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Abstract

The creation of smart greenhouses is playing a crucial role in paving the way toward precision agriculture character-

ized by enhanced efficiency. Integral to these greenhouses are decision-support systems that leverage sophisticated

forecasting algorithms to predict a range of parameters. However, these predictors often employ a single model ap-

proach for forecasting all variables of interest, leading to imbalanced predictions where some variables are accurately

predicted while others do not. Such inconsistencies can undermine the overall reliability of the decision-support sys-

tems. Addressing this challenge, this paper proposes an approach that harnesses the potential of multiple deep-learning

models operating concurrently to predict a broad array of environmental parameters within a smart and operational

greenhouse. Each model is specifically tailored to concentrate on a distinct subset of target variables, thus ensuring

that the overall accuracy of the prediction is optimized. The effectiveness of this approach has been evaluated in a real-

world greenhouse setting. The results indicate a substantial improvement, exhibiting more than an 8% enhancement

in the Mean Absolute Percentage Error (MAPE) compared to a single-model alternative, particularly in predicting

specific environmental variables, confirming the potential for more reliable and precise agricultural decision-support

systems.
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1. Introduction1

One of the major challenges of the human race in this modern era is the frequent occurrence of extreme weather2

events in many parts of the globe (Schmitt et al., 2022). At the same time, the worldwide population would be close to3

10 billion people by 2050 (Sadigov et al., 2022). This will generate a tremendous increment in food demand shortly.4

This situation calls for developing an agriculture industry that is more efficient and precise. In this context, recent5

years have witnessed a large deployment of innovative technologies to face such an important challenge.6

One of these prominent technologies has been the combination of Artificial Intelligence (AI) techniques and the7

Internet of Things (IoT) for the development of Smart Greenhouses able to monitor and control crop thermodynamics8

in real time to face sudden weather changes that occur mainly in semi-arid climates Ardiansah et al. (2020). Given9
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the fact that greenhouses are quite susceptible to the environmental conditions, an important course of action has10

focused on applying different forecasting algorithms to anticipate future climatic conditions in a target crop area so11

that the Decision-Support System (DSS) can take appropriate proactive actions based on such estimations Nakhaei12

et al. (2023); Maraveas (2022).13

To compose such predictive models, it is possible to find in the literature a large number of solutions able to14

predict a single climatic variable (e.g., the inner temperature of a smart greenhouse) Codeluppi et al. (2020); Oh et al.15

or multiple ones Jin et al. (2021); Tsai et al. (2020). For that goal, different algorithms have been applied from the16

statistical Sun et al. (2019); Sharma et al. (2022), machine learning Tsai et al. (2020); Kaneda and Mineno (2016) and17

deep learning fields Guillén-Navarro et al. (2020); Liu et al. (2023). In that sense, most of these approaches follow a18

single-method approach where a unique predictor forecasts all the target variables.19

However, the latent patterns and time-related features of each environmental variable might be quite different20

among them. Hence, the aforementioned single-model approaches might provide imbalanced results where certain21

variables are accurately predicted, and others are more poorly anticipated. This might lead to the malfunctioning of22

a smart greenhouse’s DSS as most of its proactive rules usually take into account multiple climatic factors like soil23

temperature, soil water potential, rainfall, wind speed, temperature, humidity or global radiation Zhai et al. (2020). As24

an illustrative example, the DSS proposed in Tay et al. (2021) includes a set of chained fuzzy rules that consider the25

internal temperature, humidity, and radiation level of a crop to asses its meteorological risk. This calls for predictive26

solutions able to anticipate all the ambient factors with a similar accuracy level.27

In this context, the present work relies on the rationale that the combination of multiple predictive models to28

forecast different ambient factors of a greenhouse will eventually lead to a more accurate and balanced prediction.29

Based on this hypothesis, the main goal of this study is to forecast the ambient conditions of a smart greenhouse30

using an ensemble of deep learning algorithms. To do so, the solution follows an integrated learning approach by31

comprising a group of predictors where each one focuses on predicting a subset of ambient factors. To compose such32

an ensemble, first, a set of candidate algorithms are evaluated independently to predict a set of environmental factors of33

an intelligent greenhouse under certain conditions. Based on this evaluation, the minimum set of models that provides34

the most accurate predictions for all atmospheric variables are eventually selected. Using this integrated learning35

approach, a solution can be provided wherein the optimal predictive model manages all relevant ambient variables.36

Given the multi-dimensionality of the DSS’s rules, a more accurate multivariate prediction will help DSSs take more37

reliable proactive actions to manage a greenhouse.38

The main findings of this study include:39

1. A novel integrated learning framework has been established, merging multiple deep-learning models to predict40

ambient conditions within a smart greenhouse.41

2. Through comprehensive evaluation, a subset of algorithms was chosen to form an ensemble, each specializing42

in the accurate prediction of distinct environmental factors.43

3. The selected models within the ensemble were fine-tuned to provide the most precise forecasts for each atmo-44

spheric variable, leading to an optimal multivariate predictive model.45

4. The application of the integrated learning approach resulted in a more accurate and multivariate prediction46

2



model, which significantly augments the decision-making capabilities of DSSs in managing greenhouse condi-47

tions.48

5. The improved prediction accuracy facilitates DSSs to take proactive and reliable actions, ensuring better climate49

control within the smart greenhouse.50

6. The study advances the field of smart agriculture by providing a sophisticated approach to managing the complex51

dynamics of greenhouse environments, potentially increasing yield and resource efficiency.52

