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Centro Director de Tecnoloǵıa del Laboratorio Nacional de Compu-

tación de Alto Rendimiento de Chile
Nombre Dr. José M. Cecilia
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Nombre Antonia Sánchez
Universidad Universidad Católica de Murcia
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Universidad Universidad Católica de Murcia
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Caṕıtulo 1

Introducción

1.1 Definición

Los retos cient́ıficos del siglo XXI precisan del tratamiento y análisis de una ingente
cantidad de información en la conocida como la era del Big Data [31]. Los futuros
avances en distintos sectores de la sociedad como la medicina, la ingenieŕıa o la pro-
ducción eficiente de enerǵıa, por mencionar sólo unos ejemplos, están supeditados al
crecimiento continuo en la potencia computacional de los computadores modernos. Sin
embargo, la estela de este crecimiento computacional, guiado tradicionalmente por la
conocida ”Ley de Moore“ [32], se ha visto comprometido en las últimas décadas debido,
principalmente, a las limitaciones f́ısicas del silicio [30]. Los arquitectos de computado-
res han desarrollado numerosas contribuciones (multicore, manycore, heterogeneidad,
dark silicon, etc) para tratar de paliar esta ralentización computacional, dejando en
segundo plano otros factores fundamentales en la resolución de problemas como la
programabilidad, la fiabilidad, la precisión, etc.

El desarrollo de software, sin embargo, ha seguido un camino totalmente opuesto,
donde la facilidad de programación a través de modelos de abstracción, la depuración
automática de código para evitar efectos no deseados y la puesta en producción son
claves para una viabilidad económica y eficiencia del sector empresarial digital. Esta
v́ıa compromete, en muchas ocasiones, el rendimiento de las propias aplicaciones;
consecuencia totalmente inadmisible en el contexto cient́ıfico.

En esta tesis doctoral tiene como hipótesis de partida reducir las distancias entre los
campos hardware y software para contribuir a solucionar los retos cient́ıficos del siglo
XXI. El desarrollo de hardware está marcado por la consolidación de los procesadores
orientados al paralelismo masivo de datos, principalmente GPUs (Graphic Processing
Unit) [23] y procesadores vectoriales [12], que se combinan entre śı para construir
procesadores o computadores heterogéneos [2].

En concreto, nos centramos en la utilización de GPUs para acelerar aplicaciones
cient́ıficas [25]. Las GPUs se han situado como una de las plataformas con mayor
proyección para la implementación de algoritmos que simulan problemas cient́ıficos
complejos. Desde su nacimiento, la trayectoria y la historia de las tarjetas gráficas

xvii



xviii Definición

ha estado marcada por el mundo de los videojuegos, alcanzando alt́ısimas cotas de
popularidad según se consegúıa más realismo en este área. Un hito importante ocurrió
en 2006, cuando NVIDIA (empresa ĺıder en la fabricación de tarjetas gráficas) lograba
hacerse con un hueco en el mundo de la computación de altas prestaciones y en el
mundo de la investigación con el desarrollo de CUDA [33] (Compute Unified Device
Arquitecture). Esta arquitectura posibilita el uso de la GPU para el desarrollo de
aplicaciones cient́ıficas de manera versatil. Desde entonces, la producción cient́ıfica
que se apoya en las tarjetas gráficas como plataformas para el cómputo no ha cesado
de crecer; ya son más de cincuenta mil art́ıculos cient́ıficos que se apoyan en CUDA,
tal y como NVIDIA publicita, aśı como catálogos completos de aplicaciones basadas
en CUDA [34]. A pesar de la importancia de la GPU, es interesante la mejora que
se puede producir mediante su utilización conjunta con la CPU, lo que nos lleva
a introducir los sistemas heterogéneos tal y como detalla el t́ıtulo de este trabajo.
Es en entornos heterogéneos CPU-GPU donde estos rendimientos alcanzan sus cotas
máximas, ya que no sólo las GPUs soportan el cómputo cient́ıfico de los investigadores,
sino que es en un sistema heterogéneo combinando diferentes tipos de procesadores
donde podemos alcanzar mayor rendimiento. En este entorno no se pretende competir
entre procesadores, sino al contrario, cada arquitectura se especializa en aquella parte
donde puede explotar mejor sus capacidades.

Esta combinación de CPU-GPU está muy presente en los ordenadores más potentes
del mundo [1]. En la última versión (Junio de 2016), las tarjetas gráficas de NVIDIA
están presentes en el 58.1 % de los supercomputadores de dicha lista. Donde mayor
rendimiento se alcanza es en estos clústeres heterogéneos, donde múltiples nodos son
interconectados entre śı, pudiendo dichos nodos diferenciarse no sólo entre arquitec-
turas CPU-GPU, sino también en las capacidades computacionales dentro de estas
arquitecturas. Con este tipo de escenarios en mente, se presentan nuevos retos en los
que lograr que el software que hemos elegido como candidato se ejecuten de la manera
más eficiente y obteniendo los mejores resultados posibles.

Estas nuevas plataformas hacen necesario un rediseño del software para aprovechar
al máximo los recursos computacionales disponibles. Se debe por tanto rediseñar
y optimizar los algoritmos existentes para conseguir que las aportaciones en este
campo sean relevantes, y encontrar algoritmos que, por su propia naturaleza sean
candidatos para que su ejecución en dichas plataformas de alto rendimiento sea óptima.
Encontramos en este punto una familia de algotirmos denominados bioinspirados,
que utilizan la inteligencia colectiva como núcleo para la resolución de problemas.
Precisamente esta inteligencia colectiva es la que les hace candidatos perfectos para su
implementación en estas plataformas bajo el nuevo paradigma de computación paralela,
puesto que las soluciones pueden ser construidas en base a individuos que mediante
alguna forma de comunicación son capaces de construir conjuntamente una solución
común.

Esta tesis se centrará especialmente en uno de estos algoritmos bioinspirados que
se engloba dentro del término metaheuŕısticas bajo el paradigma del Soft Compu-
ting [9], [26], [42], [44], el Ant Colony Optimization ACO, [14]. Se realizará una con-
textualización, estudio y análisis del algoritmo. Se detectarán las partes más cŕıticas
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y serán rediseñadas buscando su optimización y paralelización, manteniendo o mejo-
rando la calidad de sus soluciones. Posteriormente se pasará a implementar y testear
las posibles alternativas sobre diversas plataformas de alto rendimiento. Se utilizará
el conocimiento adquirido en el estudio teórico-práctico anterior para su aplicación a
casos reales, más en concreto se mostrará su aplicación sobre el plegado de protéınas.

Desde un punto de vista algoŕıtmico, las técnicas de computación tradicionalmente
se han basado en tres objetivos principalmente: La precisión, la certidumbre, y el
rigor. Estos principios hacen que el coste computacional de dichos algoritmos sea
habitualmente muy alto, particularmente cuando tratamos con problemas reales en
los que los tamaños de los datos crecen exponencialmente. Este es el punto de partida
del Soft Computing que intenta superar las mencionadas dificultades, bajo la hipótesis
de que a veces la precisión y la exactitud son inalcanzables, por lo que puede incluir
la tolerancia a la imprecisión y la incertidumbre. En otras palabras, el término Soft
Computing hace referencia a una colección de metodoloǵıas que tienen por objetivo
explorar la tolerancia a la imprecisión e incertidumbre para lograr la manejabilidad,
la robustez y las soluciones a bajo costo. Muchas veces el modelo a seguir por el Soft
Computing ha sido considerado como la mente humana [42].

Dentro del Soft Computing encontramos las técnicas de optimización, y dentro
de éstas, se localizan las metaheuŕısticas, las cuales siguiendo los principios del Soft
Computing, permiten abordar tamaños de problemas inusualmente grandes ofreciendo
soluciones satisfactorias en tiempos razonables. Sin embargo, las metaheuŕısticas no
aseguran la obtención de las soluciones óptimas. Los problemas de optimización se
encuentran en un amplio número de áreas de conocimiento [41], y éstos suelen ser
muy complejos, por lo que las metaheuŕısticas se han incorporado a las resoluciones
de todo tipo de problemas. Algunos ejemplos son el diseño de ingenieŕıa, optimización
topológica [43], aerodinámica [21], dinámica de fluidos [20], telecomunicaciones [35],
aprendizaje máquina [6], mineŕıa de datos [36], modelado de sistemas [4], simulaciones
qúımicas [24], f́ısicas y biológicas [37] [45], problemas de planificación de rutas [22],
problemas de planificación loǵıstica [18] y transporte [3], etc.

Bajo este término de metaheuŕısticas es donde se ubica al algoritmo Ant Colony
Optimization, que atendiendo a la clasificación de las metaheuŕısticas según Blum [8], se
englobaŕıa dentro de los algoritmos nature-inspired. Dicha clasificación tiene en cuenta
cinco diferentes caracteŕısticas de los algoritmos; su origen (nature-inspired o non
nature-inspired), el número de agentes en la búsqueda de soluciones al mismo tiempo,
el tipo de funciones objetivo que usa, la estructura del vecindario y el uso que le dan
al histórico de búsqueda. Como se ha detallado, el algoritmo Ant Colony Optimization
se enmarca dentro de los algoritmos bioinspirados que intentan imitar algún proceso
biológico, tal como el comportamiento de ciertas especies. Estos algoritmos utilizan la
inteligencia de enjambre (Swarm Intelligence), la cual consiste en el principio de que un
único individuo de un enjambre no posee la inteligencia suficiente como para resolver
un problema, pero cooperando entre ellos son capaces de resolver eficientemente dichos
problemas. Estos comportamientos pueden localizarse en la naturaleza en las colonias
de hormigas, enjambres de abejas, bancos de peces, etc. En el caso concreto de las
hormigas, que es el caso de interés en este trabajo, el Ant Colony Optimization fue
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introducido originalmente por Marco Dorigo en su tesis doctoral [14], y posteriormente
analizado y estudiado por varios grupos [7], [40], [15], [39], por citar sólo algunos
de los trabajos más interesantes al respecto. Las hormigas en la naturaleza viven
en colonias y, aunque no existe un comportamiento que se defina como inteligente
en un único individuo de la colonia, śı pueden mostrar comportamientos complejos
cuando colaboran entre muchos individuos en realizar tareas dif́ıciles. Precisamente
este comportamiento en el que la cooperación entre multitud de agentes individuales
conforman la solución final, es el principio que le hace candidato perfecto para ser
rediseñado para su cómputo en las nuevas plataformas masivamente paralelas.

Todo este análisis es trasladado a su aplicación a un caso concreto. En este
trabajo, aunamos las nuevas plataformas hardware de alto rendimiento junto al rediseño
e implementación software de un algoritmo bioinspirado aplicado a un problema
cient́ıfico de gran complejidad como es el caso del plegado de protéınas. Es necesario
cuando se implementa una solución a un problema real, realizar un estudio previo que
permita la comprensión del problema en profundidad, ya que se encontrará nueva
terminoloǵıa y problemática para cualquier neófito en la materia, en este caso, se
hablará de aminoácidos, moléculas o modelos de simulación que son desconocidos para
los individuos que no sean de un perfil biomédico.

Una de las caracteŕısticas que definen a un ser vivo es la capacidad de poder ensam-
blar todos y cada uno de sus componentes moleculares. Averiguar el mecanismo detrás
de este ensamblaje es todav́ıa uno de los mayores misterios que persisten en la bioloǵıa
molecular. Este problema cuando nos centramos en el caso de biomoléculas tales como
las protéınas, se denomina plegado de protéınas o Protein Folding [11]. Debido a la
ingente cantidad de posibilidades en la que pueda plegarse una secuencia de aminoáci-
dos, encontrar el estado nativo de una protéına mediante algoritmo tradicionales de
búsqueda que encuentren la solución óptima entre todas las configuraciones posibles
se convierte en un problema NP-completo, irresoluble incluso por los ordenadores más
potentes del mundo [38]. Para minimizar la complejidad del problema, el grupo de
investigación de Ken A. Dill desarrollo una técnica denominada modelo HP basada
en un alfabeto reducido donde los aminoácidos se dividen en dos grupos; polares (P)
o hidrofóbicos (H) según su solubilidad en el agua. Las secuencias se pliegan en una
malla bidimensional o tridimensional y mediante una optimización de una función ma-
temática relacionada con las caracteŕısticas HP de los diferentes aminoácidos y como se
ensamblan estos entre śı, se busca la menor enerǵıa sirviendo como una aproximación
al plegado de una forma simplificada [5]. Tomando como base esta técnica simplificada,
se han usado metaheuŕısticas [17] tales como búsqueda tabú, Monte Carlo, algoritmos
evolutivos y algoritmos genéticos.
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Con el ánimo de estructurar y agilizar la lectura, se detalla en este punto la
estructura del documento:

Caṕıtulo 1: Introducción
En este caṕıtulo se introduce las principales temáticas de investigación de esta tesis

doctoral. Además se contextualiza el problema mostrando los principales objetivos a
conseguir y a fin de servir de ĺınea conductora que muestre como los art́ıculos han
servido en la consecución de dichos objetivos.

