Show simple item record

dc.contributor.advisorGiménez Cánovas, Domingo
dc.contributor.advisorCecilia Canales, José María
dc.contributor.advisorPérez Sánchez, Horacio Emilio
dc.contributor.authorImbernón Tudela, Baldomero
dc.date.accessioned2018-02-13T15:59:04Z
dc.date.available2018-02-13T15:59:04Z
dc.date.created2017
dc.date.issued2018
dc.date.submitted2018-01-26
dc.identifier.urihttp://hdl.handle.net/10952/2733
dc.description.abstractEl descubrimiento de fármacos es un proceso largo y costoso que involucra varias etapas; entre ellas destaca la identificación de candidatos a fármacos; es decir moléculas potencialmente activas para neutralizar una determinada proteína involucrada en una enfermedad. Esta etapa se fundamenta en la optimización del acoplamiento molecular entre un receptor y un ingente número de candidatos a fármacos, para determinar cuál de estos candidatos obtiene una mayor intensidad en el acoplamiento. El acoplamiento molecular entre dos compuestos bioactivos está sujeto a una serie de fenómenos físicos presentes en la naturaleza y que se modelan a través de una función de scoring. Estos modelos representan los comportamientos de las moléculas en la naturaleza, permitiendo trasladar esta interacción molecular a una simulación en plataformas computacionales de silicio. Esta tesis doctoral plantea la aceleración y mejora de los métodos de descubrimiento de nuevos fármacos mediante técnicas de inteligencia artificial y paralelismo. Se propone un esquema metaheurístico parametrizado y paralelo que determine la interacción molecular entre compuestos bioactivos. Las técnicas metaheurísticas son técnicas algorítmicas empleadas, generalmente, en la optimización de cualquier tipo de problema, proporcionando soluciones satisfactorias. Algunos ejemplos de metaheurísticas incluyen búsquedas locales; que centran su campo de actuación a su entorno de soluciones (vecinos) más cercanos; búsquedas basadas en poblaciones muy utilizadas en la simulación de procesos biológicos y entre los que destacan los algoritmos evolutivos o las búsquedas dispersas por mencionar algunos ejemplos. Los esquemas parametrizados de metaheurísticas definen una serie de funciones básicas (Inicializar, Fin, Seleccionar, Combinar, Mejorar e Incluir) a fin de parametrizar el tipo de metaheurística concreta a instanciar en cada ejecución de la aplicación, permitiendo así no sólo la optimización del problema a resolver, sino también del algoritmo empleado para su resolución. Trabajar con una combinación de parámetros u otra es un factor vital para encontrar una buena solución al problema. Para abordar este número elevado de parámetros necesitamos alguna estrategia para este nuevo problema de optimización que surge. Esta estrategia es la hiperheurística, que busca la mejor de entre un conjunto de metaheurísticas aplicadas a un mismo problema. La gran mayoría de algoritmos metaheurísticos son, por definición, masivamente paralelos, y por tanto su implementación en plataformas secuenciales compromete tanto la eficiencia como la eficacia de los mismos. En ésta tesis doctoral se adapta además la instanciación del esquema metaheurístico a plataformas masivamente paralelas y heterogéneas como procesadores de memoria compartida y tarjetas gráficas. Las técnicas masivamente paralelas en GPU con soporte CUDA ayudan a realizar estos cálculos poniendo a disposición de la aplicación miles de núcleos capaces de funcionar en paralelo y, además, con la posibilidad de compartir memoria entre ellos y así reducir aún más los accesos a memoria. Aun así, existen compuestos celulares de decenas de miles de átomos para los que el uso de una sola GPU puede ser insuficiente, convirtiéndola en un cuello de botella. Esto hace necesario extender el esquema a multiGPU para dividir la carga computacional y poder abordar este tipo de compuestos con suficientes garantías de rendimiento. Para mejorar el rendimiento y maximizar la paralelización de la aplicación, es fundamental aprovechar al máximo los recursos que nos ofrece la máquina, por ello, se realiza un trabajo previo para ajustar los parámetros de la opción paralela elegida al entorno de ejecución y trabajar con los parámetros que mejor se adapten a la máquina. En un nodo, podemos tener un número limitado de GPUs, y para simular una molécula podemos obtener buenos rendimientos, pero en el problema de descubrimiento de fármacos, podemos tener millones de candidatos a fármacos con los que simular. En este caso, escalamos a un clúster de cómputo. Uno de los enfoques tomados por la comunidad para aprovechar todos los recursos de un clúster de computadores, de manera transparente al usuario, ha sido la virtualización del sistema. Entornos como (VMWARE, XEN) virtualizan todo el sistema y no solo una parte, siendo muy inadecuado en entornos de computación de alto rendimiento, ya que las restricciones a que deben someterse al ser un entorno compartido, introducen una sobrecarga que no es posible asumir. En lugar de virtualizar todo el sistema, sería virtualizar solo un conjunto de recursos específicos, como las GPUs. Este trabajo lo realiza un middleware muy potente denominado rCUDA. Este software permite el uso simultáneo y remoto de GPUs con soporte CUDA. Para habilitar la aceleración remota de GPUs, este software del sistema crea dispositivos virtuales compatibles con CUDA en máquinas sin GPUs locales. Además, rCUDA aporta una reducción de la complejidad algorítmica, evitando utilizar técnicas basadas en paso de mensajes (MPI), muy utilizadas en este tipo de entornos de cómputo. Las técnicas algorítmicas que se van a desarrollar, van a posibilitar la elección de las diferentes plataformas de cómputo disponibles optimizando el entorno de ejecución y, balanceando la carga de trabajo con los parámetros de configuración más idóneos.es
dc.language.isoeses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArquitectura de ordenadoreses
dc.subjectComputación Híbridaes
dc.subjectInformáticaes
dc.subjectHeuristicaes
dc.titleEstrategias de paralización para la optimización de métodos computacionales en el descubrimiento de nuevos fármacos.es
dc.typedoctoralThesises
dc.rights.accessRightsopenAccesses
dc.description.disciplineIngeniería, Industria y Construcciónes


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional