

This publication must be cited as:

 Morales-García, J., Bueno-Crespo, A., Martínez-España, R., García, F.

J., Ros, S., Fernández-Pedauyé, J., & Cecilia, J. M. (2023). SEPARATE: A

tightly coupled, seamless IoT infrastructure for deploying AI algorithms in smart

agriculture environments. Internet of Things, 22, 100734.

https://doi.org/10.1016/j.iot.2023.100734

The final publication is available at:

 https://doi.org/10.1016/j.iot.2023.100734

Copyright ©:

 Elsevier

Additional information:

https://doi.org/10.1016/j.iot.2023.100734

SEPARATE: A tightly coupled, seamless IoT
infrastructure for deploying AI algorithms in smart

agriculture environments

Juan Morales-Garcı́aa,∗, Andrés Bueno-Crespoa, Raquel Martı́nez-Españab,
Francisco J. Garcı́ac, Sergio Rosc, Julio Fernández-Pedauyéd, José M. Ceciliad

aComputer Science Department, Catholic University of Murcia (UCAM), Murcia, Spain
bInformation and Communications Engineering Department, University of Murcia (UM),

Murcia, Spain
cNutricontrol, S.L., Cartagena, Spain

dComputer and Systems Informatics Department, Polytechnic University of Valencia (UPV),
Valencia, Spain

Abstract

Precision agriculture generates large datasets from IoT infrastructures deployed
for continuous crop monitoring. This data requires analysis to usefully transform
this data deluge into insights that can deliver value-generating services to farmers
in a timely manner. This paper introduces SEPARATE; a dynamic interoperable
and decentralized infrastructure for executing both, training and inference stages
of deep learning (DL) algorithms in smart agriculture scenarios. The presented
infrastructure allows the execution of the inference stage at the edge, achieving a
highly efficient and responsive local temperature prediction service to take actions
based on the predictions generated. Moreover, the training stage is offloaded to
the cloud along with the generated historical data, allowing the trained model to
be periodically updated at the edge. On the one hand, our results show that the
Convolutional Neural Network model together with the Long Short-Term Mem-
ory technique (CNNLSTM) obtains the best results in both prediction accuracy
and computational time. On the other hand, an analysis has been carried out to
determine how often the model must be retrained, obtaining results that indicate
that from day 9-10, it would be necessary to retrain the model, although, until
day 20, the precision is not greatly reduced. Moreover, the SEPARATE infrastruc-

∗Principal corresponding author
Email address: jmorales8@ucam.edu (Juan Morales-Garcı́a)

Preprint submitted to Internet of Things February 15, 2024

ture enables the execution of real-time inference from sensor-generated data and
seamless model retraining in an operational greenhouse for temperature forecast
with satisfactory performance.

Keywords: Publish/Subscribe Infrastructure, Edge Computing, Machine
Learning, Deep Learning, Internet of Things, Smart Agriculture

1. Introduction

Precision agriculture is increasingly making use of new technologies in order
to improve profits and reduce costs [1]. In a globalized world where costs are
increasing day by day, it is important to have autonomous systems that allow
farmers to better control their crops [2]. Monitoring and anticipation in decision-
making can save a lot of production costs and crop losses [3]. Greenhouses, due
to their structure, allow crop control, both of growth, pests, and climatic variables
that directly influence crop yields [4]. For this control, the devices and sensors
provided by the Internet of Things (IoT) provide great versatility and convenience
for efficient data capture.

Current operational IoT solutions in the area of smart agriculture in real-world
environments are mainly based on centralized IoT systems, where data is sent to
a centralized cloud-based architecture, processed, and further analyzed [5]. How-
ever, agricultural environments are often located in rural areas where connectivity
and power supply are limited [6]. Indeed, a dynamic, interoperable, and decen-
tralized architecture is mandatory in these environments to achieve highly efficient
and responsive data-based services. Some solutions have been proposed that bring
the execution of machine learning (ML) and even deep learning (DL) algorithms
close to the data capture, i.e. at the edge, in agricultural environments [7, 8, 9].
Edge computing [10] is becoming a widely used approach towards decentraliza-
tion, where preliminary computations on data are carried out in (or close to) the
data capture devices, providing a number of advantages, including energy savings,
responsive application and service development, highly scalable, reliable and se-
cure system design.

However, computational devices that are available at the edge typically rely on
batteries or energy harvesters, leading to ultra-low power designs, but also limit-
ing the workloads to be executed on them. Actually, edge Computing is limited to
the inference stage of Machine Learning / Deep Learning (ML/DL) algorithms in
what is recently called TinyML [11]. This makes sense because at this level of the

2

IoT infrastructure, very little computational horsepower is available and thus com-
putationally heavy workloads, such as those found at the training stage of ML/DL
algorithm cannot be executed in a reasonable timeframe and with a manageable
energy budget. However, training ML/DL algorithm periodically is mandatory
to achieve more accurate results in these environments of rapidly changing con-
ditions, so influenced by the abrupt changes brought about by climate change
[12]. In this paper, we present SEPARATE; a seamless and tightly coupled IoT
infrastructure for developing training and inference of ML/DL algorithms in oper-
ational smart agriculture environments. SEPARATE relies on a publish / subscribe
(Pub/Sub) system based on Message Queuing Telemetry Transport (MQTT) pro-
tocol to perform data analytics at the edge of an IoT infrastructure deployed in an
operational greenhouse located in Murcia (Spain). Particularly, the SEPARATE in-
frastructure receives information through MQTT from the air temperature sensors
deployed inside the greenhouse that feed ML/DL models to predict the climatic
state of the greenhouse in the following hours (i.e., inference stage). It is also
important to study the need to retrain the prediction model to always have the
best available precision without affecting response times. Moreover, SEPARATE
also sends the data to the cloud via MQTT to store the historical data and thus to
periodically retrain the model to be updated at the inference stage and thus pro-
vide a more accurate forecast. The main contributions of the paper include the
following:

1. The SEPARATE infrastructure is introduced to provide an interoperable and
decentralized dynamic architecture for ML/DL training and inference.

2. SEPARATE is designed for a real and operational IoT infrastructure. Our
developments and tests have been carried out in an operational greenhouse
deployed in Murcia (Spain)

3. Different ML/DL models are considered in terms of execution time and
accuracy to establish the best combination in the quality and performance
tradeoff.

4. Study and analysis of the days needed to retrain the best model, without
significantly losing precision.

5. SEPARATE offers an infrastructure not only for monitoring but also for pre-
dicting actions in advance, thanks to its prediction models for several hours
ahead.

The rest of the paper is organized as follows. Section 2 shows related works
within the umbrella of ML/DL as applied to Pub/Sub solutions in forecasting cli-

3

matic variables in greenhouses. Section 3 describes in detail the different ap-
proaches proposed and the artificial intelligence methods used to compare an eval-
uate results. Section 4 shows the performance results for the Pub/Sub solution and
for the artificial intelligence models before discussing them in Section 5. Finally,
section 6 presents the main conclusions and discusses future works.

2. Related works

The MQTT communications protocol is increasingly being used in precision
agriculture, replacing the HTTP protocol, [13]. Although the HTTP protocol uses
a request/response architecture and HTTP can transfer a large number of data in
small packets that can cause a large overhead. Therefore, due to this overhead,
communication for IoT services via this protocol can cause serious bandwidth
problems. Moreover, all HTTP calls are stateless, which leads to authentication
every time you connect, as you connect to the IP or URL to make the REST API
calls, the session is not saved and thus, after getting the response, the device closes
the connection. This is due to possible network overload [14]. In contrast, MQTT
(Message Queue Telemetry Transport) is a lightweight protocol that is designed
for the IoT ecosystem. It was invented by IBM, is based on the OSI TCP/IP model,
and has a very lightweight application layer with a header size of 2 bytes. MQTT
follows an asymmetric architecture and operates under the publish and subscribe
protocol. It is designed to send a message to one or more devices with low latency
but is not recommended for sending large amounts of data. Given its characteris-
tics, it is very useful for use in IoT systems, since among its advantages we find
the secure delivery of the message, thus avoiding the loss of data [15, 16]. Given
the advantages of the MQTT protocol, it is increasingly used in IoT environments
and in the world of precision agriculture. For instance, in [17] the authors propose
a precision agriculture system based on wireless sensor networks with the MQTT
protocol for monitoring and controlling the environmental conditions of a green-
house by collecting information on humidity, temperature, light, and nutritional
needs of the plants. In [18], the design and implementation of an intelligent irriga-
tion system to automate the irrigation system in agricultural fields are proposed.
The system is a near real-time system using the MQTT protocol for communi-
cations between the sensor side and the client side. The authors of [2] present
an open-source platform covering automated precision agriculture scenarios. For
this purpose, the platform is distributed on three levels, Cyber-Physical Systems,
Edge computing, and Cloud. To connect the sensors and actuators with the end
user, they use IoT technologies and protocols such as MQTT, the Constrained

4

Application Protocol (CoAP), and FIWARE, among others. The platform is suc-
cessfully tested in a hydroponic greenhouse. In [19], authors proposed the design
of a remote monitoring and control system for greenhouses. The system uses IoT
to collect greenhouse parameters such as temperature, relative humidity, and lu-
minosity. After collecting the data and sending it to the server, the IoT polls the
data on the internet through the MQTT protocol and compares it with existing pa-
rameters in order to send a correction to the greenhouse if necessary. A system for
monitoring and controlling microclimatic parameters of a greenhouse is proposed
in [20]. In this case, the system collects temperature and humidity values as well
as gas values. The data is sent through an Arduino to a raspberry via the MQTT
protocol.

Another aspect of agriculture where IoT systems and the MQTT protocol is
also very useful is for the prevention and care of bees to avoid Colony Collapse
Disorder, a disorder still under study. To obtain data for this study, in [21] the
authors propose the design of a near real-time system that collects temperature,
humidity, and weight data and sends it via MQTT to a ThingsBoard for analysis,
the system called Beemon works continuously and in open-air hives.

As can be seen, the proposed systems are used to monitor and control different
agricultural systems, from different points of view. The difference with our pro-
posal is that in our case, in addition to carrying out monitoring tasks, we also carry
out advance prediction tasks, in order to take measures before any event occurs,
thus achieving a better optimization of resources.