Dentro de esta sección se trata los tres apartados siguientes:

X Definición. Es el apartado actual donde se contextualiza la tesis y se presentan
las partes más relevantes del texto.

X Objetivos. Muestra los objetivos a conseguir en la realización del trabajo.

X Fundamentación del compendio de trabajo. Fundamenta los art́ıculos de los
que consta este compendio mostrando un hilo conductor entre los mismos, y
demostrando que los objetivos han sido conseguidos mediante la implementación
de dichos art́ıculos.

Caṕıtulo 2: Art́ıculos que componen la tesis doctoral.
Se incluirán los art́ıculos de los que consta este trabajo, para que el lector pueda

constatar en ellos, tanto los objetivos perseguidos en este trabajo, como la calidad de
los mismos.

Caṕıtulo 3: Resultados
Constará de un resumen de los resultados que han sido obtenidos en los art́ıculos,

de las conclusiones de los mismos y posibles v́ıas futuras de ampliación.
En él se mostrarán los datos relativos a la calidad de las revistas en los que los

trabajos de esta tesis han sido publicados, para dar indicios sobre la calidad y relevancia
del presente trabajo.

Caṕıtulo 4: Bibliograf́ıa Por último se realizará una relación de trabajos citados que
completan la información necesaria para el estudio más profundo de los temas tratados.

1.2 Objetivos

En esta sección se detallan los objetivos establecidos que sientan las bases del presente
trabajo. Se ha realizado una descripción de cada objetivo y se detallan las tareas que
ayudan en la consecución del mismo.

Objetivo 1: Análisis, diseño y optimización del ACO en GPUs.

• Implementación del ACO en OpenCL para portarlo a distintas plataformas.
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• Se analiza el comportamiento del ACO en base a micro-benchmarks espećıfica-
mente diseñados, aislándolos del resto del algoritmo.

Objetivo 2: Evaluación de diferentes arquitecturas para la ejecución del ACO.

• Se analiza de forma exhaustiva el algoritmo con el fin de detectar cuellos de
botella en el algoritmo candidatos a ser rediseñados.

• Analizar el rendimiento del ACO en distintas plataformas.

Objetivo 3: Estrategias de computación para la optimización del ACO en clústeres
heterogéneos CPU-GPU para abordar problemas cient́ıficos de gran calado.

• Detectar posibles optimizaciones para la ejecución en clústeres heterogéneos en
la ejecución del ACO.

• Implementar posibles alternativas de ejecución para el ACO en clústeres hete-
rogéneos, haciendo especial hincapié en el consumo energético.

Objetivo 4: Estado del arte de técnicas de Soft Computing en plataformas de alto
rendimiento para un problema cient́ıfico concreto, el plegado de protéınas.

• Realizar un estudio sobre técnicas de Soft Computing que se aplican a problemas
cient́ıficos en las publicaciones de los últimos años.

• Analizar cómo el uso de las arquitecturas de alto rendimiento sirven de apoyo a los
cient́ıficos en problemas cient́ıficos concretos tales como el plegado de protéınas.

Objetivo 5: Implementación del algoritmo ACO aplicado a un problema cient́ıfico
concreto.

• Realizar un estudio sobre técnicas de Soft Computing que se aplican a problemas
cient́ıficos en las publicaciones de los últimos años, aplicadas al plegado de
protéınas.

• Implementar el algoritmo ACO aplicado a un problema cient́ıfico concreto, en
este caso al plegado de protéınas, mediante CUDA.

1.3 Fundamentación del compendio de trabajos

Este último punto de la introducción justifica cómo los diferentes art́ıculos de los
que consta este trabajo, cubren por completo los objetivos planteados, llevando una
unidad temática que precisa cualquier trabajo cient́ıfico y explicando los oŕıgenes que
motivaron la realización de la tesis.

La inquietud por la optimización de algoritmos bioinspirados parte del área de
investigación de uno de los directores del trabajo, más concretamente del trabajo
realizado por Cecilia y otros en [10], que establece la ĺınea de inicio que marca el trabajo
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de esta tesis. Partiendo de las mejoras introducidas en [10], se plantea la migración del
algoritmo a OpenCL para que pueda ser ejecutado en diversas plataformas, analizar
las diferenecias, observando que los mejores resultados se alcanzan en las plataformas
de NVIDIA. El trabajo que presenta esta migración y comparativa de plataformas es el
titulado Comparative evaluation of platforms for parallel Ant Colony Optimization [19],
que corresponde con el primero cronológicamente de los que consta esta tesis. Con el
trabajo planteado en [19] se cubren dos de los objetivos planteados, concretamente los
objetivos 1 y 2. Para la realización de la nueva implementación de ACO basada en
OpenCL es necesario el análisis, diseño y optimización del algoritmo, tal y como el
objetivo 1 plantea. La consecución apropiada del objetivo 2 queda demostrada en la
comparación de los resultados obtenidos frente a otras implementaciones bajo diferentes
plataformas hardware.

El siguiente trabajo que complementa los objetivos de la tesis es el titulado Dynamic
load balancing on heterogeneous clusters for parallel ant colony optimization [27].
Este art́ıculo aborda en su totalidad el objetivo 3. En [27], una vez que se tiene un
algoritmo, en este caso en su versión CUDA, logramos escalar la ejecución de dicho
algoritmo a un clúster heterogéneo mediante OpemMP y MPI, ofreciendo diversas
estrategias para su cómputo en los casos en los que tarjetas con diferentes capacidades
computacionales son las que están presentes en los nodos del clúster. Las diferentes
estrategias, evidentemente, son detalladas en el art́ıculo aśı como en el apartado de
resultados y son ideas que se pueden portar a otros trabajos.

El tercer art́ıculo que completa el listado de art́ıculos en cuanto al compendio se
refiere, es el titulado Soft Computing Techniques for the Protein Folding Problem on
High Performance Computing Architectures, y se trata de una revisión de los art́ıculos
publicados durante los últimos años sobre técnicas de Soft Computing señalando cuáles
de ellas utilizan plataformas de alto rendimiento como soporte a sus investigaciones. El
Objetivo 4 se cubre en su totalidad por este trabajo, tanto realizando un estudio sobre
el paradigma bajo el que se encuentra ACO, el Soft Computing, como analizando las
plataformas y arquitecturas de alto rendimiento que sirven de apoyo en problemas de
alta complejidad y gran calado cient́ıfico, como por ejemplo el plegado de protéınas.

Como último punto, y fuera de los que son los art́ıculos que sostienen la viabilidad
de esta tesis, se ofrece también un art́ıculo de un congreso internacional en el que se
contribuyó con una comunicación oral en el mismo, dando lugar a su publicación como
lecture notes [29]. Dicho art́ıculo, es titulado Parallel Ant Colony Optimization for the
HP Protein Folding Problem, y es precisamente el que desarrolla todo el trabajo que
sustenta el objetivo 5, implementando el ACO ya no sólo para un benchmark clásico,
sino aplicando esa implementación a un problema real como es el plegado de protéınas.
Se consigue una implementación del ACO para el plegado de protéınas basada en
CUDA que es susceptible a su vez de escalar a clústeres heterogéneos con las ideas
propuestas en [27].
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Abstract The rapidly growing field of nature-inspired computing concerns the devel-
opment and application of algorithms and methods based on biological or phys-
ical principles. This approach is particularly compelling for practitioners in high-
performance computing, as natural algorithms are often inherently parallel in nature
(for example, they may be based on a “swarm”-like model that uses a population
of agents to optimize a function). Coupled with rising interest in nature-based algo-
rithms is the growth in heterogenous computing; systems that use more than one kind
of processor. We are therefore interested in the performance characteristics of nature-
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inspired algorithms on a number of different platforms. To this end, we present a new
OpenCL-based implementation of the Ant Colony Optimization algorithm, and use
it as the basis of extensive experimental tests. We benchmark the algorithm against
existing implementations, on a wide variety of hardware platforms, and offer exten-
sive analysis. This work provides rigorous foundations for future investigations of Ant
Colony Optimization on high-performance platforms.

Keywords Heterogeneous computing · Ant Colony Optimization · CUDA ·
OpenCL · APU · GPU

1 Introduction

Algorithms inspired by natural processes are gaining increasing acceptance, and
are now used in a wide variety of application domains [28]. Many nature-inspired
methods (such as the genetic algorithm [16], or particle swarm optimization [20])
are population-based, meaning that they maintain a collection of individual solu-
tions which evolves or is modified as the computation proceeds. This structure nat-
urally lends itself to parallelisation, and many parallel versions of such algorithms
now exist [1].

One nature-based method that is proving to be increasingly popular is Ant Colony
Optimization (ACO) [8,10,13]. This algorithm is based on foraging behaviour
observed in colonies of real ants and has been applied to a wide variety of problems,
including vehicle routing [32], feature selection [6] and autonomous robot navigation
[15]. The method generally uses simulated “ants” (i.e., mobile agents), which first con-
struct tours or paths on a network structure (corresponding to solutions to a problem),
and then deposit “pheromone” (i.e., signalling chemicals) according to the quality of
the solution generated. The algorithm takes advantage of emergent properties of the
multi-agent system, in that positive feedback (facilitated by pheromone deposition)
quickly drives the population to high-quality solutions.

The original ACO method (called the Ant System [11]) was developed by Dorigo
in the 1990s, and this version (or slight variants thereof, such as the MAX-MIN Ant
System (MMAS) [31]) is still in regular use [5,19,21]. Parallel versions of the Ant
System have been developed [7,23,30,33] (see also [26] for a survey), and, in recent
work, we present a graphics processor unit (GPU)-based version of ACO that, for the
first time, parallelizes both main phases of the algorithm (that is, tour construction and
pheromone deposition) [3,4].

The original version of our algorithm was developed for the CUDA (Compute Uni-
fied Device Architecture) platform,1 which offers easy access to the parallel processing
capabilities of GPUs (thus facilitating so-called “GPGPU” or “general purpose GPU”
computation). Although it laid the foundations for general GPU-based computing,
CUDA is proprietary to Nvidia, one of the dominant manufacturers in the GPU mar-
ket. With that in mind, an alternative open-standard was developed, which became
known as OpenCL (Open Computing Language) [29]. This standard provides a com-

1 Full technical details at http://docs.nvidia.com/cuda/index.html.
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mon language, programming interfaces and hardware abstractions over a wide range
of devices (CPUs, GPUs and other accelerators), and has contributed significantly to
the growth of heterogeneous computing [2]. Importantly, OpenCL offers portability
across combinations of operating system, GPU and other processors, which, in turn,
have their own hardware costs and performance characteristics. It is therefore possi-
ble to write a portable, parallel algorithm for a specific problem, which may run on
a hardware/software combination that meets multiple constraints (cost, performance,
and so on).

With that in mind, we present a new OpenCL-based version of our ACO algorithm,
which may run on a variety of platforms (from laptops to high-end servers). Our aim
is to demonstrate how such an implementation may be used as the foundation for
high-performance, portable ACO-based solutions. We benchmark our algorithm on a
range of platforms and give an analysis about its scalability on high-end platforms.

The paper is organized as follows: in Sect. 2 we briefly describe our ACO-based
algorithm and the process of migrating it to OpenCL. We then present the results of
experimental investigations in Sect. 3, offer some analysis in Sect. 4, and then conclude
in Sect. 5 with a brief discussion of our findings.