The remainder of the paper is organized as follows. Section 2 summarizes state-of-the-art related studies regarding53

ambient condition forecasting in smart greenhouses. Section 3 describes the use-case setting, and the main features of54

the target data along with the proposed multi-model approach. Section 4 shows the results, analysis, and discussion of55

such an approach. Section 5 highlights the conclusions and directions for future works56

2. Related Works57

In this context of precision agriculture in smart greenhouses, there are univariate studies to predict, generally, the58

temperature inside the greenhouse. In Ruiz et al. (2022) a work that implements different time series libraries for the59

prediction of the interior temperature of a greenhouse can be observed. In Morales-Garcı́a et al. (2023) the authors60

perform a data-driven evaluation from different ML models to forecast the indoor temperature of the greenhouse.61

Another work aimed at predicting the inside temperature of the greenhouse is shown in Eraliev and Lee (2023), in62

which the authors perform a performance analysis of various DL models at different time intervals.63

Due to the complexity of the greenhouse, it is not enough to develop univariate models, but it is necessary to64

consider the greenhouse as a whole, in a holistic way, being necessary to develop multivariate AI models. In this65

context, one of the most widely used models to make predictions within the greenhouse is the LSTM (Long Short-66

Term Memory). In Ali and Hassanein (2020) a multivariate LSTM is developed to forecast environmental conditions67

(air temperature, relative humidity, pressure, wind, and dew point) inside a greenhouse. In Patrizi et al. (2022) the68

authors propose the creation of a virtual soil moisture sensor based on the development of a multivariate LSTM69

that collects data from another physical sensor. In Jung et al. (2022) another LSTM is also developed to forecast70

evapotranspiration and relative humidity for moisture control in tomato plantations inside greenhouses.71

Other DL models can be used to predict potential crop problems in greenhouses, as shown in the work Magalhães72

et al. (2021), which implements different machine vision-focused DL models (such as SSD and YOLO) for tomato73

identification and its state of maturation, being able to detect green and reddish tomatoes, including those occluded74

by leaves. In Moreira et al. (2022) another work that implements SSD and YOLO as DL models to efficiently detect75

tomatoes and compare those systems with a proposed histogram-based HSV color space model to classify each tomato76

and determine its ripening stage. Another interesting work is described in Kour et al. (2022) where authors propose a77

hydroponic cultivation of saffron in an IoT environment. In this manuscript, an architecture based on IoT sensors is78

presented, which collect data and send them to the cloud via wireless networks to be analyzed and processed, evaluated79

using the AquaCrop model Mirsafi et al. (2016), validating that this architecture can obtain better results than a natural80

crop, which would require a lot of time.81
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Taking into account all the variables that are collected in a greenhouse, it is difficult to obtain a generic model82

that adapts well to all of them, regardless of other needs such as computational load or energy consumption Marchisio83

et al. (2019). That is why it is necessary to build an ensemble of AI models that, depending on the characteristics84

of the variables to be predicted as well as the computational needs or energy consumption, choose the AI model that85

best fits that scenario. For example, in Fu et al. (2019) a stacking model integrating six ML models improved the86

ability to predict the photosynthetic capacity of different tobacco genotypes. Another example of this is Chang et al.87

(2020), where the stacking model was also better than the existing base models in forecasting air pollution. In Jiang88

et al. (2023) also shows a work in which an ensemble of ML models improves the forecast of its base models in the89

context of greenhouse gas emissions. In Gong et al. (2021) a study of multivariate ML and DL techniques is proposed90

to compare them with their proposal of RNN-LSTM + TCN in the context of crop yield in greenhouses.91

As can be seen, there are numerous studies on the greenhouse internal environmental conditions forecast. However,92

these works are intended to model the thermodynamics of the greenhouse. On the contrary, the present work proposes93

an ensemble of the best models to predict a set of environmental variables.94

3. Materials and Methods95

This section outlines the use-case setting in which the proposed solution has been tested, the description of the96

target prediction problem along with all deep learning models used and the integrated learning methodology adopted97

to solve it.98

3.1. Use-case setting99

The operational greenhouse that this study is targeting, known as ETIFA, is depicted in Figure 1. ETIFA is a100

functioning greenhouse owned by NUTRICONTROL1, a Spanish company focusing on the development of climate101

control and automatic fertigation technology. ETIFA covers a 50 m2 surface area and it is situated in Murcia, a semi-102

arid region in the southeast of Spain with a yearly average temperature of about 25 ºC.103

1https://nutricontrol.com/
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Figure 1: ETIFA: NUTRICONTROL operational greenhouse located at Murcia (Spain)

A modular IoT infrastructure for climate control and fertigation system is deployed inside the ETIFA greenhouse.104

This IoT infrastructure is coordinated by the OPTIMUM2 integrated control system, shown in Figure 2.105

Figure 2: OPTIMUM: NUTRICONTROL integrated control system installed inside of the greenhouse