3. Materials and Methods

This section provides the materials and methods of the SEPARATE infrastruc-
ture. As previously mentioned, it provides an interoperable and decentralized
dynamic architecture for ML/DL training and inference in an operational green-
house. Therefore, we introduce the operational greenhouse where SEPARATE is
deployed before providing to the reader the main insights of SEPARATE infras-
tructure. The case study here presented aims at forecasting the internal tempera-
ture of this greenhouse through different ML/DL methods that are also presented,
showing the main parameters used for the evaluation carried out in the next sec-
tion.

5

3.1. Operational greenhouse

Figure 1: Targeted operational greenhouse located at Murcia (Spain)

Figure 1 shows the operational greenhouse targeted for this study, namely
ETIFA. ETIFA is an operational greenhouse hosted by NUTRICONTROL; a Span-
ish leading company in developing automatic fertigation and Climate control tech-
nology. ETIFA is located in Murcia (South-eastern Spain), a semi-arid region
where the average annual temperature is around 25 ºC. This greenhouse has a sur-
face area of 50 m2 and operates with a system for climate control and fertigation.

ETIFA fertigation and climate control is carried out by NUTRICONTROL’s
OPTIMUM system; a complete solution for climate management and fertigation
of these environments. The NUTRICONTROL’s OPTIMUM system is orches-
trated by a CPU-based node (OPTIMUM Orchestator, from now on) where all
sensors (input/output) are plugged into in a modular way. Among the sensors
available in ETIFA are temperature, humidity, radiation, and wind speed, just to
name a few.

Of particular interest to us is the air temperature inside the greenhouse as it
is the target for the forecast carried out in this paper. This variable is measured
every 5 minutes in the greenhouse, providing near-real-time (NRT) continuous
measurements to take actions that can increase/decrease the greenhouse tempera-
ture to reach the ideal temperature of the crop being grown.

6

Figure 2: SEPARATE main building blocks based on MQTT schema

3.2. SEPARATE infrastructure
The SEPARATE infrastructure relies on the MQTT standard protocol [22].

MQTT is a lightweight Pub/Sub messaging transport system where sensors can
publish the generated data (e.g. temperature sensor) and several nodes can be
subscribed to receive values in NRT. Figure 2 shows the main SEPARATE build-
ing blocks that are deployed in the greenhouse. First, the MQTT broker or server,
deployed in the OPTIMUM orchestrator, is responsible for dispatching messages
between the sender (or publisher) and the appropriate receivers. SEPARATE is
based on Java-based open source HIVEMQ Community Edition (CE) 1.

MQTT clients are subscribed to and publish information on a particular topic.
In our case, the MQTT client is developed using the Eclipse Paho MQTT Python
client library [23] that enables applications to connect to an MQTT broker to pub-
lish messages and to subscribe to topics and receive published messages. SEPA-
RATE infrastructure is based on three MQTT clients. The first client is hosted in
the OPTIMUM orchestrator and publishes data to the topic “Temperature” from
the greenhouse as soon as it is received from the sensors. The second and third
clients are subscribed to the same topic but are deployed in different computing
nodes, depending on the task associated with each of them.

The second MQTT client is deployed on an Nvidia Jetson Nano in the green-
house; very close to the capture node, i.e. at the edge. This client is designed to
run the ML/DL inference of the model to forecast the indoor temperature of the
greenhouse for the next few hours. In this way, the MQTT client periodically re-
ceives the data temperature that is stored in a CSV file in the Jetson Nano. Another

1https://github.com/hivemq/hivemq-community-edition

7

background process (i.e. cron job) runs the model inference every set time frame
(e.g., every 15 minutes), which collects the information gathered by the MQTT
client and generates the prediction. It is important to note that each time frame,
the ML/DL inference is executed taking into account the last updated data gen-
erated by the greenhouse and thus more accurate predictions should be generated
using these new records.

The last MQTT client is deployed in a cloud server hosted in our lab at UPV.
This MQTT client is also subscribed to “Temperature” topic and once data is re-
ceived from this topic, this cloud-based MQTT client stores it in an InfluxDB
database where historical data is increasingly generated. On this cloud-based
server, data quality controls, sanitization processes, etc. are carried out to pre-
pare the data for an efficient training procedure. It is important to note that the
training procedure does not need to be carried out on a sub-daily basis or even a
daily basis. This is indeed a configuration parameter that is set according to the
computational and accuracy tradeoff.

In preliminary evaluations conducted in the particular context of the ETIFA
greenhouse, it has been empirically observed that trained models give predictions
at the inference stage within the same quality range as models trained with data
from up to a month before. However, important differences in the forecast accu-
racy start to become relevant if ML/DL models are trained with data of more than
a month before the horizon is predicted. Depending on the application, the user
may prefer a more conservative scenario and retrain more frequently to obtain the
most accurate results, or be more computationally efficient and only train when
significant differences in the results are really noticeable. It is worth noting that
training the heavier ML/DL ETIFA models can take several computational days,
as it will be shown in section 4.2.

In any case, the model will be trained on the cloud server, and once trained,
SEPARATE has to provide a mechanism to update the model trained on the edge
in a transparent way to the user. The chosen way has been to enable a REST
endpoint where a process on the edge node can update the model periodically. In
our case, a month has been set by default although this can be easily changed in
the configuration schema.

3.3. Datasets
For the evaluation of the accuracy of the AI models, two different represen-

tative points of the year have been taken into account; i.e. winter and summer.
This dichotomy is due to the fact that these are the two points at which the cli-
matological variables (and their behavior) differ the most. Moreover, data time

8

granularity has been also considered for the evaluation, i.e., the data are grouped
into 15-minute, 30-minute, and 60-minute periods. In this way, we can verify that
(1) the model fits the data correctly, (2) it is able to predict at any point of the year
and (3) that different time granularity can be applied depending on the needs of
the problem. Finally, short-term (12 hours) and long-term (24 hours) prediction
has also been taken into account.

Datasets Start date End Date # Instances
CLEAN-DS-15-SUMMER 18-12-18 06-06-21 86544
CLEAN-DS-15-WINTER 18-12-18 17-01-21 73104
CLEAN-DS-30-SUMMER 18-12-18 06-06-21 43273
CLEAN-DS-30-WINTER 18-12-18 17-01-21 36553
CLEAN-DS-60-SUMMER 18-12-18 06-06-21 21637
CLEAN-DS-60-WINTER 18-12-18 17-01-21 18277
DIRTY-DS-15-SUMMER 18-12-18 06-06-21 86544
DIRTY-DS-15-WINTER 18-12-18 17-01-21 73104
DIRTY-DS-30-SUMMER 18-12-18 06-06-21 43273
DIRTY-DS-30-WINTER 18-12-18 17-01-21 36553
DIRTY-DS-60-SUMMER 18-12-18 06-06-21 21637
DIRTY-DS-60-WINTER 18-12-18 17-01-21 18277
SMOOTH-DS-15-SUMMER 18-12-18 06-06-21 86544
SMOOTH-DS-15-WINTER 18-12-18 17-01-21 73104
SMOOTH-DS-30-SUMMER 18-12-18 06-06-21 43273
SMOOTH-DS-30-WINTER 18-12-18 17-01-21 36553
SMOOTH-DS-60-SUMMER 18-12-18 06-06-21 21637
SMOOTH-DS-60-WINTER 18-12-18 17-01-21 18277

Table 1: Dataset description

Table 1 summarizes the description of the datasets that have been used to carry
out the temperature prediction. It shows the start date of the data, the end date,
and the number of instances contained in each dataset. Each dataset contains the
temperature values of a greenhouse between the indicated dates, distinguishing
whether the dataset ends on a summer or winter day. It is important to clarify that
in southeastern Spain, June temperatures are already summer temperatures.

9

3.4. Artificial Intelligence models
This section introduces four ML/DL models that have been used for the eval-

uation of SEPARATE. We refer the reader to [24] for insights.

• Artificial Neural Networks (ANN): A neural network is a model that mim-
ics the way a set of biological neurons works. Although its use in classifica-
tion is more widespread, it can also be used in regression models. A single
perceptron (or artificial neuron) can be imagined as a logistic regression.
The artificial neural network, or ANN, is a group of multiple perceptrons in
each layer forming a multilayer perceptron (MLP). The MLP we use in this
work is composed of three layers: input, hidden, and output. The input layer
receives the input features, the hidden layer processes the inputs and the out-
put layer produces the output. Essentially, each layer tries to learn certain
weights. Artificial neural networks have the ability to learn any complex re-
lationship between input and output because they use an activation function
that allows them to learn non-linear properties in the network. [25, 26].

• Convolutional Neural Network (CNN): Convolutional neural network mod-
els are used in different applications and domains, where they are most fre-
quently used in imaging for classification. However, they are also used in
regression, where they can be used using time series by transforming the
data to adapt them to the inputs of the convolutional network. A CNN is
made up of blocks of filters, which, through convolution operations, allow
the relevant features to be extracted from the input. One of the advantages of
CNNs over conventional neural networks (ANNs) is the automatic learning
of the filters so that the necessary and most relevant features are obtained
from the input data. [27].

• Long Short-Term Memory (LSTM): this model of DL is commonly used
because in addition to working with time series like recurrent models, but
with the advantage that this network allows for long-term memory. LSTM is
a type of recurrent neural architecture with a state memory and multilayer
cell structure [28]. LSTM unit is composed of a cell, an input gate, an
output gate, and a forget gate (Figure 3, only the LSTM layer). The cell
remembers values over arbitrary time intervals and the three gates regulate
the flow of information into and out of the cell. The LSTM differs from
a classic recurrent network in that it does not overwrite its content at each
time step but is able to decide whether to keep the existing memory through

10

the introduced doors. If the LSTM unit detects an important characteristic
of an input sequence at an early stage, it carries this information over long
distances, therefore it detects long-distance dependencies.

• Convolutional Neural Network + Long Short-Term Memory (CNN-
LSTM): This model is a combination of CNN and LSTM (also known as
ConvLSTM). It presents a convolutional network where the MLP layer fully
connected to the final layer has been replaced by an LSTM network. There-
fore, the CNN is in charge of automatically extracting the input features and
the LSTM is in charge of obtaining the regression results (see Figure 3).