2 ACO algorithm

Our ACO-based solution to the Travelling Salesman Problem (TSP) is described in
detail in [3,4], so here we simply give a brief overview to highlight specific issues
arising from the migration to OpenCL.

The TSP is a well-known N P-hard optimization problem, and is often used as a
standard benchmark for heuristic algorithms [18]. Indeed, it was the first problem to
be solved using ACO [11], and our own work is a natural development of this. Briefly,
the TSP involves finding the shortest (“cheapest”) round-trip route that visits each of
a number of “cities” exactly once. In what follows, we address the symmetric TSP
on n cities, which may be represented as a complete weighted graph, G, of n nodes,
with each weighted edge, ei, j , representing the inter-city distance di, j = d j,i between
cities i and j . The ACO algorithm for TSP uses a number of simulated “ants” (or
agents), which perform distributed search on a graph. Each ant moves on the graph
until it completes a tour, and then offers this tour as its suggested solution. To achieve
this latter step, each ant deposits “pheromone” on the edges that it visits during its
tour. The quantity of pheromone deposited, if any, is determined by the quality of the
solution relative to those obtained by the other ants. Pheromone levels on each edge
“evaporate” over time (i.e., they are gradually reduced), to prevent the algorithm from
being locked into sub-optimal solutions.

While building a tour, each ant probabilistically chooses the next city to visit based
on two different sources of information: (1) heuristic information, obtained from inter-
city distances, and (2) the pheromone trail, which facilitates indirect communication
between ants via their environment (a process known as stigmergy [9]). The com-
bination of local search and global signalling enables a process of directed positive
feedback, by which the population quickly converges to a high-quality solution to the
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problem. The main body of the algorithm, therefore, has two main phases: (1) tour
construction, and (2) pheromone deposition.

During tour construction, a number of ants build tours in parallel. Ants are initially
placed at random, and they then repeatedly apply a probabilistic action choice rule
to decide which city to visit next. Pheromone deposition occurs once all ants have
constructed their tours; first, the pheromone levels on all edges are reduced by a
constant factor (to simulate evaporation), and then pheromone is deposited on edges
that ants have included in their tours (the precise amount for each edge in a particular
tour being inversely proportional to the tour’s length). In this way, edges that are used
by many ants (and which are part of short tours) receive more pheromone, and are
therefore more likely to be selected by ants in subsequent rounds (thus implementing
the positive feedback process that we have already described).

2.1 Original CUDA implementation

We first briefly review the main characteristics of CUDA [24], for the benefit of readers
who are unfamiliar with the programming model. CUDA is based on a hierarchy of
abstraction layers; the thread is the basic execution unit; threads are grouped into
blocks, each of which run on a single multiprocessor, where they can share data
on a small but extremely fast memory. A grid is composed of blocks, which are
equally distributed and scheduled among all multiprocessors. The parallel sections of
an application are executed as kernels in a SIMD (Single Instruction Multiple Data)
fashion, that is, with all threads running the same code. A kernel is therefore executed
by a grid of thread blocks, where threads run simultaneously grouped in batches called
warps, which are the scheduling units.

We now consider the implementation of each phase of the algorithm. The “tra-
ditional” task-based parallelism approach is based on the observation that ants run
in parallel while searching for the best tour [4] (that is, parallelism is expressed at
the level of individual ants). Within the basic model, each ant is associated with an
individual thread, but this approach has three main drawbacks:

1. Low degree of parallelism. Because the number of ants used is generally a (linear)
function of the problem size, the number of threads required is generally too low
to fully exploit the resources of the GPU.

2. Control dependencies. Warp divergences (a situation where threads take different
control-flow paths) can often arise when ants check the so-called tabu list—the
record of cities already visited. Put simply, different threads in a warp may need to
do different things, depending on which cities the different ants have visited, and
this is expensive.

3. Irregular memory access. Because the ACO algorithm is inherently stochastic,
this can produce an unpredictable memory access pattern. This prevents the GPU
from taking advantage of caching schemes and other techniques for reducing mem-
ory access latency.

In previous work, we developed an alternative approach that places more empha-
sis on data parallelism [3]. We now briefly describe this algorithm, to establish the
differences between the CUDA and OpenCL implementations.
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When an ant makes a decision on which city to visit next, it must calculate heuristic
information, as previously described. The heuristic information available to any one
ant at a given time is the same, regardless of which ant is making the query, so it makes
sense to separate out the computation of heuristic values into a separate heuristic info
kernel, which is then executed prior to tour construction. Transition probabilities are
stored in a two-dimensional choice matrix, which is used to inform “roulette wheel”
(Monte Carlo) selection by each ant.

In the tour construction kernel, each ant is associated with a thread block, such that
each thread represents a city (or cities) that the ant may visit. This avoids the problem
of warp divergences, and enhances data parallelism, as all threads within a block may
co-operate. The degree of parallelism improves by a factor of 1 : w, where w is the
number of CUDA threads per block.

Finally, the pheromone kernel performs evaporation and deposition, as described
earlier. Evaporation is straightforward, as a single thread can independently lower each
entry in the pheromone matrix by a constant factor. Deposition is more problematic,
as each ant generates its own private tour in parallel, and will eventually visit the same
edge as another ant. Therefore, to prevent race conditions, we require the use of CUDA
atomic operations when accessing the pheromone matrix.

The efficiency of a parallel implementation is also affected by the types of operation
on which it relies; in our code, scatter/gather operations [17] predominate (i.e., those
which either write or read a large number of data items). As Table 1 reflects, the vast
majority of operations are of the “gather” type; algorithms of this type are memory-
bounded and amenable to optimization via methods such as coalescing (Nvidia GPUs)
and the use of SSE vector instructions (Intel CPUs). A comparative study [22] of
these optimisations reveals similar impact on performance across platforms, which
suggests that the experimental sections of the current paper will not suffer too much
from platform-specific biases.

2.2 OpenCL migration

In this section, we briefly describe various issues that arose during the migration from
CUDA to OpenCL. The foundations of OpenCL are based on the CUDA threading
model, but with differences in terms of naming schemes and identifiers. We therefore
used source-to-source translation to migrate our CUDA-based kernels to OpenCL.
This mapping requires in-depth knowledge of both application programming interface
(API) models, as it is considerably more complex than simple instruction conversion.
Also, OpenCL is still relatively young compared to CUDA, and does not provide the
same functionality offered by its more mature partner.

The process of setting up a device for kernel execution differs substantially between
CUDA and OpenCL. The APIs for context creation and data copying use different
conventions for mapping the kernel onto the device processing elements, which may
substantially affect the programming effort required to code and debug a parallel
application. CUDA provides several libraries to enhance the functionality of its API.
For example, our ACO algorithm uses the CURAND library [25] to generate pseudo-
random numbers. This library is not directly implemented in OpenCL, where the main

123

6 Comparative evaluation of platforms for ACO



Ant Colony Optimization 323

Table 1 Characterization of the stages involved in our ACO implementation on GPUs

Algorithm stage Operator Key features CUDA kernel

Generation of choice_info array Gather Data parallelism fully exploited choice_info

Tour construction Gather Optimized via choice_info array Next_tour

Tabu list update Scatter Optimized via an array in register file Next_tour

Pheromone evaporation Scatter Concurrent updates, no queries Pheromone

Pheromone deposit Gather Single update using atomic operations Pheromone

alternative is an implementation of the RANLUX pseudo-random number generator,
called RANLUXCL.2 Unfortunately, we found this library to be fairly wasteful in
terms of memory, so we decided to implement our own, taking a C counterpart as a
departure point [14].

3 Experimental results

In this section we give the results of extensive comparative evaluations of ACO-based
solutions to the TSP on different CPU, APU and GPU platforms. The underlying
hardware platforms we tested are specified in Table 2.

For validation purposes, we use a baseline comparison with the sequential ANSI C
code provided in [12]. The experimental setup (in terms of hardware/software) is listed
in Table 3. We run our three ACO implementations (ANSI C, CUDA and OpenCL)
on selected benchmark TSP instances from the well-known TSPLIB library [27].
All instances are defined on a complete graph, and distances are given as integers.
Table 4 specifies the instances used; they were selected to ensure a representative
sample, from “small” to “medium” and “large” (for reasons of practicality, we test
only the high-end platforms on pr2392; these results are used for the later scalability
analysis). Importantly, we note that our methods solve all instances to optimality; for
the purposes of this paper, we are less interested in the quality of solutions produced,
so to ensure a fair comparison we use instances that are solvable to optimality by our
implementations as described in [3].

For all runs, we set the ACO parameters according to the values recommended
in [12]; α = 1, β = 2, ρ = 0.5, and m = n, meaning that the number of ants, m,
is equal to the number of cities, n. We run each algorithm for 1,000 iterations, and
average timings over 1,000 runs. CUDA times are obtained with a block size of 128
threads, and OpenCL local size is also set to 128.

Before discussing the results of our experiments, we consider several issues with
respect to performance. First, APUs are much more limited in terms of thermal design
power, as they must also include the CPU. This means that execution units will need
to be removed to keep power consumption down. Second, because the APU is a cost-
effective solution, it does not have its own dedicated global memory, but instead it

2 See https://bitbucket.org/ivarun/ranluxcl/.
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Table 2 Summary of hardware features for the CPUs, APUs and GPUs used during our experimental
survey

CPU GPU GPU

(a) Processors found in high-end servers

Release date Q4 2009 Q4 2009 Q1 2010

Codename Intel Westmere Nvidia Fermi ATI Cypress

Commercial model Xeon E5620 Tesla C2050 FirePro V8800

No. cores @ speed 4 @ 2.4 GHz – –

No. stream processors – 448 @ 1.15 GHz 1,600 @ 925 MHz

L2 cache size 12 MB 768 KB 512 KB

DRAM memory size 16 GB 3 GB 2 GB

DRAM type DDR3 GDDR5 GDDR5

Memory bus width 128 bits 384 bits 256 bits

Memory clock 1,066 MHz 2 × 1.5 GHz 4 × 1.15 GHz

Memory bandwidth 17 GB/s 144 GB/s 147.2 GB/s

CPU on APU GPU on APU

(b) Processors found in desktop PCs

Release date Q1 2010 Q1 2010

Codename AMD Llano ATI Redwood

Commercial model E-350 ATI HD 6310

No. cores @ speed 2 @ 1.6 GHz –

No. stream processors – 80 @ 492 MHz

L2 cache size 2 × 512 KB –

DRAM memory size 4 GB (shared) 4 GB (shared)

DRAM type DDR3 DDR3

Memory bus width 64 bits 64 bits

Memory clock 1,066 MHz 1,066 MHz

Memory bandwidth 8.5 GB/s 8.5 GB/s

CPU on APU GPU on APU GPU

(c) Processors found in laptops

Release date Q2 2011 Q2 2011 Q1 2011

Codename AMD Llano ATI Redwood ATI Redwood

Commercial model A6-3420 Radeon HD 6520 Radeon HD 6650M

No. cores @ speed 4 @ 1.4 GHz – –

No. stream processors – 320 @ 400 MHz 480 @ 600 MHz

L2 cache size 4 MB – –

DRAM memory size 4 GB (shared) 4 GB (shared) 1 GB (exclusive)

DRAM type DDR3 DDR3 DDR3

Memory bus width 64 bits 64 bits 128 bits

Memory clock 1,333 MHz 1,333 MHz 900 MHz

Memory bandwidth 10.6 GB/s 10.6 GB/s 14.4 GB/s
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Table 3 Software resources used for each hardware platform in our experimental study

Target hardware Software tools

Intel Xeon CPU gcc compiler, 4.3.4 version with the -O3 flag set

Nvidia Tesla GPU CUDA compilation tools, release 4.0

ATI FirePro GPU Software Suite 8.85.7.2 and OpenCL runtime v831.4

AMD APUs and dedicated GPUs AMD’s APP SDK 2.6, Catalyst driver 11.12, OpenCL runtime
version 793.1

Table 4 TSP instances used in our study

Small dataset Medium/large dataset

Graph name d198 a280 lin318 pcb442 rat783 pr1002 pcb1173 d1291 pr2392

Number of cities 198 280 318 442 783 1,002 1,173 1,291 2,392

Best tour length 15,780 2,579 42,029 50,778 8,806 259,045 56,892 50,801 378,032

relies on an emulated global memory located in system memory. While this is good
for performance when transferring data directly between the CPU and GPU, it means
that it will also suffer in terms of overall bandwidth, as even low-end GPUs have more
memory bandwidth.

We present a summary of our results in Fig. 1. For each row (i.e., each platform,
or hardware/software combination), we show execution times averaged over the small
(top bar) and medium/large (bottom bar) instances. Note that times are measured in
milliseconds (ms), and represent the elapsed time for a single iteration of the platform-
specific algorithm, averaged over 100 runs of 1,000 iterations each (as opposed to the
average run time for the whole algorithm). We focus on the average time for a single
iteration precisely because we are interested in the overall kernel performance on each
platform, so this fine-grained approach gives us the insights that we require.

4 Analysis

We now give an analysis of the performance of each category of hardware platform.

4.1 Desktop PCs

Beginning with the E-350 APU, we see that the CPU does not perform particularly
well. This is expected, based on the architecture’s emphasis on power consumption
over performance for this consumer market. However, when moving to the GPU we
see that, for small problem instances, it actually scales better in terms of overall
computational time than the FirePro V8800 for the same base architecture.

Looking closely at the numbers, the E-350 APU, which is outclassed by factors of
37 and 17 for computational power (execution resources × clock speed) and memory
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Fig. 1 Summary of experimental results. X axis shows each platform, Y axis (logarithmic plot) shows
execution time (ms) for one iteration. Bars are ordered from the smallest (left) to the largest (right) instances

bandwidth, respectively, manages to only perform at roughly 1/10th the speed. We
attribute this to the APU’s ability to quickly transfer data to and from the CPU to the
GPU. However, as the input size increases this advantage disappears, as raw compu-
tational throughput and bandwidth become more important than latency. Comparing
these results to the Tesla C2050 GPU, the APU is at an even greater disadvantage, due
to its VLIW architecture (compared to the scalar and compute-oriented architecture
of the C2050). This should change, however, with AMD future generations of APUs,
which consider a GPU based on their newly released Graphics Core Next (GCN)
architecture. GCN greatly improves computational throughput, by moving scheduling
from the compiler to the hardware.

4.2 Laptop computers

Moving to the A6-3420M APU, we see very similar results as with the E-350 APU.
Here, our integrated GPU (iGPU) has roughly 3 times the amount of computational
resources, but only 1/4 more bandwidth. This is evident in the scaling of the algorithm,
as we go from 200 ms. with the E-350 APU to 148 ms. with the iGPU, a near exact
scaling of the bandwidth advantage that the iGPU possesses.

As we increase the size of the problem instance, we then see that performance
becomes constrained more by computational resources than by bandwidth. Our sim-
plest comparison is to the A6-3420M’s dedicated GPU (which has 2.25 times the
computational power), where, as the input size increases, the difference between the
two solutions approaches this limitation. This shows that, while the memory system
influences ACO performance, computational resources become the dominating factor
in overall performance. For PCI-express 2.0, the maximum bandwidth (unidirectional)
is 8 GB/s, while using zero copy the APU is able to reach nearly 16 GB/s. If this had
been taken into account, the results for the APU and dedicated GPUs would in fact be
much closer, as this type of workload/data transfer is playing to the APU’s strength.
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Table 5 Scalability on high-end-platforms depending on hardware and programming methods

Scalability → Short range Mid range Long range

Language/API HW platform Time(pr2392)/
Time(rat783)

Time(rat783)/
Time(d198)

Time(pr2392)/
Time(d198)

C CPU Xeon 31.24x 82.30x 2,571.46x

CUDA GPU Tesla 24.43x 45.74x 1,117.88x

OpenCL GPU Tesla 24.16x 44.83x 1,083.52x

OpenCL GPU FirePro 22.70x 17.09x 388.12x

FirePro behaves better on larger problem instances, followed by Tesla using OpenCL (with CUDA very
close), and finally Xeon using C

Ending with the dedicated GPU (dGPU), we see a similar speedup increase, just as
we did for the E-350 and A6-3420M APUs. Again, for small input sizes, latency and
bandwidth are much more important than the computational abilities of the device,
as there are fewer threads to interleave to hide memory accesses. This is visible in
the dGPU, which has 7 and 2 times the amount of computational power and memory
bandwidth as the E-350 APU, while performing just over twice as quickly for the d198
dataset.

As we increase the complexity of the workload, we again see that memory band-
width becomes a less important issue, and computational power becomes the main
contributing factor for overall performance. Comparing once again to the Tesla C2050,
the APU solution does not perform as well as we had hoped.

4.3 High-end platforms

High-end processors usually cover large-scale applications, and our performance
analysis emphasises scalability. Table 5 shows the behaviour of the execution time
when the problem size increases. We compare execution times on small, medium and
large instances, and obtain the coefficient or multiplier which separates them. The
larger this coefficient is for a given processor, the poorer the degree of scalability.

Looking at those numbers, we see that when comparing Tesla versus FirePro (GPUs
running the same OpenCL code), Tesla is 1.5x–2x faster, but FirePro scales better.
Also, comparing languages on the same Tesla hardware, CUDA is 1.15x–1.20x faster,
but OpenCL scales slightly better. Finally, comparing GPU results with numbers on
the CPU, the GPU is faster and scales better: The speed-up factor ranges 9x–15x on
four small data sets, 17x–20x on four medium data sets, and finally 21.5x on the large
data set.

5 Conclusions

In this paper we presented a comprehensive performance review of different platforms
for Ant Colony Optimization, an emerging and fast-growing nature-inspired algorithm.
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We discussed the translation of our previous algorithm from CUDA to OpenCL, and
highlighted certain issues that may be faced by other practitioners in future. We then
performed a performance analysis of three variants of the ACO algorithm, using the
Travelling Salesman Problem as a benchmark, and focussed on issues of scalability.

In general, GPUs are superior to CPUs on the high-end segment: they yield twenty
times faster execution on large problem instances. The GPU–CPU difference is similar
on desktops and laptops, 10–20x in favor of GPUs. At an early stage of its evolution,
the APU offers a low-cost platform, without powerful computational units nor swift
memory data paths. Our results demonstrate that these two issues have a severe impact
on performance.

The growth of heterogeneous systems represents a solid trend in modern systems,
and we believe that future work on Ant Colony Optimization in this domain can benefit
from the promising insights into scalability demonstrated by our experimental study.
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Páginas 1-11
Año 2016
Estado Publicado

Contribución del Doctorando
Antonio Llanes Castro, declara ser el principal autor y el principal contribuidor
del art́ıculo Comparative evaluation of platforms for parallel Ant Colony Opti-
mization.



Cluster Comput
DOI 10.1007/s10586-016-0534-4

Dynamic load balancing on heterogeneous clusters for parallel
ant colony optimization

Antonio Llanes1 · José M. Cecilia1 · Antonia Sánchez1 ·
José M. García2 · Martyn Amos3 · Manuel Ujaldón4

Received: 30 March 2015 / Revised: 4 January 2016 / Accepted: 5 January 2016
© Springer Science+Business Media New York 2016

Abstract Ant colony optimisation (ACO) is a nature-
inspired, population-based metaheuristic that has been used
to solve a wide variety of computationally hard problems. In
order to take full advantage of the inherently stochastic and
distributed nature of the method, we describe a paralleliza-
tion strategy that leverages these features on heterogeneous
and large-scale, massively-parallel hardware systems. Our
approach balances workload effectively, by dynamically
assigning jobs to heterogeneous resources which then run
ACO implementations using different search strategies. Our
experimental results confirm that we can obtain significant
improvements in terms of both solution quality and energy
expenditure, thus opening up new possibilities for the devel-
opment of metaheuristic-based solutions to “real world”
problems on high-performance, energy-efficient contempo-
rary heterogeneous computing platforms.
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1 Introduction

Heterogeneous systems combine different types of processor,
and computing nodes may use a combination of traditional
multicore architectures (CPUs) and accelerators (mostly
Nvidia GPUs [31] or Intel Xeon Phi cards [35]). Although
such systems are becoming more common [42], they present
a new set of specific challenges, such as scalability, energy
efficiency, data management, programmability and reliabil-
ity [2].

The role of the software developer will be increasingly
important as such systems grow in popularity. They will
be expected to manage the inherent tension between per-
formance and power consumption, exploit the most useful
feature of each component type, and be able to handle the
complexity implied by combinations of hardware, instruction
sets and programming models. So far, the efficient mapping
of system components to computationswithin heterogeneous
systems is largely the responsibility of the programmer (that
is, the ability of the run-time system to achieve this is rela-
tively immature).

The hardware/software co-design methodology has
emerged since the 1990s as an approach to providing both
analysismethods (which allow developers to assess whether
or not a systemmeets its goals in termsof performance, power
usage, etc.), and synthesis methods (which allow develop-
ers and researchers to rapidly explore the space of design
methodologies) [8,44].

This approach has facilitated significant advances in high-
performance computing, which has, in turn, allowed for
developments in computational modelling, image analysis,
and many other areas [25,38].

A particular application domain of interest to us is
metaheuristics; specifically, algorithms inspired by natural
processes or phenomena [37]. Many of these methods (such
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as the genetic algorithm [18], or particle swarm optimiza-
tion [23]) are population-based: theymaintain a collection of
individual solutionswhich “evolves” in somewayas the com-
putation proceeds. These algorithms are generally stochastic,
as they tend to rely on randomized search techniques. Addi-
tionally, they are inherently parallel, and many such variants
have been described [1].

One nature-based method of particular interest is Ant
Colony Optimization (ACO) [10,14,16]. This algorithm is
based on foraging behavior observed in colonies of ants, and
has been applied to a wide variety of problems, including
vehicle routing [45], feature selection [7] and autonomous
robot navigation [17]. The method relies on “ants” (i.e.,
mobile agents) constructing paths on a graph representing
a particular problem, where the paths represent a given solu-
tion. Paths are assessed according to the quality of the solu-
tion that they represent, and ants then deposit “pheromone”
(i.e., signalling chemicals) accordingly (the better the solu-
tion, the higher the pheromone concentration). The algorithm
takes advantage of positive feedback behaviour that emerges
from the multi-agent system, where distributed selection
quickly drives the population to high quality solutions.

The original ACO method (called the Ant System [12])
was developed by Dorigo in the 1990s, and this version (or
slight variants thereof, such as the MAX-MIN Ant System
(MMAS) [41]) is still in regular use [6,22,24]. Parallel ver-
sions of the Ant System have been developed [9,27,40,46]
(see also [33] for a survey), and, in recent work, we have pre-
sented a GPU-based version of ACO that, for the first time,
parallelizes both main phases of the algorithm (that is, tour
construction and pheromone deposition) [3,4].

The initial version of our ACO algorithm [3,4] was imple-
mented in CUDA (Compute Unified Device Architecture)
and written in C, which gave access to the parallel processing
capabilities of the GPU. This paper extends our framework
to encompass large-scale supercomputers, thus enabling its
implementation inMPI and OpenMP (in addition to CUDA),
and also incorporating different generations of Nvidia GPUs.

Since the advent of CUDA in 2006, at least four differ-
ent generations of GPUs have been released: Tesla, Fermi,
Kepler and Maxwell. Our algorithmic design investigates
the potential to deploy a load-balancing strategy across sev-
eral generations of Nvidia GPUs, for maximum performance
and minimum power consumption. In what follows, we use
our well-established ACO based metaheuristic as a both a
benchmarking application and an illustration of the long-term
potential for this method. Our experimental study covers a
wide range of computing systems, from consumer-market
devices to high-end servers.

This paper is organized as follows. Section 2 reviews
the ACO method, the CUDA programming model and our
ACO-based algorithm. Section 3 describes our paralleliza-
tion techniques to enhance ACO simulation on GPU-based

heterogeneous clusters, which form the main contribution
of this work. Section 4 focuses on the experimental results,
Sect. 5 gives a performance analysis, and we conclude in
Sect. 6 with an overall assessment and suggestions for future
work.