OPTIMUM integrated control system is controlled by a CPU-based node called OPTIMUM Orchestator, to which106

all sensors are connected in a modular way. In this setting, ETIFA greenhouse has several sensors connected to the107

OPTIMUM system to measure different environmental variables. Let us call V the set comprising all such variables,108

namely,109

• Indoor temperature (IT), temperature inside the greenhouse measured by a specific thermometer for this pur-110

pose. It is an internal variable of the greenhouse. Its range of values is [9.573 - 33.724]◦C.111

• Wet bulb temperature (WBT), humid interior temperature of the greenhouse collected using a specific ther-112

mometer for this purpose. It is an internal variable of the greenhouse. Its range of values is [8.323 - 29.678]◦C.113

2https://nutricontrol.com/es/controladores-de-riego/control-integrado-optimum/

5



• Relative humidity (RH), percentage of humidity inside the greenhouse. It is an internal variable of the green-114

house. Its range of values is: [53.257 - 100.000]%.115

• Water deficit (WaD), lack of irrigation of crops in the greenhouse. It is an internal variable of the greenhouse.116

Its range of values is [0.000 - 10.611]gr/m3.117

• External temperature (ET), temperature outside the greenhouse, measured in ºC. It is an external variable to118

the greenhouse. Its range of values is: [2.465 - 32.689]◦C.119

• External humidity (EH), humidity outside the greenhouse. It is an external variable to the greenhouse. Its120

range of values is: [11.398 - 100.000] %.121

• Wind direction (WiD), wind direction outside the greenhouse. It is an external variable to the greenhouse. Its122

range of values is: [46.357 - 296.571]◦.123

• Carbon Dioxide (CO2), CO2 reading inside the greenhouse. It is an internal variable of the greenhouse. Its124

range of values is [363.500 - 408.933]Ppm.125

3.2. Dataset126

Given the IoT infrastructure described above, three datasets were collected; i.e. T15, T30 and T60, where the127

measurements of each sensor are reported at different time scales, namely 15, 30 and 60 minutes and comprising the128

nine target variables described in section 3.1. In that sense, T30 and T60 are aggregations of T15. For the sake of129

completeness, Table 1 shows the start and end dates of the data, as well as the total number of values for each of the130

datasets, Table 2 the statistical values and Figure 3 the time-series of each variable in T15.131

Name Start date End date # Instances
T15

2018-12-18 2021-01-17
73,103

T30 36,552
T60 18,276

Table 1: Dataset description.

IT WBT RH WaD ET EH WiD CO2

Mean value 21.750 19.430 81.554 3.831 17.912 66.754 172.994 386.717
Std. deviation 5.042 4.358 11.702 2.773 7.440 23.190 54.041 8.631

Min. value 9.573 8.323 53.257 0.000 2.465 11.398 46.357 363.500
Q1 17.950 15.985 73.570 1.518 12.237 47.000 138.000 380.231
Q2 21.283 19.121 81.550 3.500 17.645 67.780 171.778 385.778
Q3 25.174 22.437 90.680 5.666 23.415 87.515 207.174 392.500

Max. value 33.724 29.678 100.000 10.611 32.689 100.000 296.571 408.933

Table 2: Statistical descriptors of the environmental factors of the greenhouse under consideration from the dataset T15. Q{1,2,3} refers to the first,
second, and third quartiles.
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(a) IT. (b) WBT. (c) RH.

(d) WaD. (e) ET. (f) EH.

(g) WiD. (h) CO2.

Figure 3: Time-series of each variable in the T15.

Furthermore, Table 3 shows the Pearson Correlation between each of the previously mentioned variables in T15. As132

can be seen, all variables related to climatic conditions are highly correlated. An example of this is the high correlation133

of the Internal Temperature (IT) with the Wet Bulb Temperature (WBT) (0.949) and the External Temperature (ET)134

(0.859) respectively, as they are all temperature-related variables. In addition, all the variables related to irrigation are135

also related. For instance, the Water deficit (WaD) has a 0.703 Pearson correlation index with IT, -0.919 with Relative136

Humidity (RH), and -0.655 with External humidity (EH). Therefore, the multivariate nature of this study is justified, to137

take advantage of all the existing correlations between the variables, so that the AI models can be able to learn better138

and thus make more accurate predictions.139

IT WBT RH WaD ET EH WiD CO2

IT 1.000 0.949 -0.482 0.703 0.859 -0.653 -0.042 -0.437
WBT 0.949 1.000 -0.241 0.508 0.848 -0.535 -0.045 -0.397
RH -0.482 -0.241 1.000 -0.919 -0.339 0.567 -0.005 0.274

WaD 0.703 0.508 -0.919 1.000 0.574 -0.655 -0.008 -0.347
ET 0.859 0.848 -0.339 0.574 1.000 -0.631 -0.054 -0.483
EH -0.653 -0.535 0.567 -0.655 -0.631 1.000 0.046 0.401

WiD -0.042 -0.045 -0.005 -0.008 -0.054 0.046 1.000 0.070
CO2 -0.437 -0.397 0.274 -0.347 -0.483 0.401 0.070 1.000

Table 3: Pearson correlation matrix of the environmental variables V of the greenhouse under consideration. The larger correlation scores in
absolute terms for each factor per row are shown in bold.

