greenhouses to anticipate future actions to keep this internal
temperature within a suitable range. Five training strategies

have been defined to optimally fuse ground truth and syn-
thetic data.

The models trained with some of these fusion strategies
outperformed the alternative models solely trained with the
raw measurements from the temperature sensors by con-
sidering different time frequencies, evaluation metrics and
time horizons. The metrics evaluated were affected by the
frequency of the target time series and the season under
consideration (winter or summer). This calls for a careful
procedure to select the model and the training strategy based
on the period of the year under study and the characteristics
in terms of frequency and data curation applied on the input
sequences of data.

This work opens a novel and promising research line for
studying the most suitable training strategies for combin-
ing raw and synthetic time series in the development of a
smart greenhouse. Future work will focus on: 1) Develop-
ing other combinations of ground truth and synthetic data to
further improve the prediction of AI/ML models; 2) Using
other synthetic data generation techniques and evaluating
their effectiveness; 3) Apply the transfer learning technique
for time series models of synthetic data generation; 4) Gener-
ate synthetic data and AI models in their multivariate version
that consider all the variables that exist in a greenhouse; 5)
Apply synthetic data generation methods and AI models in
contexts other than those of precision agriculture in green-
houses.
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