2 Background

2.1 Ant colony optimisation for the traveling salesman
problem

In what follows, we reprise our description of the algorithm,
which was first given in [5]. The Traveling Salesman Prob-
lem (TSP) [26] involves finding the shortest (or “cheapest”)
round-trip route that visits each of a number of “cities”
exactly once. The symmetric TSP on n cities may be rep-
resented as a complete weighted graph, G, with n nodes,
with each weighted edge, ei, j , representing the inter-city
distance di, j = d j,i between cities i and j . The TSP is a
well-known NP-hard optimisation problem, and is used as a
standard benchmark for many heuristic algorithms [21].

The TSP was the first problem solved by Ant Colony
Optimisation (ACO) [11,13]. This method uses a number
of simulated “ants” (or agents), which perform distributed
search on a graph. Each ant moves through on the graph until
it completes a tour, and then offers this tour as its suggested
solution. In order to do this, each ant may drop “pheromone”
on the edges contained in its proposed solution. The amount
of pheromone dropped, if any, is determined by the quality
of the ant’s solution relative to those obtained by the other
ants. The ants probabilistically choose the next city to visit,
based on heuristic information obtained from inter-city dis-
tances and the net pheromone trail. Although such heuristic
information drives the ants towards an optimal solution, a
process of “evaporation” is also applied in order to prevent
the process stalling in a local minimum.

The Ant System (AS) is an early variant of ACO, first
proposed by Dorigo [11]. The AS algorithm is divided into
two main stages: Tour construction and Pheromone update.
Tour construction is basedonm ants building tours in parallel.
Initially, ants are randomly placed. At each construction step,
each ant applies a probabilistic action choice rule, called the
random proportional rule, in order to decide which city to
visit next. The probability for ant k, placed at city i , of visiting
city j is given by the Eq. 1

pki, j =
[
τi, j

]α [
ηi, j

]β

∑
l∈Nk

i

[
τi,l

]α [
ηi,l

]β , i f j ∈ Nk
i , (1)

where ηi, j = 1/di, j is a heuristic value that is available
a priori, α and β are two parameters which determine the
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relative influences of the pheromone trail and the heuristic
information respectively, and Nk

i is the feasible neighbour-
hood of ant k when at city i . This latter set represents the
set of cities that ant k has not yet visited; the probability
of choosing a city outside Nk

i is zero (this prevents an ant
returning to a city, which is not allowed in the TSP). By
this probabilistic rule, the probability of choosing a partic-
ular edge (i, j) increases with the value of the associated
pheromone trail τi, j and of the heuristic information value
ηi, j . The numerator of the Eq. 1 is pretty much the same
for every ant in a single run, thus, computation times can
be saved by storing this information in additional matrix,
called choice_info matrix as showed in [15]. The random
proportional rule ends with a selection procedure, which is
done analogously to the roulette wheel selection procedure of
evolutionary computation (for more detail see [15,19]). Each
value choice_in f o[current_ci ty][ j] of a city j that ant k has
not visited yet determines a slice on a circular roulette wheel,
the size of the slice being proportional to the weight of the
associated choice. Next, the wheel is spun and the city to
which the marker points is chosen as the next city for ant
k. Furthermore, each ant k maintains a memory, Mk , called
the tabu list, which contains the cities already visited, in the
order they were visited. This memory is used to define the
feasible neighbourhood, and also allows an ant to both to
compute the length of the tour T k it generated, and to retrace
the path to deposit pheromone.

After all ants have constructed their tours, the pheromone
trails are updated. This is achieved by first lowering the
pheromone value on all edges by a constant factor, and then
adding pheromone on edges that ants have crossed in their
tours. Pheromone evaporation is implemented by

τi, j ← (1 − ρ)τi, j , ∀(i, j) ∈ L , (2)

where 0 < ρ ≤ 1 is the pheromone evaporation rate.
After evaporation, all ants deposit pheromone on their visited
edges:

τi, j ← τi, j +
m∑

k=1

�τ ki, j , ∀(i, j) ∈ L , (3)

where �τi j is the amount of pheromone ant k deposits. This
is defined as follows:

�τ ki, j =
{
1/Ck if e(i, j)k belongs to T k

0 otherwise
(4)

where Ck , the length of the tour T k built by the k-th ant, is
computed as the sum of the lengths of the edges belonging
to T k. According to Eq. 4, the better an ant’s tour, the more
pheromone the edges belonging to this tour receive. In gen-
eral, edges that are used by many ants (and which are part
of short tours), receive more pheromone, and are therefore
more likely to be chosen by ants in future iterations of the
algorithm.

2.2 The CUDA programming model

ComputeUnifiedDeviceArchitecture (CUDA) [29] is a plat-
form for Graphics Processing Units (GPUs), covering both
hardware and software. On the hardware side, the GPU con-
sists of N multiprocessors which are replicated within the
silicon area, each endowed with M cores sharing the control
unit, and a shared memory (a small cache explicitly managed
by the programmer). Each GPU generation has increased
CUDA Compute Capabilities (CCC), as well as increasing
the number of cores and shared memory size (see Table 1).
In conjunction with these developments, power consumption
has been reduced by a factor of 2 at each new generation.

The CUDA software paradigm is based on a hierarchy
of abstraction layers: the thread is the basic execution unit;
threads are grouped into blocks, and blocks are mapped to
multiprocessors. C language procedures to be ported toGPUs
are transformed into CUDA kernels, mapped to many-cores
in a SIMD (Single Instruction Multiple Data) fashion (that
is, with all threads running the same code but having differ-
ent IDs). The programmer deploys parallelism by declaring a

Table 1 CUDA summary by
hardware generation since its
inception (four generations up to
2015)

Hardware generation and starting year Tesla 2007 Fermi 2010 Kepler 2012 Maxwell 2014

Multiprocessors per die (up to) 30 16 15 16

Cores per multiprocessor 8 32 192 128

Total number of cores (up to) 240 512 2880 2048

Shared memory size (maximum in
Kbytes, per multiprocessor)

16 48 48 96

CUDA Compute Capabilities (CCC) 1.3 2.1 3.5 5.2

Peak single-precision performance
(GFLOPS)

672 1178 4290 4980

Performance per watt (approximated
and normalized)

1 2 6 12
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grid composed of blocks equally distributed among all multi-
processors. A kernel is therefore executed by a grid of thread
blocks, where threads run simultaneously grouped in batches
called warps, which are the main scheduling units.

2.3 Our initial CUDA implementation

In previous work, we developed a CUDA-based ACO imple-
mentation, with an emphasis on data parallelism [4].We now
summarize this algorithm, as it provides the foundation of the
current work.

Recall that ourACO implementation involves antsmoving
on a graph, deciding where to move next based on simulated
pheromone concentrations. When an ant makes a decision
on which city/node to visit next, it must calculate heuristic
values which are the same for all ants at any one time step
(that is, the heuristic information constitutes information on
nodes, which must be consistent and accessible to all ants). It
makes sense, therefore, to split the computation of heuristic
values into a separate heuristic info kernel, which is then
executed prior to tour construction. Transition probabilities
are stored in a two-dimensional choice matrix, which is used
to inform “roulette wheel” (Monte Carlo) selection by each
ant.

In the tour construction kernel, each ant is associated with
a thread block, such that each thread represents a city (or
cities) that the ant may visit. This avoids the problem of warp
divergences, and enhances data parallelism, as all threads
within a block may cooperate. The degree of parallelism
improves by a factor of 1 : w, where w is the number of
CUDA threads per block.

Finally, the pheromone kernel performs evaporation and
deposition. Evaporation is straightforward, as a single thread
can independently lower each entry in the pheromone matrix
by a constant factor. Deposition is more challenging, since
each ant generates its own private tour in parallel, and will
eventually visit the same edge as another ant. In order to pre-
vent race conditions, we require the use of CUDA atomic
operations when accessing the pheromone matrix in this
stage.

3 Scaling to heterogeneous clusters

Traditional parallel implementations are not always efficient
when ported to heterogeneus systems. They are often inher-
ited from scalable supercomputers, where all nodes in the
cluster have the same compute capabilities, and they there-
fore lack the ability to distinguish computational deviceswith
assymmetric computational power and energy consumption.
Differences are not limited to fundamental hardware design
(CPUs vs. GPUs), but also occur within the same family
of processors. For example, the Kepler family (see Table 1)

Fig. 1 Heterogeneous system based on different Nvidia GPU genera-
tions

includes Tesla K20, K20X and K40 models, endowed with
13, 14 and 15 multiprocessors, respectively (the K80 model
even reaches 30 multiprocessors split into two chips). Fig-
ure 1 shows a heterogeneous cluster which, nowadays, may
include different Nvidia GPU generations, even within the
same node.

With this scenario in mind, we introduce a heteroge-
neity-aware parallelization of ACO applied to the Travelling
Salesman Problem as introduced in Sect. 2.1. Our depar-
ture point is (1) the CUDA-based implementation of ACO
described in Sect. 2.3, and (2) the parallelization strategy
proposed by Stützle [39], where independent instances of
the ACO algorithm are run on different processors (GPUs in
our case, having assorted CUDA Compute Capabilities).

Parallel runs do not incur any communication overhead,
and the final solution is chosen across all independent exe-
cutions, taking advantage of the stochastic nature of ACO
algorithms. The execution time of each independent execu-
tionmay differ, as it depends on (1) the underlying GPU each
ACO instance runs on,which is actually unknownat compile-
time, and (2) the TSP instance size (the same in principle for
all processors, but affected by GPU heterogeneity). Given
that the slowest GPU will determine the overall execution
time, our mission is to make use of the idle time offered
by the most powerful GPUs. Performance and energy differ-
ences shown in the last two rows of Table 1 lead us to believe
that there is ample room for improvement here.

We have designed an implementation with three main
focuses: (1) Resources accounting through MPI processes,
(2) performance monitoring via OpenMP threads, and (3)
power consumption balance using GPU Boost. We now
expand on each of these in the following subsections.

3.1 Resources accounting

First, our algorithm defines a MPI thread for each existing
node in the cluster where we run our simulation. Heuristic
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information about inter-city distances is sent to each node,
where supporting data structures are also created to avoid
communication overhead. Then each MPI thread creates as
many OpenMP threads as GPUs are available on a node,
which is easily attained by querying the GPU properties at
runtime (using cudaGetDeviceCount from the CUDA
API) and NVML (Nvidia Management Library).

3.2 Performance monitoring

Secondly, a warm-up phase is performed to establish per-
formance differences among all targeted GPUs running the
particular TSP instance to be solved. This phase measures,
at run-time, the execution time of a small number of itera-
tions of the ACO algorithm (five to ten) in order to detect
these differences. Importantly, at this stage, the algorithm is
not trying to solve the TSP problem in any meaningful sense
(five to ten iterations is not enough to do so) but these runs
allow us to calculate the performance differences between
GPUs. The execution times spent at this warm-up phase on
all GPUs are reduced to obtain the maximum value using
MPI_Allreduce. Thus, the Percent parameter is eventu-
ally determined according to Eq. 5. The slowest GPU will
have Percent = 1, a GPU two times faster than slowest
GPU would have Percent = 0.5, and so on.

Percent = Ex .t imeactualGPU

Ex .timeslowestGPU
(5)

We then establish the time-budget, which is a threshold
that determines the maximum completion time for that ACO
algorithm on everyGPU. It corresponds to the execution time
required to perform a number of iterations of ACO on the
slowest GPU available. This number of iterations (referred
to as δ from now on) is a configuration parameter of our
algorithm, and is known by all nodes in the simulation. It
is empirically determined to be good enough to find out a
good solution to the TSP on our CUDA implementation of
ACO. For instance, in our experimental section δ is set to
1000 iterations.

Each OpenMP thread then calculates the slot that it can
use for the simulation (γ , with γ > δ). This slot can be used
for a deeper search (thus computing additional iterations of
ACO), or for reducing the power consumption (by relaxing
the clock rate in GPU cores). In addition, when γ ≥ δ/2, the
algorithm can even do a restart to avoid becoming “trapped”
in a local minimum.

Additional iterations (γ ) are obtained by Eq. 6.

γ = δ ∗ (1/percent) (6)

where “percent” is the performance difference identified
among GPUs at warm-up stage, which we have previously
explained.

The number of restarts or additional iterations that each
GPU may perform is calculated by Eq. 7

γ = 1/percent (7)

as the numerator represents the percent for the slowest GPU,
which is always set to 1.

Finally, if we wish to reduce the overall power consump-
tion of our simulation, we may use GPU Boost™, which is
a new hardware feature introduced by Nvidia from the K40
Kepler GPU onwards. GPUBoost manipulates the clock rate
of the GPU cores to trade performance by energy. The idea
is to sacrifice time in favour of power consumption when the
latter is more critical. Developers can use the nvidia-smi
shell command to set up the frequency in the GPU, usu-
ally exceeding/reducing the nominal value around 20%. To
prevent excessive thermal stress,Nvidia does not allowdevel-
opers to change this parameter at run-time or within an
application, as the Intel SpeedStep™does. Moreover, the
GPU is required to work in Persistence Mode, which ensures
that driver stays loaded even when the GPU has no work
to run on it. The range of clocks supported can be queried
by the nvidia-smi -d SUPPORTED_CLOCKS com-
mand, and changed with the -ac option (see [32] for more
details and a full list of commands). Clock changes require
superuser privileges, or developers can use the NVIDIA
Management Library (NVML) [30] instead. NVML is a C-
based API for monitoring and managing diverse states of
NVIDIA GPU devices (including clock settings), without
requiring the user to run nvidia-smi prior to launching
the application on the GPU. The real-time power consump-
tion measurement of individual GPU components using a
software approach is only supported by the Nvidia Kepler
architecture GPU. This is also done by using NVML,
which reports the GPU power usage at real-time. We use
nvmlDeviceGetPowerUsage command to obtain po-
wer usage.

4 Experimental setup

4.1 Hardware environment

For this experimental study, we used the following platforms:

– On the CPU side: Four Intel Xeon X7550 processors
running at 2 GHz and plugged into a quad-channel
motherboard endowed with 128 Gigabytes of DDR3
memory.

– On the GPU side: Four GPUs, starting with anTesla
C2050 (Fermi generation, approximately 4 years old) and
ending with a brand new GeForce GTX 980 (Maxwell
generation), with two Kepler models in between (K20

123

Art́ıculos que componen la tesis doctoral 19



Cluster Comput

Table 2 Hardware resources and experimental setup used during our executions

Vendor and type Intel CPU Nvidia GPUs

Family Haswell Fermi Kepler Kepler Maxwell
Class Xeon Tesla Tesla Tesla GeForce
Model X7550 C2050 K20c K40c GTX 980
Year 2015 2012 2013 2014 2015

Processing elements Cores per multiprocessor (does not apply) 32 192 192 128

Number of multiprocessors 14 13 15 16

Total number of cores 8 448 2496 2880 2048

Clock frequency (MHz) 2000 1147 706 745 1216

Maximum number of GPU
threads

Per multiprocessor (does not apply) 1536 2048 2048 2048

Per block 1024 1024 1024 1024

Per warp 32 32 32 32

Register file 32-bit registers (per multiprocessor) 32768 65536 65536 65536

SRAM memory (per
multiproc.on GPUs)

Shared (only GPUs) (32 KB L1D and 32
KB L1I)

16 or 48 KB 16 or 48 KB 16 or 48 KB 96 KB

L1 cache 48 or 16 KB 48 or 16 KB 48 or 16 KB (48 KB per block)

(Shared + L1) 64 KB 64 KB 64 KB

L2 cache (shared by all cores) 256 KB 768 KB 1280 KB 1536 KB 2048 KB

L3 cache 16 MB (does not apply)

DRAM memory Size (Megabytes) 131072 2687 4800 11520 4096

Speed (MHz) 2x666 2x1546 2x2600 2x3004 2x3505

Width (bits) 256 384 320 384 256

Bandwidth (Gbytes/s) 42.66 148.41 208 288.38 224.32

Technology DDR3 GDDR5 GDDR5 GDDR5 GDDR5

CUDA Compute Capabilities (d.n.a.) 2.0 3.5 3.5 5.2

and K40), all sharing the motherboard space with PCI-e
3.0 slots to communicate with the CPUs.

Table 2 gives a detailed description of all these platforms.
Weuse gcc 4.8.2with the -O3flag to compile on theCPU, and
the CUDA compiler/driver/runtime version 6.5 to compile
and run on the GPU.

4.2 Benchmarking

We test our designs using a set of benchmark instances
from thewell-knownTSPLIB library [36,43].All benchmark
instances are defined on a complete graph, and all distances
are defined as integer numbers. Table 3 shows a list of all
targeted benchmark instances with information on the num-
ber of cities, the type of distance and the length of optimal
tours.

ACOparameters such as the number of ants (m), and those
values to set up their behaviour, like α, β, ρ, and so on, are set
according to the values recommended in [15]. In particular,
m = n (being n the number of cities), α = 1, β = 2 and
ρ = 0.5.

Table 3 Description of benchmark instances from TSPLIB library
(EUC_2D stands for 2D euclidean distance)

Name Cities Type Best tour length

d198 198 EUC_2D 15,780

a280 280 EUC_2D 2579

lin318 318 EUC_2D 42,029

pcb442 442 EUC_2D 50,778

rat783 783 EUC_2D 8806

pr1002 1002 EUC_2D 259,045

5 Experimental results

Given the fact that our techniques establish the experimental
setup dynamically, results shown below are platform depen-
dent.

5.1 Performance and workload balance

Figure 2 shows performance differences across different
GPU generations when they run several TSP instances.
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Fig. 2 Execution times in
seconds on different Nvidia
GPU generations for several
TSP instances. Although we
have used a Tesla s2050 in our
experiments, the figure only
shows the performance of a
single GPU of the S2050 server
(i.e. Tesla C2050)

Fig. 3 Quality of the results obtained for different TSP Lib instances, normalized to the optimal solution

Results are recorded for 1000 iterations, and averaged over
10 different runs. The fastest GPU belongs to the latest gen-
eration (Maxwell-based GeForce GTX 980), outperforming
the slowest GPU by up to a 4.2× factor. This slowest GPU
is the Tesla C2050, which determines the time-budget for
the entire execution. Tesla K20c, the Kepler model, obtains
intermediate results, with up to 1.6× gain versus the Tesla
C2050.

Results are measured statically for the sake of show-
ing performance differences in a real scenario. However, as
described, our methodology includes awarm-up stage to cal-
culate these differences at run-time. In previous work [4],
more details about performance analysis are given; in partic-
ular, we reported up to 20× speed-up factor on average for a
Tesla C2050 versus a single-threaded CPU.

Wenowenhanceour parallelization strategy to take advan-
tage of the time that Kepler and Maxwell GPUs are idle, in
order to improve the quality of the results. One idea, which
we call DeepSearch, is to increase the number of iterations in
order to perform a deeper searchwithin the same time budget.
For instance, GeForce GTX 980 carries out 4102 iterations,
Tesla K40 carries out 1946 iterations, Tesla K20c carries out
1654 iterations, and Tesla C2050 just 1000 iterations (the
time-budget established for this simulation).

Another possibility is to include a restart to avoid being
trapped in a local minimum. That is possible if and only if
the performance gap is at least twice the slowest GPU per-
formance. These two goals can be merged to create a hybrid
approach which we call Deep Search + Restart. Driven by
this combination, GeForce GTX 980 may perform up to four
restarts of 1000 iterations each (as its percent value is 0.24
on pr1002 TSP instance), whereas Tesla K40 and Tesla K20c
only perform a single phase with a deeper search involving
1946 and 1657 iterations, respectively (0.51 and 0.60 % val-
ues are not enough to complete two restarts).

Figure 3 shows a tour quality comparison across the
sequential run and all parallel strategies for a variety of
benchmarks normalized by the optimal solution. The first bar
represents the sequential code, written in ANSI C, provided
by Stuzle in [15]. This code runs for 1000 ACO iterations on
a single-threaded CPU. The second bar is the result quality
for our GPU version over 1000ACO iterations. Figures show
that the quality of solutions obtained for these two versions
are relatively similar to each other.

The third bar shows our GPU Deep Search strategy, and
the fourth bar represents Deep Search + Restart. These two
last versions improve results by significant margin within the
same time-budget,with a small advantage forDeepSearch on
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Fig. 4 Execution times in
seconds on a Tesla K40 GPU for
several TSP instances using
different clock frequencies

Fig. 5 Power consumption (in
milliwatts) measured for the
Tesla K40 GPU on different
clock frequencies and TSP
instances

average. Note that Deep Search performs restarts implicitly,
as different searches are executed ondifferentGPUs,whereas
Deep Search + Restarts includes restarts explicitly on the
same GPU.

5.2 Power consumption

Figure 4 shows the power budget for our simulation under
different clock settings. Performance gains reflect up to 1.3×
speed-up factor, in line with the 31% increment in the clock
rate (frequency raises from 666 to 875 MHz).

Figure 5 outlines power consumption in milliwatts for dif-
ferent clock rates. As expected, power consumption raises
with higher clock frequencies.

The overall power budget is correlated to the total exe-
cution time of the application (see Fig. 6a). However, the
745 MHz clock setting—which is actually set by default on
Nvidia’s driver for the Tesla K40—is the most energy effi-
cient.

5.3 Power-aware performance metrics

Researchers have proposed metrics combining performance
and power measures into a single index. The most popular in
low-power circuit design is in the form of EDn [34], where

E is the energy, D is the circuit delay, and n is a nonnegative
integer. The power-delay product (PDP), the energy-delay
product (EDP) [20] and the energy-delay-squared product
(ED2P) [28] are all special cases of EDn with n = 0, 1, 2,
respectively.

Intuitively, EDn captures the energy usage per operation,
with a lower value reflecting the fact that power is more effi-
ciently translated into the speed of operation. The parameter
n implies that a 1% reduction in circuit delay is worth pay-
ing an n% increase in energy usage; thus, different n values
represent varying degrees of emphasis on deliverable perfor-
mance over power consumption.

Figure 6b shows the Energy Delay Product (EDP) for our
ACO simulation, and Fig. 6c the Energy Delay Square Prod-
uct (triple weight on performance). These couple of metrics
prioritize performance over energy. Figure 4 shows that per-
formance differences among different clock frequencies are
remarkable, to benefit fastest settings.

6 Conclusions and future work

We present a parallelization strategy tailored to heteroge-
neous and massively parallel systems. Heterogeneity may
limit acceleration and waste energy unless programmers
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Fig. 6 Energy consumption in Joules/1000 (mJ) measured on different clock frequencies for the Tesla K40 GPU. Measurements are taken for
the execution on all targeted TSP instances, and averaged over 10 launches. a Total energy, b Energy delay product (EDP), and c Energy delay
square product

develop smarter applications to wisely control those fea-
tures on the road towards an optimal performance/watt ratio.
Our proposal cares about accuracy, joules and time equally,
deploying those magnitudes on an equilateral triangle man-
aged by a cooperative scheduling of jobs to attain an optimal
balance among them at run-time. This makes our strategy
particularly useful for non-deterministic algorithms and sto-
chastics behaviours where real-time and/or energy contraints
must be fulfilled. With the user setting up those constraints
properly, our method may even grant priority to any of the
goals composing the metaheuristic.

In a preliminary stage of development, we have illus-
trated our ideas usingAnt ColonyOptimization as case study.
Given the scalability demonstrated along our experimental
study, we foresee an immense potential to extend and refine
our methods in future heterogeneous systems. In particular,
queries tomeasure energies and temperatureswithin theGPU
are weak and almost non-existing on low-power devices like
Tegra heterogeneous plaforms. Given the long way ahead for
improvement and how vendors are enthusiastically endors-
ing low-power devices, we believe the ideas presented here
will greatly benefit from incoming sensors, hardware coun-
ters, middleware, libraries and tools, to provide the research
community solid pillars to face the expected growth of het-
erogeneous systems in a much better power-aware manner.
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Abstract: The protein-folding problem has been extensively studied during the last fifty years. The understanding of the 

dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more 

effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been 

developed by different researchers in order to foresee the three-dimensional arrangement of atoms of proteins from their 

sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel 

algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this 

revision work the past and last tendencies regarding protein folding simulations from both perspectives;hardware and 

software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as 

which hardware platforms have been used for running this kind of Soft Computing techniques. 

Keywords: Soft Computing, Protein FoldingProblem, Protein Structure Prediction, Parallel Computing, Distributed Computing, 

Metaheuristics, High Performance Computing. 

1. INTRODUCTION 

1.1. Protein folding problem 

A noteworthy interrelation exists at the molecular level 

between the structure of a protein and its biological function, 

and in biochemistry we can find a diversity of such 

functionalities. It is well known that the mechanism by 

which a protein exerts its biological function is directly 

related to its native three-dimensional structure, which is 

precisely codified on its sequence of aminoacids[1]. 

 Being able to solve this problem is of outstanding 
importance since having access to the information related to 
the structure of these biomolecules, allows for being able to 
explain how bioactive compounds can modulate their 
biological activity and therefore paves the way to the drug 
discovery process.  

 In addition, one can find many more sequences than 
structural information, mainly due to the last advances in 
high-throughput sequencing and personalized medicine 
efforts [1-2]. Thus, a noticeable interest exists in the 
development of methodologies that, exploiting only 
information extracted from sequences, can predict in detail 
the structure of proteins. 

 

1.2. The simulation problem 

 Finding accurate solutions of the PSP problem is very 
challenging, and researchers have developed many different 
approaches in order to solve it by means of computer 
simulation. These simulation methods receive as input a 

protein sequence and outputtheir predictions for the protein 
structures. 

 Existing computer simulation methods for the PSP 
problem can be classified depending on: 

 a) the degree of details used in the protein model that 
undergoes the computer simulation:there are detailed all-
atom models that try to accurately represent and describe 
bonded and non-bonded interactions present in the folded 
protein structure. From the other side, coarse grain models 
can also be considered. In the last decades, the first 
theoretical hypotheses concerning protein folding, such as 
those stated by Dill et al.[2] were proposed. Main underlying 
ideas indicated that forces implied in the protein folding 
process were related with the intercommunication between 
their aminoacids. But recently, a theory that states that non-
bonded interactions significantly contribute to the dynamics 
of this mechanism, is being accepted, and researchers are 
showing interest to the use of very simple models of 
proteinsand other biological macromolecules. In this context, 
the study of these coarse grain models through computer 
simulation techniques can yield interesting results when their 
predictions are contrasted with empirical measurements. 

 b) the scoring function used for the estimation of the 
interactions between the elements of the protein 
model:thismathematical function will mainly depend on the 
type of protein model used, and for a given model, it might 
contain different sets of parameters that describe the relative 
intensity of the interactions between the different elements of 
the protein model. Its derivation or construction depends 
usually on physical theories or statistical analyses performed 
on previously available protein structures. 
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 c) the algorithm used for the global optimization problem 
of the scoring function: once a given protein model and 
scoring function have been chosen, a optimization methodis 
selected for working on the global optimization problem. It 
concerns the search of the most optimal value of the scoring 
function, since we assume that this value will correspond to 
the native protein fold [1]. Here it is possible to use methods 
that take into account the dynamics of the system, such as 
Molecular Dynamics [3], or stochastic methods that try to 
solve the optimization problem not taking into account the 
dynamics of the system [4]. The former is more realistic, but 
at the same time it is more computationally demanding, 
whereas the latter is much faster, but by using it we lose 
information about the evolution of the system. 

 Once we have chosen a model, scoring function and 
optimization algorithm, we can still consider what is the 
fastest way to carry out the required simulations depending 
on the available hardware architectures. 

 

1.3. Combination of models, algorithms and HPC. 

 The choice of model and its associated algorithm is 
mainly motivated by the required objectives, but it is also 
constrained by the computer hardware characteristics 
attainable in the relevant time frame. One of the most widely 
studied models of protein folding is the hydrophobic-
hydrophilic (HP) model introduced by Dill  [2]. In the 
description of the HP model, the different amino acids that 
form the macromolecular chain can be seen as a discretized 
conformation in a three-dimensional grid or lattice. Here, 
one of the most relevant underlying assumptions is that 
hydrophobic forces contribute considerably to the folding 
process, and the protein chain is modeled as an array of 
hydrophobic or hydrophilic chains (H or P for nonpolar and 
polar, respectively). Then, the most optimal protein 
conformation is the one that augments that number of 
nonpolar residues that are contiguous. In this case the folding 
process can be described as a minimization of the free-
energy of the system, and it can be considered as NP-hard 
problems [5]. This implies that such problems can not be 
efficiently processed by a computer (for insights we refer the 
reader to [6,7]). 

 Models and their associated algorithms should not be 
selected in isolation though. They must be evaluated in the 
context of the computer hardware environment they are 
going to run on. Algorithms that are designed to leverage 
maximum performance on a particular hardware architecture 
could become less effective on a different hardware. 
Therefore, the selection must be made carefully, and may 
change over time [8]. This issue even grows exponentially 
nowadays as we are witnessing the consolidation of 
heterogeneous systems (i.e., systems that use more than one 
kind of processors), mainly motivated for the exacerbated 
power consumption in current microprocessors, and trying to 
follow the wake of Moore’s law. Such heterogeneity is found 
at different levels from laptops to large-scale computers like 
supercomputers, clouds, etc, and also where it emerges 
naturally is in the low-power devices market such as 
smartphones, tablet and so on. [9].  This emergent landscape 
of computation in the high performance computing market 
offers new opportunities in the simulation of protein 

structure prediction. However, the recent 2014 United States 
Department of the Energy (DoE) report on top ten exascale 
research challenges [8] shows as one of the main challenges 
for next years the design of Exascale algorithms. It will 
require redesigning, or even reinventing the algorithms used 
in current scientific and engineering codes, and potentially 
reformulating the science problems to leverage billion-way 
parallel architectures.  

 In this sense, Soft Computing techniques are designed to 
deal with the difficulties which arise in real problems by 
including several factors like several levels of imprecision 
into the calculation and taking this into account to even 
change the granularity of the problem or somehow relaxing 
the goal of optimization at some point[10]. The source of 
inspiration of Soft Computing is based on the natural 
processes, trying to formalize such processes to solve a 
particular task. Techniques within this field include neural 
networks, genetic algorithms (GA), evolutionary algorithms, 
etc., having many of them a common ingredient in their 
definition: parallelism as the way of speeding-up simulations 
and providing practical implementations for a feasible search 
of a single, unified and parameterized solution. 

 This review article shows the last tendencies on the 
prediction of protein structure by computer simulation and 
our perspectives for the forthcoming years. We focus on both 
the Soft Computing techniques that have been applied to 
coarse-grain protein models, such as the HP-model since it is 
one of the most widely used coarse-grain models in the 
literature, and also the underlying hardware and 
programming models that have been used to execute those 
algorithms.  The paper is structured as follows: Section 2 
briefly introduces the reader into the main concepts 
underlying this review. Section 3 shows the Soft Computing 
techniques applied to protein folding methods before 
discussingin Section 4 about new trends in novel algorithms 
and architectures related to this problem. The paper finishes 
with some conclusions on the current state of the art for this 
topic.   

 

2. BACKGROUND 

2.1. Benchmarks in protein structure prediction. 

 In order to test the accuracy and convenience of PSP 
methods it is necessary to have control data (benchmarks) so 
that we can check whether our predictions are reliable or not.  
If our particular PSP model, scoring function and algorithm 
can reproduce the structure of proteins for which 
experimental structural data is available, we can continue 
forward and start to make predictions for sequences for 
which structures are still unknown. It is therefore of 
outstanding importance to test our PSP methods against all 
possible available benchmarks. 

 The field of PSP benchmarks can be usually divided into 
experimental and synthetic ones. When working with 
detailed atomic models, we will be able to compare them 
with structural data from online public databases such as 
Protein Data Bank (PDB) [11]. In order to test the accuracy 
of protein structure prediction methods, the current “gold 
standard” rule is to compare the predicted structure with the 
experimental one, and calculate the RMSD (Root Mean 
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Structure Deviation) between them. This is only possible 
when protein structures have been obtained by experimental 
methods such as X-ray crystallography, nuclear magnetic 
resonance, or cryo electron microscopy, and deposited in 
public access databases such as PDB. 

 In the case of coarse grain models we have two options. 
The first one is to convert them to all-atom models and then 
compare with experimental structures from PDB, and the 
second one is (when the first possibility does not exist) to 
compare them with synthetic data obtained previously from 
other researchers who have performed an exhaustive search 
of the solution space of the problem.  

 

 Lastly, and independently of the detail of the method 
used, we might be also interested in benchmarking the 
computational speed of our PSP method, depending on its 
hardware implementation, programming language used, etc. 
This is also very relevant since the computational 
performance of the method, and the availability of 
computational resources the researchers have access to, will 
dictate the size of the systems we want to study. 

 

2.2. Soft Computing techniques 

 From the algorithmic point of view, traditional hard 
computing techniques are based on three main objectives: 
precision, certainty and rigor. These requirements make the 
computational cost of such algorithms very costly, 
particularly to deal with real problems where the input size 
grows exponentially. Actually, this is the departure point of 
Soft Computing that tries to overcome the main difficulties 
in real problems, with the thesis that precision and certainty 
are sometimes unapproachable, and thus it may include the 
tolerance for imprecision and uncertainty [12,13]. Therefore, 
Soft Computingcan be defined as the antithesis of what we 
have called Hard Computing. We refer the reader to [10,14] 
for a more detailed definition of Soft Computing. 

 Although several classification of Soft Computing 
techniques have been proposed in the literature [12,13], 
Figure 1 shows a consensus among all of them. Since the 
fuzzy boom at the beginning of 90’s, many methodologies 
based on these techniques have been proposed in the 
literature [15,16]. Although Soft Computingis a term 
introduced by Zadeh in 1994 [17], previous work was done 

by the definition of fuzzy sets [18]. Fuzzy sets are the 
pioneer paradigm in Soft Computing.They have been 
included in many other Soft Computingmethods to provide 
hybrid methods. Among these new methods we may 
highlight Neural Networks [19], Support Vector Machines 
[20], Fuzzy Logic [12], Metaheuristics [21] (including 
techniques such as Evolutionary Computation [22, 23] or 
Swarm Intelligence [24]), to name just a few. There are a 
large number of algorithms within the umbrella of Soft 
Computing. They are applied to different fields such as 
symbol and pattern representation to enrich knowledge 
representation, machine learning for flexible knowledge 
acquisition, and inference by flexible knowledge processing. 
Moreover, Soft Computingtechniques can be offered as a tool 
to interact with or they can be integrated in a larger 
framework where they provide unified and hybrid 
architectures.Soft Computing has been successfully applied 
to solve problems within the field of bioinformatics [25-27]. 
However, the large data sets generated from biological 
experiments and new high-throughput technologies make 
mandatory that modern Soft Computing approaches will be 
scalable across large-scale problems. In Section 3, we briefly 
introduce the Soft Computingtechniques that have been 
applied to the protein folding problem.With that in mind, this 
paper focuses on the functional approximation or 
randomized search part of Soft Computing(see Figure 1) as it 
is gaining popularity during the last few years. 

  

2.3 HPC platforms and programming models 

 In what follows, we reprise and update our vision of the 
High Performance Computing (HPC) arena, which was first 
given in [28]. HPC techniques and platforms are being 
applied for addressing many scientific challenges that would 
be otherwise very difficult to solve. The number of 
calculation required for this kind of scientific applications 
requires large computing resources. Just to mention an 
example, Anton is a supercomputer specially designed to 
simulate protein movements that could aid the drug design 
process [29].  

 However, we are witnessing a revolution in this areaas 
the Moore’s law that has driven the development of new 
microprocessors in the last years [30,31], which is based on 
the idea that the number of transistors in an microprocessor 
would be doubled every two years, is running up against the 
laws of physics [32,33]. While a new microprocessor 
technology come up into the market, the industry has taken 
the steady transition to heterogeneous computing systems 
[34], with heterogeneity representing systems where nodes 
combine traditional multicore architectures (CPUs) and 
accelerators (mostly represented by GPU computing 
movement [35]or Intel Xeon Phi cards [36]).Heterogeneity 
limits system growing as it cannot be performed in an 
incremental way anymore. In particular, concepts like energy 
consumption, programmability, scalability, data location, 
and reliability become challenges for tomorrow’s 
cyberinfrastructure [37]. This Section summarizes current 
trends in HPC platforms that are commonly used within the 
field of Bioinformatics. Of particular interest to us 
are,manycore architectures like Graphics Processing Units 
(GPUs), clusters of computers also known as 

Figure 1 - Classification of Soft Computing techniques 
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Supercomputers and cloud and distributed computing 
architectures.   