Lastly, Appendix A shows the autocorrelation and decomposition figures for each of the target variables in T15.140

As discerned from these plots, every variable is identified as a stationary time series exhibiting daily seasonality, with141

a cyclical period of 96 lags required to complete one full cycle. The variables exhibit a persistent trend throughout142

the time series with a modest residual component, notably observed in variables associated with temperature and143
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irrigation. This stability of the trend contributes to relatively simplified forecasting.144

In certain instances, however, the seasonality is contracted to a quarter or expanded to three-quarters of a day. This145

modification substantially enhances the residual component of the time series, as evidenced by variables concerning146

humidity, wind, and CO2 concentration. Consequently, these modifications pose considerable challenges for accurate147

forecasting due to their increased variability.148

3.3. Problem formulation149

Given the aforementioned dataset, the prediction problem could be formulated as finding a mapping function, F ,150

defined as,151

F (V1:t)→ Vt:t+T

where V1:t are the historical values of the target variables within the preceding t timestamps and Vt:t+T are their152

prospective values T timestamps ahead. This formulation sets the stage for exploring various predictive models that153

can effectively capture and leverage the underlying patterns in the data.154

3.4. Deep Learning models155

To form the fundamental family of predictors, P , delineated in Section 3.5, the predictive power of five deep learn-156

ing models has been harnessed. These models have been carefully selected for their distinct strengths and capabilities157

in handling complex data patterns, hence contributing uniquely to the ensemble model. Their selection is rooted in the158

premise that each model, with its unique architecture and learning capabilities, can offer a different perspective on the159

dataset, thereby enriching the overall predictive accuracy and robustness of the ensemble.160

A concise description of each model is now provided, elucidating their functionalities and the respective roles they161

play in the overall architecture. This detailed examination will highlight the unique attributes of each model, from162

their structural intricacies to the specific types of data patterns they are best equipped to handle. Understanding these163

characteristics is crucial in comprehending how they collectively contribute to the enhanced predictive capability of164

the integrated model. Through this exploration, it becomes evident how the synergistic integration of these diverse165

models can lead to a more robust and accurate forecasting system, capable of adapting to the complexities inherent in166

the dataset:167

1. MLP: MultiLayer Perceptron (MLP) is a classic feedforward neural network that mimics the operation of a168

cluster of biological neurons. Although predominantly used for classification tasks, it is adaptable for regression169

problems as well. A single perceptron often likened to logistic regression, amalgamates with others to form the170

multilayer perceptron (MLP), which serves as the structural unit of the Artificial Neural Network (ANN). In171

the MLP architecture utilized here, three layers are incorporated: an input layer that receives the feature inputs,172

hidden layers that process these inputs, and an output layer that generates the output. Essentially, each layer173

endeavors to learn specific weights. The application of activation functions allows ANNs to identify non-linear174

properties within the network and consequently learn intricate relationships between input and output data.175
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2. CNN: Convolutional Neural Network (CNN) has a wide range of applications across diverse domains, with a176

primary application in image-based classification tasks. Nevertheless, CNNs can also be deployed for regression177

problems and adapted to time series data by transforming the information into a format compatible with the178

convolutional network’s inputs. A CNN comprises blocks of filters that facilitate feature extraction from the179

input via convolutional operations. CNN’s advantage over traditional ANNs lies in its automatic learning of180

filters that identify the most relevant features from the input data.181

3. LSTM: Long Short-Term Memory (LSTM) is a popular deep learning model due to its ability to incorporate182

long-term memory, making it especially adept at handling time series data like recurrent models. LSTMs are a183

subtype of recurrent neural architectures characterized by a state memory and a multilayer cell structure. Each184

LSTM unit consists of a cell, an input gate, an output gate, and a forget gate. These gates control the flow of data185

in and out of the cell, allowing the cell to retain values over arbitrary time intervals. Unlike traditional recurrent186

networks, LSTMs can selectively preserve existing memory instead of overwriting it at each time step, enabling187

them to detect long-distance dependencies in input sequences.188

4. CNNLSTM: Convolutional Neural Network + Long Short-Term Memory (CNNLSTM) is a hybrid model that189

integrates the strengths of both CNN and LSTM models as depicted in Figure 4. Here, the fully connected MLP190

layer in the convolutional network is replaced with an LSTM network. Consequently, the LSTM assumes the191

role of accumulating regression results while the CNN focuses on the automated extraction of input features.”192

Convolution 
1D

Max Pool
1D

Flatten LSTM

FTM
w

FGM
w

wFGMDense

Figure 4: Inner architecture of the CNNLSTM model used in the study.

5. TFT: The last model used in this work is the Temporal Fusion Transformer (TFT) proposed in Lim et al. (2021).193

In that sense, a summary of its inner components is depicted in Figure 5. As can be observed, the system takes194

as input two types of sequences at a particular time step t.195

First, the multivariate time series Tt−k:t comprises the lags of the target ambient features of the smart greenhouse196

(sec. 3.2) of the last k time steps. Moreover, the TFT model also accepts known future inputs, Xt+1:t+τ . Given197

the strong seasonality and autocorrelation of most of the features put forward in sec. 3.2, the month and day198

associated with each of the target time steps to be predicted were used as future inputs.199
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Figure 5: Inner architecture of the Temporal Fusion Transformer used in the study. The residual links are depicted as dashed lines.

Concerning the architecture of the transformer used in the present study, the model first performs a variable200

selection over the input to assess the relevance and contribution of each variable to the outcome of the other201

variables. This is quite useful in the present setting due to the correlations among variables described in sec.202

3.2. To do so, the model is the Gated Residual Network (GRN), which is one of the building blocks of TFT. In203

the scope at hand, such a network can be defined as follows,204

GRNω(a) = LayerNorm(a+GLUω(ℓ1))

ℓ1 =W1,ωℓ2 +b1,ω

ℓ2 = ELU(W2,ω a+b2,ω)

(1)

where a is the primary input (Tt−k:t or Xt+1:t+τ ) and ELU is the Exponential Linear Unit activation function.205

As can be observed, this input is processed by a first layer with weight vector W2,ω and bias term b2,ω given rise206

to the embedding ℓ2. Next, this embedding is processed by an intermediate layer with weight and bias W1,ω and207

b1,ω . Finally, the resulting embedding ℓ1 feeds a Gated Linear Unit (GLU) and is normalized through a standard208

layer normalization LayerNorm. More in detail, the GLU building block comprises two different layers with209

weights and bias ⟨W4,ω ,b4,ω⟩ and ⟨W5,ω ,b5,ω⟩, so it is defined as follows,210

GLUω(γ) = σ(W4,ω γ +b4,ω)⊙ (W5,ω γ +b5,ω)

where σ is the sigmoid activation function and ⊙ is the element-wise Hadamard product. Last, the GRN output211

is passed through a Softmax layer to compose the final feature weights. Next, an LSTm encoder-decoder is212

used where the encoder is fed with the lags and the decoder with the known future data to compose uniform213

temporal features. These features are processed by a Multi-head attention mechanism. Finally, the attention214

scores are added and normalized with the temporal features and finally passed through a dense layer to compose215

the prediction outcome T̂t+1:t+τ .216

It is noteworthy that each of these models operates under a distinct architecture, enabling them to identify dif-217

ferent patterns within the input sequences. This becomes an integral aspect when devising a framework in which218

multiple models are orchestrated to function cohesively. To conclude, the set P includes an instance of each of these219

architectures, each configured and trained with the parameters delineated in Table 4.220
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Hyperparameter Description MLP CNN LSTM CNNLSTM TFT
Units Number of neurons used in hidden layers 70 - 70 - 64
Filters Features detector - 64 - 64 -

Kernel size Filters matrix used to extract the features from the dataset - 1 - 2 -
Strides Number of pixels shifts over the input matrix - 1 - 1 -

Activation function Function that decides if a neuron should be (or not) activated Tanh
Batch size Size of bach used for training/forecasting 2880

Epochs Number of epoch used in training 15000 (+ EarlyStopping)
Optimizer Function that optimises the learning of the model Adam

Loss function Function used for evaluating the error of the model in each epoch MSE
Learning rate Percentage change with which weights are updated at each iteration 0.003 (+ ReduceLROnPlateau)

Attention heads Number of attention heads used by the model - - - - 4
Train-Eval-Test split Percentage of the dataset for training, validation and testing. 90% train / 10% validation / 10% test

T Time horizon of the prediction (in days). 1, 2, 3

Table 4: A comprehensive breakdown of hyperparameters for each utilized Deep Learning model. The table encapsulates the specific model
configuration, illuminating how different hyperparameters are applied across MLP, CNN, LSTM, CNNLSTM, and TFT.

3.5. Integrated Learning Procedure221

To address the prediction problem as formulated, the present study adopts an integrated learning approach. This222

approach is illustrated in Figure 6 and comprises two main steps, namely:223

1. Family of Predictors Construction: The first step entails defining a set of individual predictors, denoted as224

P = ⟨p1, p2, ..., pn⟩. Each predictor within this set is tasked with processing the historical data, V1:t , to forecast225

future values V̂t+T . These predictors are designed to operate independently, with the capability to produce226

predictions, V̂ p
t+T , based on their respective learned representations and inferential logic.227

2. Optimal Model Combination and Accuracy Maximization: The subsequent stage involves identifying an228

optimal combination of models within P that ensures the global prediction V̂t+T achieves maximum accuracy.229

In order to accomplish this, a mapping function Θ(P)→ V̂ Θ
t+T is constructed. Here, each variable v ∈ V̂ Θ

t+T is230

essentially predicted by the model p ∈ P , which demonstrated the highest predictive accuracy for v throughout231

its training and validation phases. The subset of models utilized by Θ to formulate the prediction V̂ Θ
t+T is denoted232

as Pmultimodel ⊆ P .233
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Figure 6: Workflow of the integrated learning followed adopted in this work. In a first stage, each candidate predictor is evaluated in terms of
accuracy. Then, a mapping function Θ selects the most accurate predictor to forecast each individual variable in the test set.

Figure 6 encapsulates this two-tiered approach, highlighting the workflow from individual model predictions to234

the refined, accuracy-focused ensemble output.235

4. Evaluation and Discussion236

In this section, a comprehensive evaluation and discussion of the methodologies and results are provided. First,237

the execution environment of all the studied algorithms is described, along with the metrics used to assess their238

quality. Subsequently, the results from the evaluation of each implemented AI model as a baseline are presented239

and discussed. Additionally, the forecasts generated by the bespoke deep learning model are presented and analyzed,240

tailored specifically to the particular scenario of interest.241

4.1. Execution environment242

To run all the tests presented in this manuscript, a server (named “mercurio”) has been utilized, with the following243

hardware characteristics: An Intel® Xeon® Gold 6226R CPU, with 16 cores at 2.90GHz, 196 GigaBytes DDR4 2933244

MHz of RAM memory and 22 MB of cache memory. Two Nvidia® Quadro® RTX 5000 GPUs, with 16GB GDDR6245

384 Tensor cores, 3072 CUDA cores and NVLink® PCI Express x16 3.0. A Solid State Drive with 15 TeraBytes.246

Regarding the software characteristics, it should be mentioned that “Mercurio” runs on an Ubuntu 20.04 LTS247

operating system, which has Python version 3.8 with TensorFlow and Keras version 2.12 installed. In addition, for248

running all the code, the Jupyter development environment was used for the tests, more specifically, the Jupyter249

Notebooks.250
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4.2. Evaluation Metrics251

For an accurate assessment of the predictive performance of the implemented Deep Learning models, three dif-252

ferent metrics are employed: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute253

Percentage Error (MAPE).254

1. RMSE: This metric quantifies the dispersion level of the residual values, essentially serving as an indicator of255

prediction accuracy. It is calculated by using the following formula: RMSE(y, ŷ) =
√

∑
N−1
i=0 (yi−ŷi)2

N256

2. MAE: This metric provides the mean deviation between the predicted and actual value at each forecast point,257

thereby indicating the average magnitude of the prediction errors. It is defined by the formula: MAE(y, ŷ) =258

∑
N−1
i=0 |yi−ŷi|

N259

3. MAPE: This metric communicates the size of the absolute error in terms of percentage, providing a relative260

measure of prediction accuracy. It is calculated by using the following formula: MAPE(y, ŷ) = 100%
N ∑

N−1
i=0

yi−ŷi
yi

261

Each of these metrics requires two input parameters: (1) y, the vector containing the ground-truth values; and (2)262

ŷ, the vector comprising the values forecasted by the AI models.263

4.3. Evaluation of Deep Learning models264

The proposed approach was first assessed by calculating the average metric scores of each model in the set P ,265

considering all variables within the set V across three datasets: T 15, T 30, and T 60. As Table 5 shows, the CNN-266

LSTM model performs optimally, achieving the lowest scores for RMSE and MAE, and the second-best score for267

MAPE. Given this outcome, and in a situation where a singular DL model is employed to predict all the greenhouse’s268

target variables, the CNNLSTM model emerges as the most fitting option. Therefore, this model is selected as the269

uni-model baseline, termed Punimodel, to evaluate the effectiveness of the multi-model approach.270

Model RMSE MAE MAPE
CNN 16.157 14.075 57.818
CNNLSTM 13.764 11.581 30.848
LSTM 16.046 13.393 46.313
MLP 14.905 12.350 43.436
TFT 15.175 12.343 22.427

Table 5: Average validation error of the models in P considering all the variables, datasets and time horizons.

Then, an investigation was conducted to determine if other models in P could produce a lower validation error271

than CNNLSTM for each target variable. Table 6 reveals that while the CNNLSTM model predicts the EH, ET,272

and WiD variables most accurately, the TFT model outperforms the others in predicting the CO2, IT, RH, and WBT273

features, and the CNN model performs better for the WaD variable. Interestingly, among the pairs of variables with274

the highest correlation (Table 3), only the IT-WBT pair is most accurately predicted by the same model. The other275

pairs of variables, such as RH and WaD (with a correlation score of -0.919), are more accurately predicted by different276

models - TFT and CNN, respectively.277

Therefore, the subset Pmultimodel (see Section 3.5) comprises the instances of CNNLSTM, TFT, and CNN278

models. The mapping function Θ then becomes Θ = ⟨EH : CNNLST M, ET : CNNLST M, WiD : CNLLST, IT :279
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T FT RH : T FT M, WBT : T FT,CO2 : T FT, WaD : CNN⟩. In this way, the CNNLSTM model is responsible for280

predicting the EH, ET, and WiD variables, the TFT model for IT, RH, and WBT, and the CNN model for the WaD281

feature. It is important to note that the CNNLSTM instance included in Pmultimodel is the same to the one defined282

as Punimodel .283

Variable Model RMSE MAE MAPE

C02
CNNLSTM 8.266 7.043 1.786
TFT 7.449 5.422 1.384

EH CNNLSTM 20.093 15.940 33.847
ET CNNLSTM 3.050 2.688 58.752

IT CNNLSTM 2.214 1.904 9.782
TFT 1.878 1.509 7.410

RH CNNLSTM 8.027 6.504 8.362
TFT 1.393 1.075 28.666

WBT CNNLSTM 2.423 2.132 13.237
TFT 1.894 1.554 9.379

WiD CNNLSTM 68.779 58.862 35.032

WaD CNNLSTM 1.390 1.067 57.023
CNN 1.047 0.737 55.064

Table 6: Comparison between the average evaluation metrics obtained by the CNNLSTM model and the alternative model (if any) that achieved
better accuracy for each variable considering the three target datasets and time horizons.