Figure 3: Model CNNLSTM. In the first stage, the convolutional layer is in charge of extracting
the feature vector so that finally the LSTM layer performs the forecast.

Table 2 shows all hyperparameters (rows) used for each model (columns). A
brief description of the meaning of each hyperparameter is given below:

• Units: Number of neurons used in hidden layers.

• Filters: Features detector.

11

• Kernel size: Filters matrix used to extract the features from the dataset.

• Strides: Number of pixels shifts over the input matrix.

• Activation function: Function that decides if a neuron should be (or not)
activated.

• Batch size: Size of bach used for training/forecasting.

• Epochs: Number of epoch used in training.

• Optimizer: Function that optimizes the learning of an artificial intelligence
model, updating its neurons’ weights depending on the error evaluation.

• Loss function: Function used to evaluate the error of the model in each
epoch.

• Learning rate: Percentage change with which weights are updated at each
iteration.

HYPERPAREMETER MLP CNN LSTM CNNLSTM
Units 70 – 70 –
Filters – 64 – 64
Kernel size – 1 – 2
Strides – 1 – 4
Activation function Tanh Tanh Tanh Tanh
Batch size 2880 2880 2880 2880
Epochs (+ EarlyStopping) 3000 3000 3000 3000
Optimizer Adam Adam Adam Adam
Loss function MSE MSE MSE MSE
Learning rate (+ ReduceLROnPlateau) 0.003 0.003 0.003 0.003

Table 2: Hyperparameters used for each model. A dash in a cell indicates that the model does not
have that parameter.

4. Results

This section shows the results of the different experiments that have been car-
ried out. They can be divided into two main sets. On one side, an experiment

12

is proposed to evaluate the effectiveness of the NRT system based on SEPARATE
(see section 4.1). While, on the other side, an experiment will be proposed to eval-
uate the accuracy of ML/DL models in an NRT environment (see section 4.2). In
addition, a study is carried out on the need to retrain the model from time to time
so as not to lose precision in the predictions. These results are broadly discussed
in Section 5.

4.1. Pub/Sub solution evaluation
In the following, the execution time on HPC and edge computing platforms for

training and inference of ML/DL techniques is shown and analyzed individually.
This experiment leads us to argue the computational differences between the two
devices and the need for SEPARATE to coordinate training and inference in this
context.

4.1.1. HPC evaluation
The HPC computing node is evaluated by running the training and inference

for the different ML/DL models described in Section 3.4. This node is composed
of an AMD EPYC 7282, 64 CPUs (2 sockets x 16 cores per socket x 2 threads per
core) at 2.8 MHz for each core. Moreover, it also contains two NVIDIA A100-
PCIE-40GB (Tesla architecture) and it is endowed with up to 256 GB and 2 TB
SSD.

Tables 3, 4, 5, 6 show the MLP, CNN, LSTM and CNNLSTM execution time
on the HPC server targeted for the multicore CPU or a GPU, respectively. Each
row of the table represents the performance times for each of the datasets de-
scribed in Section 3.3. Each column of the table represents the performance times
studied and is grouped into training and inference, for each of the two platforms
studied (CPU and GPU). For inference, a distinction is made between 12-hour and
24-hour inference.

In particular, table 3 shows that the MLP training time on CPU range from
263.945 to 729.050 seconds, while on GPU they range from 241.099 to 500.245
seconds, obtaining up to 1.5X performance in the best scenario. Inference times
are almost identical on both CPU and GPU, being a few milliseconds slower on
GPU, and ranging between 0.592 and 5.022 seconds. Regarding the inference
between 12 and 24 hours, there is practically no difference, since the 24-hour
time is practically twice as long as the 12-hour time, which is consistent since
twice as many values are inferred.

Table 4 shows that the CNN training time on CPU range from 2,089.193 to
33,877.128 seconds, while on GPU they range from 275.392 to 755.894 seconds,

13

Platform CPU GPU
Times Training Inference Training Inference
Dataset 12h 24h 12h 24h
CLEAN-DS-15-SUMMER 713.861 2.276 4.472 500.245 2.470 4.862
CLEAN-DS-15-WINTER 628.725 2.246 4.737 445.597 2.428 5.022
CLEAN-DS-30-SUMMER 390.665 1.169 2.266 311.396 1.246 2.419
CLEAN-DS-30-WINTER 358.576 1.165 2.253 293.535 1.252 2.410
CLEAN-DS-60-SUMMER 275.897 0.604 1.151 248.403 0.629 1.194
CLEAN-DS-60-WINTER 264.678 0.596 1.113 241.099 0.637 1.193
DIRTY-DS-15-SUMMER 699.936 2.290 4.514 494.385 2.425 4.900
DIRTY-DS-15-WINTER 645.416 2.374 4.615 440.965 2.472 4.828
DIRTY-DS-30-SUMMER 388.948 1.164 2.243 311.467 1.248 2.406
DIRTY-DS-30-WINTER 354.699 1.159 2.250 294.019 1.226 2.388
DIRTY-DS-60-SUMMER 276.120 0.596 1.146 248.354 0.644 1.197
DIRTY-DS-60-WINTER 264.019 0.591 1.138 242.394 0.648 1.207
SMOOTH-DS-15-SUMMER 729.050 2.490 4.512 491.324 2.639 4.817
SMOOTH-DS-15-WINTER 633.765 2.321 4.570 452.423 2.403 4.809
SMOOTH-DS-30-SUMMER 392.934 1.155 2.594 308.026 1.240 2.685
SMOOTH-DS-30-WINTER 358.637 1.155 2.254 293.757 1.235 2.395
SMOOTH-DS-60-SUMMER 274.794 0.595 1.124 247.762 0.627 1.205
SMOOTH-DS-60-WINTER 263.945 0.600 1.152 242.576 0.642 1.222

Table 3: Execution time in seconds obtained by running the MLP model on CPU and GPU in-
cluded in the HPC server platform. Execution time of training and inference (12 hours and 24
hours) are provided.

14

Platform CPU GPU
Times Training Inference Training Inference
Dataset 12h 24h 12h 24h
CLEAN-DS-15-SUMMER 33807.923 2.316 4.507 749.809 2.436 4.839
CLEAN-DS-15-WINTER 27835.258 2.348 4.509 660.638 2.463 4.822
CLEAN-DS-30-SUMMER 8460.801 1.192 2.518 404.968 1.236 2.716
CLEAN-DS-30-WINTER 7237.790 1.175 2.223 384.064 1.249 2.384
CLEAN-DS-60-SUMMER 2454.417 0.616 1.122 298.052 0.684 1.232
CLEAN-DS-60-WINTER 2119.112 0.580 1.121 286.328 0.658 1.210
DIRTY-DS-15-SUMMER 33613.773 2.309 4.503 755.894 2.434 4.778
DIRTY-DS-15-WINTER 28009.784 2.405 4.575 667.642 6.271 4.811
DIRTY-DS-30-SUMMER 8423.981 1.189 2.234 408.309 1.241 2.376
DIRTY-DS-30-WINTER 7239.152 1.192 2.246 399.793 6.606 2.426
DIRTY-DS-60-SUMMER 2463.910 0.628 1.145 299.358 0.658 1.221
DIRTY-DS-60-WINTER 2089.193 0.607 1.110 299.714 6.090 1.211
SMOOTH-DS-15-SUMMER 33877.128 2.323 4.477 741.246 2.475 4.776
SMOOTH-DS-15-WINTER 27866.877 2.318 4.943 666.987 2.503 5.166
SMOOTH-DS-30-SUMMER 8456.179 1.165 2.284 400.301 1.265 2.383
SMOOTH-DS-30-WINTER 7228.456 1.454 2.317 377.420 1.669 2.397
SMOOTH-DS-60-SUMMER 2456.905 0.571 1.140 289.699 0.661 1.203

Table 4: Execution time in seconds obtained by running the CNN model on CPU and GPU in-
cluded in the HPC server platform. Execution time of training and inference (12 hours and 24
hours) are provided.

15

obtaining up to 10X performance in the best-case scenario. Inference times are
almost identical on both CPU and GPU, being a few milliseconds slower on GPU,
and ranging between 0.571 and 5.166 seconds.

Platform CPU GPU
Times Training Inference Training Inference
Dataset 12h 24h 12h 24h
CLEAN-DS-15-SUMMER 147642.328 3.290 5.605 3362.940 2.966 5.262
CLEAN-DS-15-WINTER 125425.139 3.363 5.973 2931.164 2.974 5.536
CLEAN-DS-30-SUMMER 37469.883 1.751 2.643 1136.169 1.634 2.467
CLEAN-DS-30-WINTER 31228.075 1.723 2.963 1001.663 1.633 2.887
CLEAN-DS-60-SUMMER 8983.771 1.003 1.159 481.747 1.013 1.219
CLEAN-DS-60-WINTER 7821.983 1.015 1.194 446.884 1.015 1.216
DIRTY-DS-15-SUMMER 147086.625 3.582 5.778 3419.389 3.284 5.173
DIRTY-DS-15-WINTER 125981.805 3.363 5.688 2988.742 3.048 5.275
DIRTY-DS-30-SUMMER 37478.132 1.706 2.496 1132.158 1.636 2.488
DIRTY-DS-30-WINTER 31363.002 1.721 2.576 998.420 1.639 2.460
DIRTY-DS-60-SUMMER 8994.831 1.025 1.581 479.596 1.018 1.749
DIRTY-DS-60-WINTER 7892.433 1.412 1.211 446.892 1.431 1.176
SMOOTH-DS-15-SUMMER 148153.696 3.290 5.654 3414.785 3.018 5.227
SMOOTH-DS-15-WINTER 126536.579 3.307 6.020 2991.940 3.291 5.263
SMOOTH-DS-30-SUMMER 37245.633 1.729 2.482 1122.942 1.630 2.467
SMOOTH-DS-30-WINTER 31630.357 1.705 2.617 1003.449 1.633 2.486
SMOOTH-DS-60-SUMMER 8994.010 1.014 1.189 482.858 1.007 1.227
SMOOTH-DS-60-WINTER 7841.688 1.020 1.195 448.608 1.029 1.217

Table 5: Execution time in seconds obtained by running the LSTM model on CPU and GPU
included in the HPC server platform. Execution time of training and inference (12 hours and 24
hours) are provided.

Table 5 shows that the LSTM training time on CPU range from 7,821.983 to
148,153.696 seconds, while on GPU they range from 446.884 to 3,419.390 sec-
onds, obtaining a 15X performance. Inference times are almost identical on both
CPU and GPU, being a few milliseconds slower on CPU, and ranging between
1.003 and 6.020 seconds.

Finally, table 6 shows that the CNNLSTM training time on CPU range from
1,831.9153 to 31,471.342, while on GPU they range from 323.845 to 890.787,
obtaining up to 20X performance. Inference times are almost identical on both
CPU and GPU, being a few milliseconds slower on GPU, and ranging between
0.969 and 5.049.

16

Platform CPU GPU
Times Training Inference Training Inference
Dataset 12h 24h 12h 24h
CLEAN-DS-15-SUMMER 31455.494 2.759 4.599 871.329 2.872 4.850
CLEAN-DS-15-WINTER 26227.227 3.148 4.683 775.974 3.189 4.841
CLEAN-DS-30-SUMMER 7883.942 1.588 2.300 487.813 1.647 2.420
CLEAN-DS-30-WINTER 6752.098 1.589 2.707 447.680 1.656 2.877
CLEAN-DS-60-SUMMER 2222.535 1.000 1.616 350.630 1.048 1.777
CLEAN-DS-60-WINTER 1920.816 1.009 1.125 334.212 1.039 1.212
DIRTY-DS-15-SUMMER 31329.182 2.778 4.611 868.439 2.871 4.855
DIRTY-DS-15-WINTER 26049.698 2.797 4.798 890.787 6.681 5.049
DIRTY-DS-30-SUMMER 7960.443 1.555 2.249 484.462 1.635 2.418
DIRTY-DS-30-WINTER 6788.469 1.606 2.245 467.469 6.823 2.415
DIRTY-DS-60-SUMMER 2221.137 0.969 1.060 351.492 1.041 1.203
DIRTY-DS-60-WINTER 1929.761 0.973 1.133 346.623 6.078 1.209
SMOOTH-DS-15-SUMMER 31471.342 2.731 4.541 852.136 2.853 4.848
SMOOTH-DS-15-WINTER 26336.821 2.713 4.564 767.090 2.843 4.803
SMOOTH-DS-30-SUMMER 7924.806 1.596 2.251 476.830 1.656 2.404
SMOOTH-DS-30-WINTER 6765.339 1.584 2.259 441.828 1.651 2.420
SMOOTH-DS-60-SUMMER 2222.474 1.011 1.147 343.871 1.030 1.199
SMOOTH-DS-60-WINTER 1831.915 0.999 1.142 323.847 1.042 1.202

Table 6: Execution time in seconds obtained by running the CNNLSTM model on CPU and GPU
included in the HPC server platform. Execution time of training and inference (12 hours and 24
hours) are provided.

17

In conclusion for the 4 models run on the server, we have that the GPU execu-
tion for training is much faster between 1.5 and 20x at best. The speed difference
between CPU and GPU increases when the model is more complex, the complex-
ity hierarchy being MLP, CNN, LSTM, and CNNLSTM models. In the case of
inference, the same situation occurs for all four models, i.e., execution on the CPU
is slightly faster than on the GPU. This has a logical explanation since in the case
of inference, no large computational power is needed.

4.1.2. Edge evaluation
The edge computing platform is evaluated by only running the inference for

the different ML/DL models described in Section 3.4. In SEPARATE, only ML/DL
inference is executed at this level of the infrastructure, as training is computation-
ally forbidden. It is worth highlighting that the edge computing node is an Nvidia
Jetson Nano that has a 5-core ARM Cortex-A57 MPCore CPU, 2MB L2, 128-
core Maxwell GPU, and 4GB 64-Bit LPDDR4 running at 25.6 GB/sec. There-
fore, the CPU and GPU runs are analyzed to find out whether the inclusion of
GPUs brings better performance results to inference in this scenario. Moreover,
SEPARATE will send the ML/DL model into the edge device to proceed with the
inference with the more updated model. Therefore, the execution time of loading
an ML/DL model in the edge device once it is received is also reported below.

Tables 7, 8, 9, 10 show the MLP, CNN, LSTM and CNNLSTM execution time
at the edge of both, the Load and Inference stages of the SEPARATE pipeline,
respectively. Each row of the table shows the performance times for each of the
datasets described in Section 3.3. Each column shows the execution times for
these stages, for each of the two processors studied; i.e. CPU and GPU.

In particular, table 7 shows that the MLP load time is almost identical on both
CPU and GPU, being a few seconds slower on GPU, and ranging between 0.151
and 5.731 seconds. Inference time reported is also almost identical on both CPU
and GPU, being a few seconds slower on GPU, and ranging between 2.351 and
20.356 seconds.

Table 8 shows that the CNN load time is almost identical on both CPU and
GPU, being a few seconds slower on GPU, and ranging between 0.273 and 17.968
seconds. Inference time is almost identical on both CPU and GPU, being a few
seconds slower on GPU, and ranging between 2.320 and 21.107 seconds.

Table 9 shows that the LSTM load time is almost identical on both CPU and
GPU, being a few seconds slower on GPU, and ranging between 1.457 and 8.081
seconds. Inference time is almost identical on both CPU and GPU, being a few
seconds slower on GPU, and ranging between 3.793 and 25.917 seconds.

18

Platform CPU GPU
Times Load Inference Load Inference
Dataset 12h 24h 12h 24h
CLEAN-DS-15-SUMMER 0.154 9.364 19.212 0.199 9.912 20.136
CLEAN-DS-15-WINTER 0.155 9.192 18.792 0.275 10.069 20.088
CLEAN-DS-30-SUMMER 0.175 5.343 8.938 0.204 5.549 9.851
CLEAN-DS-30-WINTER 0.161 4.851 9.566 0.203 5.208 10.657
CLEAN-DS-60-SUMMER 0.192 2.817 4.787 0.251 3.124 4.839
CLEAN-DS-60-WINTER 0.167 2.326 4.525 0.270 2.684 4.902
DIRTY-DS-15-SUMMER 0.158 9.546 18.579 0.229 9.904 20.016
DIRTY-DS-15-WINTER 0.346 9.774 18.604 5.731 12.104 19.646
DIRTY-DS-30-SUMMER 0.151 4.655 9.667 0.234 4.383 10.310
DIRTY-DS-30-WINTER 0.153 4.469 8.719 0.244 5.389 9.983
DIRTY-DS-60-SUMMER 0.171 2.351 4.687 0.244 2.570 4.972
DIRTY-DS-60-WINTER 0.158 2.752 4.458 0.295 3.159 4.573
SMOOTH-DS-15-SUMMER 0.154 8.975 18.901 0.235 10.259 19.969
SMOOTH-DS-15-WINTER 0.156 8.774 18.566 0.211 9.967 20.356
SMOOTH-DS-30-SUMMER 0.153 4.478 9.508 0.242 5.056 10.472
SMOOTH-DS-30-WINTER 0.154 4.924 9.586 0.490 5.513 9.406
SMOOTH-DS-60-SUMMER 0.180 2.388 5.244 0.238 2.604 5.339
SMOOTH-DS-60-WINTER 0.165 2.357 4.788 0.360 2.757 4.674

Table 7: Execution time in seconds obtained by running the MLP model on CPU and GPU in-
cluded in the edge computing platform. Times for a load of the ML model (Load) and execute the
inference for the next 12 and 24 hours (Inference) are provided.

19

Platform CPU GPU
Times Load Inference Load Inference
Dataset 12h 24h 12h 24h
CLEAN-DS-15-SUMMER 0.325 8.800 18.192 0.478 10.054 20.270
CLEAN-DS-15-WINTER 0.342 9.286 17.946 0.755 11.147 21.107
CLEAN-DS-30-SUMMER 0.273 4.806 9.560 0.405 5.257 10.004
CLEAN-DS-30-WINTER 0.278 4.509 8.893 0.417 5.002 9.567
CLEAN-DS-60-SUMMER 0.315 2.490 4.335 0.477 2.765 4.895
CLEAN-DS-60-WINTER 0.360 2.320 4.559 0.605 2.762 4.682
DIRTY-DS-15-SUMMER 0.403 9.511 18.579 0.569 10.436 20.527
DIRTY-DS-15-WINTER 0.739 9.745 18.280 9.830 28.747 20.656
DIRTY-DS-30-SUMMER 0.291 4.667 8.889 0.449 5.021 9.796
DIRTY-DS-30-WINTER 0.298 4.996 8.801 0.403 6.086 10.305
DIRTY-DS-60-SUMMER 0.269 2.843 4.683 0.574 3.293 4.727
DIRTY-DS-60-WINTER 0.364 2.555 4.509 0.656 3.234 4.935
SMOOTH-DS-15-SUMMER 0.325 9.843 17.758 17.968 10.806 20.851
SMOOTH-DS-15-WINTER 0.329 9.231 18.090 0.501 10.118 20.274
SMOOTH-DS-30-SUMMER 0.280 4.710 8.680 0.415 4.844 9.917
SMOOTH-DS-30-WINTER 0.320 5.105 8.919 0.400 5.556 9.913
SMOOTH-DS-60-SUMMER 0.367 2.439 4.605 0.424 2.740 4.653
SMOOTH-DS-60-WINTER 0.328 2.397 4.514 0.459 2.710 4.869

Table 8: Execution time in seconds obtained by running the CNN model on CPU and GPU in-
cluded in the edge computing platform. Times for load of the DL model (Load) and execute the
inference for the next 12 and 24 hours (Inference) are provided.

20

Platform CPU GPU
Times Load time Forecast time Load time Forecast time
Dataset 12h 24h 12h 24h
CLEAN-DS-15-SUMMER 2.053 13.656 25.046 2.073 12.615 22.895
CLEAN-DS-15-WINTER 1.480 14.284 25.917 1.633 13.007 22.943
CLEAN-DS-30-SUMMER 2.294 6.581 10.545 2.283 7.006 11.355
CLEAN-DS-30-WINTER 1.504 6.802 11.056 1.569 7.157 10.739
CLEAN-DS-60-SUMMER 1.618 4.872 4.599 1.570 4.966 5.222
CLEAN-DS-60-WINTER 2.454 3.793 4.880 1.613 5.176 5.203
DIRTY-DS-15-SUMMER 1.502 14.437 24.876 1.534 13.426 21.957
DIRTY-DS-15-WINTER 2.070 14.355 24.823 8.081 25.461 22.661
DIRTY-DS-30-SUMMER 1.506 7.482 10.003 1.573 8.090 11.177
DIRTY-DS-30-WINTER 2.077 7.024 10.135 1.515 7.820 10.758
DIRTY-DS-60-SUMMER 1.477 4.200 4.978 1.540 4.272 5.305
DIRTY-DS-60-WINTER 1.457 3.919 4.540 1.566 4.518 5.583
SMOOTH-DS-15-SUMMER 1.559 13.906 24.823 1.550 13.544 21.932
SMOOTH-DS-15-WINTER 1.555 14.355 24.377 1.637 13.624 22.311
SMOOTH-DS-30-SUMMER 1.507 6.663 10.268 1.558 7.152 10.994
SMOOTH-DS-30-WINTER 1.548 7.959 10.392 1.550 7.270 12.191
SMOOTH-DS-60-SUMMER 1.534 4.005 5.018 1.528 4.376 5.483
SMOOTH-DS-60-WINTER 1.512 3.995 5.954 1.549 4.337 5.452

Table 9: Execution time in seconds obtained by running the LSTM model on CPU and GPU
included in the edge computing platform. Times for load of the DL model (Load) and execute the
inference for the next 12 and 24 hours (Inference) are provided.

21

Platform CPU GPU
Times Load time Forecast time Load time Forecast time
Dataset 12h 24h 12h 24h
CLEAN-DS-15-SUMMER 1.751 11.511 19.149 2.138 13.424 22.707
CLEAN-DS-15-WINTER 1.914 12.009 19.610 3.977 13.725 22.218
CLEAN-DS-30-SUMMER 1.669 6.858 9.166 1.964 7.403 11.114
CLEAN-DS-30-WINTER 1.648 6.579 9.989 1.895 7.105 11.608
CLEAN-DS-60-SUMMER 1.816 4.299 4.529 1.829 4.519 5.147
CLEAN-DS-60-WINTER 1.648 4.243 4.678 1.839 4.459 5.443
DIRTY-DS-15-SUMMER 1.912 12.158 19.096 2.009 13.861 22.447
DIRTY-DS-15-WINTER 2.661 11.648 19.100 7.049 29.010 22.319
DIRTY-DS-30-SUMMER 2.500 6.701 9.464 2.621 7.314 10.942
DIRTY-DS-30-WINTER 1.828 6.606 9.504 1.849 7.761 10.723
DIRTY-DS-60-SUMMER 1.783 3.828 3.936 1.859 4.566 5.200
DIRTY-DS-60-WINTER 1.706 4.142 4.628 1.901 5.065 5.188
SMOOTH-DS-15-SUMMER 1.732 11.807 19.284 1.970 14.001 22.177
SMOOTH-DS-15-WINTER 1.722 12.143 19.633 2.066 13.849 22.789
SMOOTH-DS-30-SUMMER 1.690 6.553 10.389 1.922 7.433 11.659
SMOOTH-DS-30-WINTER 1.781 7.347 9.390 1.889 8.221 11.167
SMOOTH-DS-60-SUMMER 1.665 5.113 4.631 1.835 5.823 5.372
SMOOTH-DS-60-WINTER 1.720 5.250 4.600 1.877 5.509 5.426

Table 10: Execution time in seconds obtained by running the CNNLSTM model on CPU and GPU
included in the edge computing platform. Times for a load of the DL model (Load) and execute
the inference for the next 12 and 24 hours (Inference) are provided.

22

Finally, table 10 shows that the CNNLSTM load time is almost identical on
both CPU and GPU, being a few seconds slower on GPU, and ranging between
1.648 and 7.049 seconds. Inference time is almost identical on both CPU and
GPU, being a few seconds slower on GPU, and ranging between 3.828 and 22.789
seconds.

In conclusion, execution on the edge is slightly faster on the CPU than on
the GPU for all 4 models tested. This result is consistent with the results shown
above for the execution on the server. As inference is an inexpensive process, the
computational power offered by the GPU is not necessary. Evidently, inference on
the Edge is somewhat slower than on the server, but with completely acceptable
times.

4.2. ML/DL models quality assessment
This section shows the results obtained when all ML/DL techniques are used

to forecast the internal temperature of the greenhouse. Several metrics are pro-
vided to analyze the goodness of fit of the models. They are the Root Mean
Squared Error (RMSE) and the Mean Absolute Error (MAE) which shows the
gap between the forecast and actual values. MAE and RMSE are calculated by
averaging the absolute difference between the predicted and actual values. More-
over, we also provide the R2 that shows the variance of the forecast variable that
is predictable from the actual variable. These metrics are shown for all ML/DL
models, temporal granularity, and different evaluation periods (i.e. SUMMER
and WINTER). It is important to note that these values were obtained using the
Python-based Scikit-Learn library.

Table 11 shows the main quality figures achieved by the MLP model. This
technique obtains the best result in MAE and RMSE with the CLEAN-DS-15-
WINTER dataset for both 12-hour and 24-hour forecasts. The lowest MAE and
RMSE is obtained with 12-hour prediction with 1.276°C and 1.538°C respec-
tively. The difference with the 24-hour prediction is very small for all the datasets
evaluated in general.

Table 12 reports the quality figures for the CNN technique. As with MLP,
the results for the 12-hour and 24-hour forecasts are quite similar. However, the
best result is obtained with the DIRTY-DS-30-WINTER dataset with a MAE and
RMSE of 1.252 ºC and 1.492ºC. Contrary to the MLP technique, although with
really little difference, the best result is obtained with a dataset without prepro-
cessing. This makes sense as deep learning techniques are better able to remove
possible noise in the data.

23

Forecasting period 12h 24h
Datasets R2

sd RMSEsd MAEsd R2
sd RMSEsd MAEsd

CLEAN-DS-15-SUMMER 0.5880.120 4.0440.287 3.7100.267 0.8060.053 3.3660.191 2.9320.201
CLEAN-DS-15-WINTER 0.8380.038 1.5380.081 1.2760.093 0.8860.018 1.6430.088 1.2790.079
CLEAN-DS-30-SUMMER 0.6260.119 3.7680.222 3.4340.260 0.8210.032 3.2420.232 2.8090.244
CLEAN-DS-30-WINTER 0.8530.043 1.6340.141 1.4030.135 0.8910.027 1.7060.082 1.3480.062
CLEAN-DS-60-SUMMER 0.8350.100 3.2420.286 2.9270.289 0.8780.043 3.3270.133 2.9620.151
CLEAN-DS-60-WINTER 0.8300.024 1.7080.064 1.5060.066 0.8990.008 1.6540.027 1.3270.028
DIRTY-DS-15-SUMMER 0.5650.147 3.9060.413 3.5280.405 0.7740.093 3.3010.291 2.8320.270
DIRTY-DS-15-WINTER 0.8160.037 1.5190.117 1.2780.127 0.8760.012 1.5780.104 1.2620.094
DIRTY-DS-30-SUMMER 0.6130.081 3.8580.255 3.5290.264 0.8210.034 3.1470.132 2.7010.113
DIRTY-DS-30-WINTER 0.7870.052 1.7280.133 1.4880.117 0.8700.029 1.6770.102 1.3570.081
DIRTY-DS-60-SUMMER 0.8190.075 3.1360.333 2.8330.354 0.8770.041 3.1540.355 2.8320.343
DIRTY-DS-60-WINTER 0.8280.018 1.7370.073 1.5330.069 0.9000.008 1.6350.031 1.3220.038
SMOOTH-DS-15-SUMMER 0.6850.149 3.7810.405 3.4940.374 0.8490.056 3.3870.196 2.9950.217
SMOOTH-DS-15-WINTER 0.7900.065 1.5990.209 1.2970.232 0.8670.031 1.7410.125 1.3380.137
SMOOTH-DS-30-SUMMER 0.7050.125 3.7750.358 3.4510.372 0.8550.039 3.3950.165 3.0000.139
SMOOTH-DS-30-WINTER 0.7840.043 1.7630.182 1.4640.197 0.8750.021 1.8770.100 1.4560.087
SMOOTH-DS-60-SUMMER 0.7480.077 3.4570.160 3.1710.143 0.8950.027 3.6620.227 3.2610.214
SMOOTH-DS-60-WINTER 0.7220.040 2.0120.129 1.7330.158 0.8540.020 2.1270.065 1.7180.071

Table 11: Results of the MLP technique, values in sub-index indicate the standard deviation ob-
tained after the repetition of each experiment. R2 (coefficient of determination) RMSE (root mean
square error) MAE (mean absolute error). RMSE and MAE are measured in degrees Celsius (°C).