It is worth noting that the findings underscore the value of a multi-model approach in effectively predicting different284

variables in complex systems such as greenhouses. The evaluation outcomes imply that different DL models, each with285

their own strengths and expertise, can better cater to the specific nature and requirements of different target variables.286

Therefore, it is crucial to carefully match the right models to the right variables for optimum predictive performance,287

as it is shown with the combination of CNNLSTM, TFT, and CNN.288

4.4. Evaluation of Multi-model approach289

Following the specification of the model subset, Pmultimodel, and the function Θ, an analysis was conducted290

to ascertain the performance enhancement of the multi-model strategy. The error metrics of both Pmultimodel and291

Punimodel , shown in Table 7, indicate a similar performance for the variables EH, ET, IT, and WiD, as the CNNLSTM292

instance was used to generate predictions for these variables in both approaches. However, the multi-model approach293

performed better than the single-model approach for most of the other variables. Specifically, a significant reduction in294

MAPE was observed for the RH variable, with a decline of over 4% (16.161 vs 11.952), and an almost 9% reduction295

for the WaD variable (41.229 vs 30.907). Besides, given this variable the multi-model approach achieved the best296

accuracy considering the 3 metrics. This also occurred for the RH and CO2 parameters. However, it is also true297

that, in the case of the WBT, Punimodel obtained slight better RMSE and MAE results. Last, in global terms, the298

last two rows of Table 7 shows that the average MAPE reduction across all variables was approximately 2% (from299

24.011 to 22.012), the relative MAE reduction was 8% (12.272 vs 11.288) and 7.7% (14.852 vs 13.716) in the case300

of the RMSE. This showed a consistent and global improvement of the integrated learning approach with respect the301

unimodel alternative.302
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Variable Model name RMSE MAE MAPE

CO2
Punimodel 13.066 10.355 2.627
Pmultimodel 7.933 5.566 1.428

EH Punimodel 21.984 18.005 44.455
Pmultimodel

ET Punimodel 3.381 2.738 32.350
Pmultimodel

IT Punimodel 1.034 0.848 4.176
Pmultimodel

RH Punimodel 12.601 10.446 16.161
Pmultimodel 9.007 7.802 11.952

WaD Punimodel 2.383 2.028 41.229
Pmultimodel 1.858 1.563 30.907

WBT Punimodel 1.890 1.607 10.272
Pmultimodel 2.052 1.638 10.012

WiD Punimodel 62.480 52.146 40.818
Pmultimodel

Average Punimodel 14.852 12.272 24.011
Pmultimodel 13.716 11.288 22.012

Table 7: Comparison between the test metrics obtained by a single CNNLSTM instance (Punimodel ) and the multi-model approach (Pmultimodel )
for each target variable considering the three datasets and time horizons.

Figures 7, 8, and 9 elucidate the variation in test errors relative to the time horizon T (1, 2, or 3 days) for each of303

the three datasets T15, T30, and T60. Concerning Fig. 7, where the time horizon T was set to 24 hours, it is interesting304

to observe that Pmultimodel and Pmultimodel achieved their best MAE and RMSE results when the time frequency of305

the dataset was set to 30 minutes (T30) and the higher error scores were achieved when the temporal frequency was306

set to 60 minutes (T60). This is consistent with the fact that 4 out of 8 variables (EH, ET, IT and WiD) are predicted307

by the same model in both systems. Consequently, this type of similar patterns in both approaches are not surprising.308
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(a) RMSE.

(b) MAE.

(c) MAPE.

Figure 7: Test scores of the multi-model approach and the CNNLSTM model for T=1 day given the 3 datasets.
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(a) RMSE.

(b) MAE.

(c) MAPE.

Figure 8: Test scores of the multi-model approach and the CNNLSTM model for T=2 days given the 3 datasets.

Regarding Fig. 8, where T was set to 48h, it is noteworthy to mention that, in this case, the MAPE score exhibited309

a steady decrement in the case of Pmultimodel as long as the time frequency moved from 15 to 60 minutes as Fig. 8c310

shows. This behaviour was not observed in Punimodel where the MAPE was slightly lower for T30 than for the other311

two datasets. This caused that the MAPE obtained by the integrated learning approach was below 25% for the three312

datasets under consideration.313
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(a) RMSE.

(b) MAE.

(c) MAPE.

Figure 9: Test scores of the multi-model approach and the CNNLSTM model for T=3 days given the 3 datasets.

As far as Fig. 9 is concerned, the results when T = 72h show that the degradation of Pmultimodel with T15 with314

respect T30 and T60 was lower than Punimodel . For example, Fig. 9b shows that the MAE increment of Pmultimodel315

when the time frequency moved from 30 to 15 minutes was 20,80% (10.49 vs 13.26) but this increment was much316

larger for Punimodel , 34,34% (10,23 vs 15,58).317

All in all, the effectiveness of the multi-model approach escalated proportionally to the length of the time horizon318

T , as evidenced by the RMSE and MAE measures. Specifically, the average RMSE reduction was 2.72% (T=1 days,319

Figure 7), 5.21% (T=2 days, Figure 8), and 6.69% (T=3 days, Figure 9). A similar trend was observed for the MAE320

score, with average reductions of 3.26%, 5.63%, and 6.78% for T=1, T=2, and T=3 respectively. Meanwhile, the321

average MAPE reduction was 41.12% for T=1, 20.12% for T=2, and 10.18% for T=3. Nevertheless, it is also possible322

to observe certain shortcomings of the proposal given the aforementioned evaluation. First, the need to use multiple323

DL models in parallel poses certain performance requirements that may not be fulfilled by devices installed in fog-324

computing settings. This may limit the deployment of the proposed solution in certain environments. Moreover,325
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the actual accuracy improvement of the integrated learning mechanism occurs with large time horizons (T ) defined326

(above 2 days). Consequently, the current solution might not provide an actual improvement concerning an unimodel327

mechanism when short-term predictions are required.328

5. Conclusions and Future Work329

Precision agriculture relies on predicting environmental and irrigation variables within smart greenhouses accu-330

rately. While various deep learning models have been utilized to tackle this prediction task, they often operate under331

the assumption of deploying a single model, leading to imbalanced predictions across the different targeted variables.332

In the research conducted, this norm was challenged by investigating the efficacy of employing multiple predictors,333

each focusing on a distinct subset of variables. The objective was to improve the overall prediction accuracy and334

balance across the target variables. A variety of deep learning architectures were deployed as candidate models, and335

performed an initial validation analysis. This was carried out to establish a mapping function that determined the336

optimal model to predict each specific variable.337

The resulting multi-model approach demonstrated consistent improvement in prediction accuracy across different338

time frequencies and horizons. In terms of Mean Absolute Percentage Error (MAPE), reductions of up to 8% were339

observed compared to a single-model approach used to estimate all target variables. These findings are particularly340

beneficial, as they promise to supply smart greenhouse recommendation systems with more accurate multivariate341

inputs, thus enhancing the precision of these systems.342

Looking ahead, the practical computational cost of the multi-model approach is intended to be assessed, especially343

concerning deployment within an Internet of Things (IoT) infrastructure. A key aspect of future work will be exam-344

ining how this multi-variate approach performs in edge computing devices, allowing us to weigh the improvement345

in prediction accuracy against any potential increases in energy consumption due to running multiple deep learning346

models in parallel. This will provide valuable insights into the trade-off between prediction improvement and energy347

efficiency when applying the multi-model approach in a real-world context. Finally, there are plans to investigate348

the application of transfer learning and federated learning to enhance the predictive accuracy and efficiency of the349

presented models in smart agricultural environments, expanding its applications to enhanced leaf disease assessment350

and classification.351
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Appendix A. Exploratory Data Analysis370

Figs. A.10 - A.19 below show the autocorrelation function as well as the seasonal decomposition (time series,371

trend, seasonality, residuals) of each of the variables belonging to the 15-min dataset (T15).372

(a) Autocorrelation Function (ACF) of the IT variable.

(b) Seasonal decomposition of the IT variable.

Figure A.10: Exploratory Data Analysis (EDA) of the IT variable.

(a) Autocorrelation Function (ACF) of the WBT variable.

(b) Seasonal decomposition of the WBT variable.

Figure A.11: Exploratory Data Analysis (EDA) of the WBT variable.
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(a) Autocorrelation Function (ACF) of the RH variable.

(b) Seasonal decomposition of the RH variable.

Figure A.12: Exploratory Data Analysis (EDA) of the RH variable.

(a) Autocorrelation Function (ACF) of the WaD variable.

(b) Seasonal decomposition of the WaD variable.

Figure A.13: Exploratory Data Analysis (EDA) of the WaD variable.

(a) Autocorrelation Function (ACF) of the ET variable.

(b) Seasonal decomposition of the ET variable.

Figure A.14: Exploratory Data Analysis (EDA) of the ET variable.

(a) Autocorrelation Function (ACF) of the EH variable.

(b) Seasonal decomposition of the EH variable.

Figure A.15: Exploratory Data Analysis (EDA) of the EH variable.
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(a) Autocorrelation Function (ACF) of the WiD variable.

(b) Seasonal decomposition of the WiD variable.

Figure A.16: Exploratory Data Analysis (EDA) of the WiD variable.

(a) Autocorrelation Function (ACF) of the WS variable.

(b) Seasonal decomposition of the WS variable.

Figure A.17: Exploratory Data Analysis (EDA) of the WS variable.

(a) Autocorrelation Function (ACF) of the Rad variable.

(b) Seasonal decomposition of the Rad variable.

Figure A.18: Exploratory Data Analysis (EDA) of the Rad variable.

(a) Autocorrelation Function (ACF) of the CO2 variable.

(b) Seasonal decomposition of the CO2 variable.

Figure A.19: Exploratory Data Analysis (EDA) of the CO2 variable.
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