Forecasting period 12h 24h
Datasets R2

sd RMSEsd MAEsd R2
sd RMSEsd MAEsd

CLEAN-DS-15-SUMMER 0.7390.189 3.6050.286 3.2790.208 0.8670.044 3.0860.137 2.6820.158
CLEAN-DS-15-WINTER 0.7890.224 1.7820.831 1.5450.855 0.8080.283 1.7870.753 1.4630.753
CLEAN-DS-30-SUMMER 0.8150.174 3.4990.255 3.2340.194 0.8970.049 3.2670.052 2.9060.100
CLEAN-DS-30-WINTER 0.7780.022 1.5490.126 1.2590.095 0.8760.010 1.6130.041 1.2570.038
CLEAN-DS-60-SUMMER 0.8410.022 3.4750.070 3.2000.096 0.8590.008 3.3600.056 3.0200.059
CLEAN-DS-60-WINTER 0.8290.013 1.7230.022 1.5030.025 0.8990.004 1.6270.012 1.3110.014
DIRTY-DS-15-SUMMER 0.7990.102 3.3470.106 3.0140.153 0.8620.025 3.0340.174 2.6420.162
DIRTY-DS-15-WINTER 0.7950.208 1.8340.782 1.5970.805 0.8080.282 1.8590.721 1.5100.727
DIRTY-DS-30-SUMMER 0.8700.074 3.4310.187 3.1970.165 0.8980.040 3.1600.073 2.8220.049
DIRTY-DS-30-WINTER 0.8140.025 1.4920.201 1.2520.210 0.8860.008 1.5390.102 1.2220.098
DIRTY-DS-60-SUMMER 0.7890.029 3.5530.075 3.2990.088 0.8530.008 3.2490.046 2.8900.056
DIRTY-DS-60-WINTER 0.8310.013 1.6660.027 1.4420.034 0.8980.005 1.6000.020 1.2810.016
SMOOTH-DS-15-SUMMER 0.7450.160 3.5350.246 3.1610.269 0.8710.036 3.0260.166 2.5980.214
SMOOTH-DS-15-WINTER 0.6810.310 2.0581.008 1.8181.044 0.7080.373 2.0640.955 1.7300.958
SMOOTH-DS-30-SUMMER 0.7540.156 3.5300.182 3.2390.161 0.8930.053 3.3380.095 2.9800.122
SMOOTH-DS-30-WINTER 0.7560.012 1.7450.095 1.4430.104 0.8630.004 1.7930.027 1.4010.027
SMOOTH-DS-60-SUMMER 0.8460.018 3.4820.120 3.2490.135 0.9330.004 3.6170.080 3.2490.062
SMOOTH-DS-60-WINTER 0.6960.012 2.0390.046 1.7520.050 0.8400.006 2.1570.019 1.7450.017

Table 12: Results of the CNN technique, values in sub-index indicate the standard deviation ob-
tained after the repetition of each experiment. R2 (coefficient of determination) RMSE (root mean
square error) MAE (mean absolute error). RMSE and MAE are measured in degrees Celsius (°C).

24

Prediction hours 12h 24h
Datasets R2

sd RMSEsd MAEsd R2
sd RMSEsd MAEsd

CLEAN-DS-15-SUMMER 0.6050.260 3.6020.550 2.5010.242 0.5210.324 5.8191.225 4.7730.925
CLEAN-DS-15-WINTER 0.2570.057 2.7850.043 2.0730.056 0.3230.058 3.9850.167 2.9670.064
CLEAN-DS-30-SUMMER 0.8360.052 2.6580.209 2.2090.231 0.9120.035 2.8130.268 2.4510.229
CLEAN-DS-30-WINTER 0.7790.041 1.7240.196 1.4000.185 0.8750.029 1.7190.124 1.3670.107
CLEAN-DS-60-SUMMER 0.8270.026 2.7560.203 2.4010.270 0.9300.012 3.0000.192 2.6460.173
CLEAN-DS-60-WINTER 0.7960.022 1.6550.154 1.3890.153 0.8930.010 1.6090.088 1.2580.079
DIRTY-DS-15-SUMMER 0.4810.234 4.3241.610 3.1511.026 0.5300.234 6.6492.812 5.5182.373
DIRTY-DS-15-WINTER 0.2880.109 3.0880.256 2.6110.353 0.3180.136 3.5160.408 2.9050.191
DIRTY-DS-30-SUMMER 0.8050.051 2.6880.199 2.2750.214 0.9090.024 2.8030.216 2.4600.189
DIRTY-DS-30-WINTER 0.7510.077 1.8850.375 1.5400.340 0.8570.054 1.7350.248 1.3660.217
DIRTY-DS-60-SUMMER 0.8020.030 3.0000.199 2.6910.175 0.9270.009 2.8080.107 2.4660.136
DIRTY-DS-60-WINTER 0.7850.057 1.5540.209 1.2940.171 0.8810.041 1.6560.102 1.3170.096
SMOOTH-DS-15-SUMMER 0.5500.269 4.7712.427 3.6141.750 0.5620.171 6.4503.994 5.4263.485
SMOOTH-DS-15-WINTER 0.4010.116 2.9360.544 2.5550.547 0.3850.026 3.2360.156 2.7880.203
SMOOTH-DS-30-SUMMER 0.7110.062 3.2150.295 2.6890.219 0.8030.107 3.9680.947 3.3480.744
SMOOTH-DS-30-WINTER 0.6480.166 2.1240.277 1.7440.198 0.7830.175 2.1150.592 1.6690.417
SMOOTH-DS-60-SUMMER 0.8330.019 2.9820.084 2.6630.107 0.9340.008 3.4190.246 3.0290.224
SMOOTH-DS-60-WINTER 0.6650.027 2.1020.115 1.7790.111 0.8230.016 2.1530.032 1.7310.039

Table 13: Results of the LSTM technique, values in sub-index indicate the standard deviation
obtained after the repetition of each experiment. R2 (coefficient of determination) RMSE (root
mean square error) MAE (mean absolute error). RMSE and MAE are measured in degrees Celsius
(°C).

25

Table 13 shows the results of the LSTM technique. This technique obtains a
similar behavior to the previous deep learning techniques. In the overall tuning,
there is no difference in the prediction at 12 or 24 hours. Moreover, although the
results are similar, this technique obtains slightly higher RMSE and MAE values
than the other deep learning techniques discussed. The best results are obtained
with the DIRTY-DS-60-WINTER dataset, where its MAE and RMSE are 1.294°C
and 1.554°C in 12-hour prediction respectively.

Prediction hours 12h 24h
Datasets R2

sd RMSEsd MAEsd R2
sd RMSEsd MAEsd

CLEAN-DS-15-SUMMER 0.7860.088 3.3440.179 3.0140.203 0.8760.023 2.9470.321 2.5530.368
CLEAN-DS-15-WINTER 0.8750.023 1.5270.185 1.3030.193 0.9230.008 1.4790.150 1.1930.110
CLEAN-DS-30-SUMMER 0.7940.106 3.4830.251 3.2100.225 0.8600.051 3.2230.067 2.8430.079
CLEAN-DS-30-WINTER 0.8740.017 1.5990.087 1.4010.091 0.9210.007 1.5950.035 1.2800.032
CLEAN-DS-60-SUMMER 0.9350.005 3.1020.039 2.8670.058 0.9390.010 3.2910.063 2.9560.051
CLEAN-DS-60-WINTER 0.8760.003 1.4410.023 1.2810.022 0.9300.001 1.5040.040 1.2200.018
DIRTY-DS-15-SUMMER 0.8270.045 3.3810.222 3.0920.244 0.8630.024 2.9750.194 2.5950.196
DIRTY-DS-15-WINTER 0.8810.025 1.5270.111 1.2950.124 0.9270.009 1.5940.120 1.2580.102
DIRTY-DS-30-SUMMER 0.8680.097 3.3590.172 2.8870.298 0.8570.029 3.5750.364 3.1420.296
DIRTY-DS-30-WINTER 0.8770.009 1.5750.052 1.3700.051 0.9260.003 1.5930.057 1.2670.040
DIRTY-DS-60-SUMMER 0.9370.004 3.0930.038 2.8660.061 0.9420.004 3.2780.058 2.9520.053
DIRTY-DS-60-WINTER 0.8820.006 1.3570.043 1.2000.048 0.9350.003 1.4040.018 1.1420.022
SMOOTH-DS-15-SUMMER 0.7140.079 3.3580.315 2.9940.366 0.8440.104 2.9040.346 2.4570.335
SMOOTH-DS-15-WINTER 0.8480.038 1.6300.199 1.4070.195 0.9040.016 1.5960.134 1.2830.107
SMOOTH-DS-30-SUMMER 0.7760.143 3.5280.271 3.2530.242 0.8930.051 3.2810.062 2.9030.072
SMOOTH-DS-30-WINTER 0.7870.040 1.7870.093 1.5060.119 0.8880.016 1.8320.062 1.4350.032
SMOOTH-DS-60-SUMMER 0.9060.012 3.3690.050 3.1330.119 0.9470.008 3.7630.094 3.3750.067
SMOOTH-DS-60-WINTER 0.7150.015 2.0100.051 1.7320.055 0.8540.008 2.1100.060 1.7240.033

Table 14: Results of the CNNLSTM technique, values in sub-index indicate the standard deviation
obtained after the repetition of each experiment. R2 (coefficient of determination) RMSE (root
mean square error) MAE (mean absolute error). RMSE and MAE are measured in degrees Celsius
(°C).

Finally, table 14 shows the quality figures of the CNNLSTM technique, which
reports very similar results to the CNN technique. It follows the trend of obtain-
ing very similar results for 12-hour and 24-hour forecasts. Moreover, the best
result is obtained with the DIRTY-DS-60-WINTER dataset. In this case, although
also with little difference, the best result is obtained with the data without pre-
processing. Specifically, the MAE and RMSE results are 1.200 ºC and 1.357ºC
respectively.

4.3. Model retraining evaluation
ML models require periodic retraining to improve the quality of predictions

as new data is generated. However, these retrainings are quite computationally

26

expensive, and that is why SEPARATE allows asynchronous communication with
an HPC server that retrains the model and, once retrained, can be updated at the
edge. The question here was how often it is necessary to perform these trainings.
To analyze this point, the following tests have been carried out. First, the model
has been trained using all the data from each dataset under study, except for the
last 30 days. Subsequently, the model was tested with day 1, then day 2, then day
3, and so on until day 30. Independent tests were performed on each day, in order
to visualize and analyze the impact of error and model fit as the days passed. The
results of these tests indicate the maximum time that an ML/DL time series model
can predict without retraining or loss of prediction quality. Although all tech-
niques have similar performance, the one with the lowest error is the CNNLTSM,
so this test has been performed with this technique.

Figures 4a and 4b show R2 and the mean of RMSE and MAE metrics for
all targeted datasets. Particularly, Figure 4a reports significant sharp differences
testing 10, 16, 20, and 21 days respectively using R2 metric. Figure 4b focuses
on RMSE and MAE metrics and it can be seen that from days 9 and 10 onwards,
there is a significant upward trend in the error. The same occurs on days 16, 20,
and 21, the latter two being the days with the greatest error with respect to the rest
of the days.

27

(a) Mean of all datasets in table 1 for the metric R2. The Y-axis shows the correlation
between the real and the forecasted values expressed in a range between 0 and 1.

(b) Mean of all datasets in table 1 for the metric RMSE y MAE. The Y-axis shows the mean
error expressed in degrees Celsius.

Figure 4: Mean of all datasets in table 1 for all the metrics

28

After showing the test results evaluating 30 days separately and analyzing that
days 9 and 10, 16, 20, and 21 seem to be days with significant key differences, we
now apply non-parametric statistical tests to statistically contract from which day
the CNNLSTM model should be retrained due to the significant increase in error
and the drop in fit. We perform a non-parametric statistical test, in particular, the
Kruskal-Wallis test [29], since the data do not follow a normal distribution. To
make this statement, we proceeded to perform a Kolmogorov–Smirnov test [30]
for normality of the data, obtaining a p-value of 0.000, which indicates that the
RMSE, MAE, and R2 data do not follow a normal distribution. Kruskal-Wallis
tests have been also performed using all datasets, without distinguishing by data
pre-processing used, the season of the year, as well as granularity. For a greater
amount of information, tests have been performed individually for each of the
metrics evaluated in the accuracy, which have been MSE, RMSE, and R2. The sta-
tistical results, with a 95% confidence level, after performing the Kruskal-Wallis
test, show the adjusted p-values indicated in tables 15, 16 and 17.

The table 15 shows for the first 10 days, the p-values with values higher than
0.05; i.e., confidence level of 95%. Thus, it is important to note that the first two
days have significant differences with a 95% confidence level, with days 9, 10,
12, 16, 17, 18, 19, 20, and 21. Days 3 to 10, however, have significant differences
from the models for days 20 and 21. These results lead us to conclude that tak-
ing into account the MAE metric, from day 9 onwards, the model starts to lose
accuracy, however, when the accuracy drops drastically is from day 19 onwards.

Days 1 2 3 4 5 6 7 8 9 10
9 0.002 0.054

10 0.002 0.051
12 0.011
16 0.000 0.000
17 0.000 0.000
18 0.000 0.007
19 0.000 0.011
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.080 0.007
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.011

Table 15: P-values of the statistical analysis for all datasets, considering the MAE metric of each
of the tested days. Only p-values < 0.06 are shown.

Table 16 shows the p-values, with a confidence level of 95%, for the first 10
days for the RMSE metric. As can be seen, the results are very similar to the
MAE metric, with the only exception that day 9 has no significant differences

29

with days 20 and 21. Despite this difference, the conclusion is the same as that
obtained for the MAE metric, from day 9 onwards, accuracy decreases but drops
drastically from day 19 onwards. Therefore, the two error metrics indicate the
same conclusion.

days 1 2 3 4 5 6 7 8 10
9 0.000 0.002

10 0.002 0.043
12 0.012
16 0.000 0.000
17 0.000 0.000
18 0.000 0.004
19 0.001 0.002
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007
21 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011

Table 16: P-values of the statistical analysis for all datasets, considering the RMSE metric of each
of the tested days. Only p-values < 0.06 are shown

The 17 shows the p-values, at 95% confidence level, for the values of the R2
metric. It shows significant differences in change with respect to errors. It should
be considered that the R2 metric measures the overall model fit, so it is possible
that it does not represent the errors as much as the overall fit. This table also shows
how the days are reduced, and there are significant differences in the R2 metric of
days 1 and 2 with the models of days 10,12,16,20,21. While for days 4, 5, 7, and
8 there are only significant differences with the models for days 20 and 21. These
results lead us to the same conclusion as indicated by the previous metrics. From
day 9 onwards, the accuracy and fit of the models drop, on the tenth-day accuracy
is lost. However, when the accuracy drops drastically from day 20 onwards.

Days 1 2 4 5 7 8
10 0.000 0.000 0.000 0.000 0.000 0.000
12 0.001
16 0.005
20 0.000 0.000 0.025 0.000 0.002
21 0.000 0.000 0.024 0.000 0.002

Table 17: P-values of the statistical analysis for all datasets, considering the R2 metric of each of
the tested days. Only p-values < 0.06 are shown

Thus, we can conclude that days 1 and 2 are the most accurate, but there is
really no significant loss of accuracy until day 9. Days 20 and 21 have significant

30

differences with the first 10 days. This already indicates that from then on, the
model decreases in accuracy, so from day 19, if day 9 has not been carried out,
the model should be retrained.

The problem of retraining can be solved by using incremental learning. Al-
though there is no common framework for dealing with this problem in deep learn-
ing techniques, there are some publications that address it. Incremental learning
can be classified into three scenarios [31]: Task-incremental learning, Domain-
incremental learning and Class-incremental learning. Task-incremental learning
scenario is about learning sequentially to solve a series of tasks in the same con-
text. Domain-incremental learning scenario focuses on solving the same problem
but in different contexts. In contrast, Class-incremental learning focuses on learn-
ing to discriminate between incrementally observed classes. In the case we are
concerned with in this study, we will be able to perform incremental learning
to change context, for example, to change the greenhouse, or to perform incre-
mental tasks, which would be to continue predicting the temperature in the same
greenhouse. Some publications perform incremental learning using Deep Learn-
ing techniques. Thus in [32] the authors present an incremental learning method
using an LSTM network for attitude estimation of an object in space using a gyro-
scope, accelerometer, and magnetometer sensors. It is initially trained with sensor
data that is dynamically updated at runtime by the LSTM network. The incre-
mental learning is done in a rough way, starting from the initial weights of the
trained network and only training with the new information available. Another
incremental learning technique based on an LSTM is presented in [33], in this
case, it is not focused on a specific problem, but the technique is evaluated with
a synthetic data set and good results are obtained. Another study that also uses
Deep learning techniques adapted to computational learning is presented in [34].
The authors present an incremental learning paradigm called Deep Model Con-
solidation to learn labels when the original training data is not available. The idea
of the work is to first train a separate model for new labels only, and then com-
bine the two individual models trained on data from two different sets of labels
(old labels and new labels) through a novel double distillation training objective.
Therefore, in view of the results obtained in the literature, the problem of retrain-
ing is solved by applying incremental learning, although future work may study
in depth specific techniques for the problem addressed in this study.

31

5. Discussion

This section first analyses the proposed Pub/Sub solution (see subsection 3.2)
using all the metrics obtained in the subsection 4.1.1 and 4.1.2. Moreover, the
precision of the ML/DL models used (see subsection 3.4) is analyzed using met-
rics obtained in subsection 4.2. Finally, the necessary retraining time is discussed
following the metrics shown in the subsection 4.3.

Regarding the Pub/Sub solution, two aspects should be considered: (1) the
execution time spent on training and inference with the different ML/DL models,
executed on CPU or GPU in the HPC computing platform; and (2) the execution
time spent on loading and forecasting with the different ML/DL models, executed
on CPU and GPU of the edge computing platform.

HPC platforms are needed for training heavy models, like those ones used
in this investigation. Analyzing the obtained results can be concluded that using
GPU is much faster than using only a CPU obtaining, on average, a 1.25X per-
formance. However, in terms of inference, both CPU and GPU are very evenly
matched, with the CPU being slightly faster than the GPU (on average, 0.94X
of performance). This makes sense in our case because, although the models are
heavy for training as they use large datasets to do this task, the inference is reduced
to the univariate prediction of the greenhouse internal temperature. Furthermore, a
maximum prediction horizon of 24 hours is considered, as a larger time horizon is
not operational in the greenhouse. However, this implies that at the smallest tem-
poral granularity; i.e. 15 minutes, no more than 96 values are predicted, which
implies a light forecast for this type of deep learning model.

Edge computing is needed to generate a forecast as soon as data is generated
or received. Analyzing the obtained results can be concluded that using CPU is
much faster than using GPU obtaining, on average, a 2.44X performance as far as
the model load is concerned. However, in terms of prediction, both CPU and GPU
are evenly matched, with the CPU being slightly faster than the GPU (on average,
0.91X of performance). As with HPC platforms, this makes sense in our case be-
cause, although the stored models are heavy, once loaded into memory it is much
faster to perform the inference on CPU rather than having to take it to GPU since
the inference is still reduced to the univariate prediction of the internal greenhouse
temperature as in the previous case. Although the model file is heavy, the model
loading and univariate prediction tasks are very light tasks, so performing them
on GPU means the appearance of bottlenecks, especially in memory access tasks,
not taking full advantage of the GPU’s potential.

Comparing the model training/loading and inference times on HPC and edge

32

platforms, it can be concluded that loading the model in an edge platform is much
faster than training it in an HPC platform (on average, 1,057.71X performance).
Moreover, due to the low computational capabilities of edge platforms, the fore-
casting time in edge platforms is much slower than in HPC platforms (on average,
0.24X performance).

Regarding the accuracy of ML/DL models, it can be concluded that it depends
mainly on the characteristics of the data. For example, when there is a lot of data
with a low temporality (such as 15-minute datasets), models such as CNN and
CNNLSTM perform very well. However, when the data has a higher temporal
granularity (such as 60-minute datasets), models such as LSTM show the best per-
formance. It should also be noted that there are simple (in terms of architecture)
models such as MLP that have reported good results. In addition, it is important to
note that smooth pre-processing is not effective for any of the techniques, as it al-
ways provides lower performance. Moreover, for DL techniques, the best results
are usually obtained with the raw datasets, as they are able to remove possible
noise from the data.

Although there are no major differences with the other techniques, the most
stable technique is CNNLSTM because its accuracy performance is somewhat
better than the other techniques, at both 12 and 24 hours, regardless of the tempo-
ral granularity of the data. However, in terms of computing time, it is one of the
slowest techniques for inference, although the times are still manageable, so given
the importance of greenhouse temperature and the fact that the time difference is
only 1 or 2 seconds, it can be selected as the best technique to implement.

Finally, we discuss the analysis of the days needed to perform model retrain-
ing. Considering the results shown, in the first 9 days, the model remains stable
in all metrics. From day 9 onwards, the model loses accuracy. However, the re-
sults have shown that when there is really a significant loss of accuracy is from
day 20 onwards, as all previous days have significant differences with the metrics
obtained from day 20. This shows the need for retraining on the ninth day of the
model run. If there are any problems in the system, there would be a margin of
11 days to retrain the model (i.e., until day 20), where the model update should be
mandatory. Thus, we can conclude that from day 19 the model should collect all
the data and retrain the new model without delay, although the best day not to lose
accuracy would be day 9. It is important to consider that from day 9 the model
must be trained, if we are looking for optimal accuracy, for any kind of temporal
granularity, the season of the year, as well as data pre-processing.

33

6. Conclusions and future work

New technologies are helping to improve quality, efficiency, and profitabi-
lity in many areas. Farming in recent years is gaining a great deal of perfor-
mance when new technologies bring their advantages. Proof of this is the automa-
tion that is taking place in greenhouses. IoT and new communications protocols
help to connect sensors, with information-gathering and decision-making systems
quickly and effectively, achieving fast and efficient monitoring and execution of
actions. Thus, in this research, an infrastructure applied to an operational green-
house has been proposed, consisting of a Pub/Sub-based infrastructure that offers
an interoperable and decentralized dynamic architecture for ML/DL training and
inference. The infrastructure is evaluated to forecast the internal temperature of an
operational greenhouse. This allows the farmer to act in advance to have the best
climatic conditions for his crops, with a reliable and fast-running model on the
edge. After this research, it can be concluded that Pub/Sub systems are nowadays
mandatory for IoT applications that require taking actions in almost real-time.
When a real-time data publisher is considered to monitoring an ecosystem, and
decisions need to be taken based on analytics and forecast, it is mandatory to have
a tightly coupled, seamless IoT infrastructure that covers the whole data cycle
from the capture to the processing pipeline to analyze them and make reliable
forecasting in the shortest possible time in order to make decisions in NRT. Fi-
nally, it should be noted that the best prediction model found for the SEPARATE
infrastructure was the CNNLTSM model. Moreover, it has been analyzed and
from the 9th day of prediction at any granularity and/or season of the year, the
model should be retrained in order not to lose accuracy.

The future work of this research consists of optimizing the developed archi-
tecture, following different strategies that could improve the overall performance
such as analyzing other possible Pub/Sub architectures that improve the response
times of the proposal. Moreover, in order to optimize the models by which this
architecture is developed, the following strategies could be studied: incorporating
other artificial intelligence models different from the existing ones; increasing the
number of variables to be predicted using the developed architecture; and chang-
ing the training strategy (batch training) for one that allows optimizing the training
time, such as online/incremental training.

34

Declarations

Funding
This work is derived from R&D projects RTC2019-007159-5, as well as the

Ramon y Cajal Grant RYC2018-025580-I, funded by MCIN/AEI/10.13039/501100011033,
“FSE invest in your future” and “ERDF A way of making Europe”.

Authors’ contributions
Conceptualization, J.M.C., F.J.G. and S.R.; methodology, J.M.C., R.M.E.,

J.M.G. and A.B.C.; software, J.M.G. and J.F.P.; validation, J.M.C., R.M.E. and
A.B.C.; formal analysis, F.J.G., J.M.C. and S.R.; investigation, J.M.G. and J.M.C.;
writing—original draft preparation, J.M.G., R.M.E., J.M.C. and A.B.C.; writ-
ing—review and editing, A.B.C., R.M.E.,J.M.C. and J.M.G.; visualization, J.M.G.
and R.M.E.; supervision, J.M.C.; project administration, J.M.C.; funding acquisi-
tion, J.M.C. and A.B.C.

Consent to publish
All authors have read and agreed to the published version of the manuscript.

References

[1] J. Lowenberg-DeBoer, The economics of precision agriculture, in: Precision
agriculture for sustainability, Burleigh Dodds Science Publishing, 2019, pp.
481–502.

[2] M. A. Zamora-Izquierdo, J. Santa, J. A. Martı́nez, V. Martı́nez, A. F.
Skarmeta, Smart farming iot platform based on edge and cloud computing,
Biosystems engineering 177 (2019) 4–17.

[3] M. C. Garrido, J. M. Cadenas, A. Bueno-Crespo, R. Martı́nez-España, J. G.
Giménez, J. M. Cecilia, Evaporation forecasting through interpretable data
analysis techniques, Electronics 11 (4) (2022) 536.

[4] D. A. Howard, Z. Ma, C. Veje, A. Clausen, J. M. Aaslyng, B. N. Jørgensen,
Greenhouse industry 4.0–digital twin technology for commercial green-
houses, Energy Informatics 4 (2) (2021) 1–13.

[5] J. Yang, A. Sharma, R. Kumar, Iot-based framework for smart agriculture,
International Journal of Agricultural and Environmental Information Sys-
tems (IJAEIS) 12 (2) (2021) 1–14.

35

[6] E. Yaacoub, M.-S. Alouini, A key 6g challenge and opportu-
nity—connecting the base of the pyramid: A survey on rural connectivity,
Proceedings of the IEEE 108 (4) (2020) 533–582.

[7] K. G. Liakos, P. Busato, D. Moshou, S. Pearson, D. Bochtis, Machine learn-
ing in agriculture: A review, Sensors 18 (8) (2018) 2674.

[8] A. Kamilaris, F. X. Prenafeta-Boldú, Deep learning in agriculture: A survey,
Computers and electronics in agriculture 147 (2018) 70–90.

[9] D. Garg, M. Alam, Deep learning and iot for agricultural applications, in:
Internet of Things (IoT), Springer, 2020, pp. 273–284.

[10] M. Satyanarayanan, The emergence of edge computing, Computer 50 (1)
(2017) 30–39.

[11] P. Warden, D. Situnayake, TinyML, O’Reilly Media, Incorporated, 2019.

[12] Y. Wu, E. Dobriban, S. Davidson, Deltagrad: Rapid retraining of machine
learning models, in: International Conference on Machine Learning, PMLR,
2020, pp. 10355–10366.

[13] B. Mishra, A. Kertesz, The use of mqtt in m2m and iot systems: A survey,
IEEE Access 8 (2020) 201071–201086.

[14] B. Wukkadada, K. Wankhede, R. Nambiar, A. Nair, Comparison with http
and mqtt in internet of things (iot), in: 2018 International Conference on
Inventive Research in Computing Applications (ICIRCA), IEEE, 2018, pp.
249–253.

[15] S.-M. Kim, H.-S. Choi, W.-S. Rhee, Iot home gateway for auto-configuration
and management of mqtt devices, in: 2015 IEEE Conference on Wireless
Sensors (ICWiSe), IEEE, 2015, pp. 12–17.

[16] N. Tantitharanukul, K. Osathanunkul, K. Hantrakul, P. Pramokchon,
P. Khoenkaw, Mqtt-topics management system for sharing of open data, in:
2017 International Conference on Digital Arts, Media and Technology (IC-
DAMT), IEEE, 2017, pp. 62–65.

[17] Y. Syafarinda, F. Akhadin, Z. Fitri, B. Widiawan, E. Rosdiana, et al., The
precision agriculture based on wireless sensor network with mqtt protocol,

36

in: IOP Conference Series: Earth and Environmental Science, Vol. 207, IOP
Publishing, 2018, p. 012059.

[18] A. A. Ahmed, S. Al Omari, R. Awal, A. Fares, M. Chouikha, A distributed
system for supporting smart irrigation using internet of things technology,
Engineering Reports 3 (7) (2021).

[19] F. M. Taha, A. A. Osman, S. D. Awadalkareem, M. S. Omer, R. S.
Saadaldeen, A design of a remote greenhouse monitoring and controlling
system based on internet of things, in: 2018 International Conference on
Computer, Control, Electrical, and Electronics Engineering (ICCCEEE),
IEEE, 2018, pp. 1–6.

[20] T. A. Singh, J. Chandra, Iot based green house monitoring system., J. Com-
put. Sci. 14 (5) (2018) 639–644.

[21] R. Tashakkori, A. S. Hamza, M. B. Crawford, Beemon: An iot-based beehive
monitoring system, Computers and Electronics in Agriculture 190 (2021)
106427.

[22] U. Hunkeler, H. L. Truong, A. Stanford-Clark, Mqtt-s—a publish/subscribe
protocol for wireless sensor networks, in: 2008 3rd International Confer-
ence on Communication Systems Software and Middleware and Workshops
(COMSWARE’08), IEEE, 2008, pp. 791–798.

[23] M. Bender, E. Kirdan, M.-O. Pahl, G. Carle, Open-source mqtt evaluation,
in: 2021 IEEE 18th Annual Consumer Communications & Networking Con-
ference (CCNC), IEEE, 2021, pp. 1–4.

[24] J. Brownlee, Deep learning for time series forecasting: predict the future
with MLPs, CNNs and LSTMs in Python, Machine Learning Mastery, 2018.

[25] C. M. Bishop, Pattern recognition and machine learning, Springer, 2006.

[26] S. Haykin, R. Lippmann, Neural Networks: A Comprehensive Foundation,
2nd Edition, Prentice Hall PTR, 1998.

[27] Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou, A survey of convolutional neu-
ral networks: analysis, applications, and prospects, IEEE Transactions on
Neural Networks and Learning Systems (2021).

37

[28] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computa-
tion 9 (8) (1997) 1735–1780.

[29] T. V. Hecke, Power study of anova versus kruskal-wallis test, Journal of
Statistics and Management Systems 15 (2-3) (2012) 241–247.

[30] G. Marsaglia, W. W. Tsang, J. Wang, Evaluating kolmogorov’s distribution,
Journal of statistical software 8 (2003) 1–4.

[31] G. M. van de Ven, T. Tuytelaars, A. S. Tolias, Three types of incremental
learning, Nature Machine Intelligence (2022) 1–13.

[32] P. Narkhede, R. Walambe, S. Poddar, K. Kotecha, Incremental learning of
lstm framework for sensor fusion in attitude estimation, PeerJ Computer Sci-
ence 7 (2021) e662.

[33] Á. C. Lemos Neto, R. A. Coelho, C. L. d. Castro, An incremental learning
approach using long short-term memory neural networks, Journal of Control,
Automation and Electrical Systems 33 (5) (2022) 1457–1465.

[34] J. Zhang, J. Zhang, S. Ghosh, D. Li, S. Tasci, L. Heck, H. Zhang, C.-C. J.
Kuo, Class-incremental learning via deep model consolidation, in: Proceed-
ings of the IEEE/CVF Winter Conference on Applications of Computer Vi-
sion, 2020, pp. 1131–1140.

38

	ELSEVIER IOT
	_IoT___SEPARATE__A_tightly_coupled__seamless_IoT_infrastructure_for_deploying_AI_algorithms_in_smart_agriculture_environments