 

2.3.1 GPU computing 

 Motivated by the computational demand of the 
videogame industry, Nvidia introduced in 2006 a graphics 
processing unit (GPU), codenamed CUDA (Compute 
Unified Device Architecture), which made available the 
computational power of those novel computing architectures 
to the scientific community. Nowadays, they have become a 
compelling alternative to the traditional architectures  as they 
deliver high rates of floating point performance and 
massively parallelism at a very low cost, and thus 
democratizing the high performance computing (HPC) arena 
[38, 39].This movement was termed “GPGPU” which stands 
for General-Purpose computation on Graphics Processing 
Units. The GPGPU has promoted the use of this novel and 
massively parallel architecture in a wide range of 
applications, particularly in Bioinformatics, where 
parallelism and arithmetic intensity are common 
denominators in almost every application (we refer the 
reader to GPU application catalog provided by Nvidia[40]). 

 Following this trend almost all microprocessor 
company(e.g. ATI/AMD, Intel, etc) have developed their 
own hardware alternatives designed specifically 
foraccelerating general purpose applications.Among them, 
we may highlight Tesla-based GPUs from Nvidia, 
Firestream is ATI/AMD alternative and finally the new Intel 
Xeon Phicoprocessor which is based on Many Integrated 
Core (MIC) architecture. Along with these hardware 
components, those companies have also provided new 
programming models to easily leverage the horsepower of 
these emergent technologies.The first programming model 
for GPGPU was CUDA [35] (Compute Unified Device 
Architecture) provided by Nvidia that is specifically 
developed for programming Nvidia’s GPUs. Nvidia has a 
wide scientific community behind CUDA, and it offers 
several educational and research communities to promote the 
development of scientific applications with CUDA on 
Nvidia's GPUs.  ATI/AMDfirst offered a programming 
model called Stream Computing which is not supported 
anymore and Intel relies on vectorization instructions based 
on X86programming. In 2008 the Khronos Group developed 
an open standard for parallel programming on cross-platform 
heterogeneous systems, called OpenCL[41]. OpenCL is an 
attempt to provide a standard programming language that 
allows multiplatform development on different devices like 
GPUs, accelerators, multicore systems, etc.  

 All of those novel programming models provide an easier 
way to leverage massively parallel architectures. However, 
programmers still have to deal with a new programming 
paradigm, which is rather different to the traditional 
sequential-basedarchitectures [42]. Moreover, those 
computing architectures are nowadays plugged into the 
motherboard through PCI Express bus. This fact provides 
heterogeneous computers that may have a traditional CPU 
and other computing devices like GPUs or accelerators. Each 
of these processors have their own memory spaces, different 
instruction set architectures and communication latencies.  
Therefore, programmability here is not an easy task.  

 Currently, the scientific community is looking for new 
programming models and tools that hide those inherently 
hardware particularities and provide an easier and faster way 
to develop application on this new landscape of computation. 
There are two different trends to provide such abstraction 
layer.  First, the execution of a given program efficiently on 
different devices from a single source code [43,44]. Second, 
the API development to extent traditional programming 
languages like OMPSs for OpenMP [45],or OpenACCAPI 
[46], which establishes several directives to specify loops 
and regions of code in standard programming language such 
as FORTRAN, C++, C. 

 

2.3.2 Supercomputers 

 High performance computer (also known as 
Supercomputers) are those computers that are developed to 
deal with great challenges within the industry and academia. 
Statistics on supercomputers are provided in the TOP500 list 
[34], where information about the number of systems 
installed, the performance of each system or their location 
among others is provided to manufactures and (potential) 
users. Supercomputers within TOP500 are highly involved in 
Bioinformatics research. For instanceTianhe-II and Titan, 
two top supercomputers in this list, are heavily involved in 
developing bioinformatics domain problems. Tianhe-II is 
addressing the needs of genetic engineering and 
biopharmaceutical simulations.  Moreover, Titan is being 
used for molecular similarity to provide a description of 
membrane fusion. This is actually one of the main ways for 
molecules to enter or exit from living cells. Other leading 
examples are the supercomputer installed at the Leibniz 
Supercomputer Center in Monaco (SuperMUC) and the Piz 
Daint the CSCS/Swiss Bioinformatics Institute. The former 
supercomputer is commonly used for running bioinformatics 
applications like analysis of linkage disequilibrium in 
genotyping. The later has been successfully applied to run a 
challenge of evolutionary genomics based on calculating 
selection events in genes achieving several orders of 
acceleration. 

 Supercomputers are adopting the use of accelerators to 
speedup arithmetic intensive parts of the applications. 
Actually, five of the ten fastest supercomputers in Top 500 
list [34] include accelerators in their designs. Those 
accelerators are basically limited to Intel Xeon Phi and 
Nvidia GPUs architectures. However, these accelerators 
increase the overall power consumption of the system which 
is actually a big issue, particularly for large-scale datacenters 
where Total Cost of Ownership is mainly influenced by the 
power supply [47]. Indeed, the inclusion of these 
accelerators can increase the power consumption of a cluster 
node up to 30%.  

 However, the total cost of ownership is not the only 
concern to reduce overall power consumption in 
supercomputers. Actually, this is now becoming mandatory 
as the carbon footprint of those systems is actually very high, 
and the reduction of carbon emissions is one of the main 
challenges in the last 2015 United Nations Climate Change 
Conference where the International Trade Union 
Confederation has called for the goal to be "zero carbon, 
zero poverty".For instance, the power consumption of TI 
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supercomputers companies such as Google or Facebook, 
consumed about 0.5% of the overall power consumption in 
the world during 2005. If the cooling and power distribution 
were also taken into account then the power consumption 
increases up to 1% [48]. The high performance computing 
community is trying to develop supercomputers and 
infrastructures that reduce power consumption. Actually, the 
GREEN500 list [49]shows the 500 most power efficient 
supercomputers in the world. Indeed, we are envisioning a 
shift from the traditional metrics like FLOPS (FLoating point 
Operations Per Second) to FLOPS per watt. 

 Virtualization techniques are placed as the main way to 
reduce the overall power consumption in supercomputers, as 
they enable to have several virtual machines running at the 
same time in the same real hardware. Actually, datacenters 
are adopting this new trend for several applications.Of 
course, virtualization may have a performance impact. For 
instance, Amazon Elastic Cloud Computing EC2offers a 
virtual infrastructure of 26496 cores, 
achieving484,2TeraFLOPS for the High Performance 
Linpack benchmark, placing the cluster at position 101 in the 
November 2014 Top500 list but this is actually a tradeoff the 
scientific community has to deal with.  

 

2.3.3 Cloud and distributed computing 

 As previously explained, the TCO of having an in-
housesupercomputer is very high and it is not affordable for 
small institutions [50]. Cloud computing is ubiquitous and 
energy-efficient computer organization by its definition [51], 
in which virtualization is the main ingredient to obtain great 
energy reduction. In cloud computing platforms, services run 
remotely in a ubiquitous and distributed computing set of 
computers (a.k.a cloud) that may provide scalable and 
virtualized resources. In this way, heavy workloads can be 
migrated to other virtual nodes of the cloud, providing higher 
levels of hardware utilization [52]. Cloud providers offer 
their resources in a pay as you go fashion. Actually, it can be 
seen as an alternative to physical infrastructures but this is 
only useful for a specific amount of data and target execution 
time. 

 Cloud computing propose an on-demand scenario where 
users only pay for the computational time usersutilize for 
running their applications. There are several cloud 
computing models: infrastructure as a service (IaaS), 
platform as a service (PaaS), software as a service (SaaS), 
and Data as a service (DaaS). Among them, IaaS is the most 
commonly used model while the other may provide other 
level of abstraction [53]. In the cloud, developers may use 
several instances and thus they can create a parallel cluster 
on demand. Like real hardware scenarios, those clusters can 
be programmed using libraries such as the Message Passing 
Interface (MPI). Those instances can be also used in a 
batchprocessing mode, launching several instances of a 
program and so on. 

 Cloud computing platforms are very interesting for 
bioinformatics practitioners mainly for the flexibility and the 
cost-effectiveness. Truth be told, this actually depends on the 
workloads they expect to run on the cloud but, in general, 
small-medium bioinformatics laboratories, which may 

perform bioinformatics analysis are moving to this 
technology as they avoid cost and issues of having an in-
house computer infrastructure [54]. An alternative solution is 
represented by Hybrid Clouds that have both the scalability 
offered by cloud computing and the control and ad-hoc 
customizations supplied by in-house computers [55]. 

 Those distributed solutions are evolving in the era of Big 
Data to frameworks like Hadoopthat allows distributed 
access to files. These frameworks are well suited for 
distributed algorithms such as MapReduce [56]. MapReduce 
is a programming environment to manage large data sets 
with a parallel, distributed algorithm on a cluster. For 
example, the PSIPRED [57] protein analysis workbench 
leverages the Hadoop implementation of MapReduce to 
launch several services to perform the execution of 
prediction methods in a large-scale system. Moreover, 
MapReduce has been also applied to provide an enhanced 
framework where parallel genetic algorithms target the 
protein folding in distributed environment [58]. 

 Finally, some efforts have been done in the volunteer 
computing arena that is noteworthy to remark. Among them, 
we may highlight Folding@Home [59] which is a volunteer 
computing project that tries to solve the protein folding 
problem by means of collective human knowledge. 
Folding@Homehas been used in several medical 
researcheslike to cure Alzheimer's disease, Huntington's 
disease, and many forms of cancer, among other diseases.  
This project is pioneer in the use of many novel computing 
platforms such as Graphics Processing Units, CellBe 
processor, multi and many core systems through MPI and 
OpenMP language, as well as some smartphones for 
distributed computing and scientific research [60]. 

 Kondow and Berlich [61] runs particle swarm 
optimization (PSO) on cloud for the simulation of proteins 
three-dimensional structure. They simulate all-atom force 
field using ArFlock library, aimed at finding the folded state 
of two proteins of different sizes starting from completely 
extended conformations.  

 

2.3.4. Multiagent systems 

 Multiagent systems (MAS) can be also considered as a 
platform to tackle Bioinformatics problems such as protein 
folding. As defined in [62], they combine a flexible and 
high-level paradigm with a technology developed at the 
intersection between artificial intelligence and distributed 
computing. A typical MAS is composed of several 
autonomous entities –agents— that can communicate and 
interact among them in a competitive or cooperative manner. 
MAS are especially useful for simulation tasks, including the 
behavior of biological systems [63], where the different parts 
of the system have some individual features that distinguish 
it from the rest. 

 There are several works in the literature that have 
adopted MAS to address the protein folding problem. For 
example, a MAS using an independent energy model where 
every amino acid is identifying with an agent is presented in 
[64]. These amino-agents lay at the bottom level of the MAS 
architecture, their positions being coordinated by a set of 
cooperative agents in a higher level. Amino-agents 
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movements are based on Monte Carlo-like criterion and hill-
climbing strategy (to avoid local minimum). Coordination 
agents act as orchestra director suspending amino-agents 
movements when they are not improving a global strategy. 
These coordination agents offer the possibility of designing 
complex heuristics depending on external information and 
on the search history. Thus, external knowledge from 
databases can be injected to coordination agents to force 
amino-agents to make movements oriented to improve the 
energy results. Experimental tests performed in this MAS 
show that the proposed coordination level always introduces 
a better performance, but the energy function used is too 
coarse to provide good biological model.  

 Moreover, a MAS based on reinforcement learning for 
solving bidimensional protein folding is showed in [65]. In 
this case there are several basic agents trying to solve the 
problem using the Q-learning algorithm [66] based on their 
local knowledge and a reduced set of supervisor agents that 
synchronize and coordinate the basic agents according to the 
current best solution. Basic agents are distributed across 
multiple processes/machines and they use a blackboard to 
communicate with their supervisor agents. Authors claim 
that this distributed proposal greatly reduces the 
computational time employed in the training phase of the Q-
learning algorithm with respect to a non-distributed 
approach. However, it must be further investigated how to 
preserve the accuracy of the results using a MAS. Finally, in 
[67] a competitive approach among agents is taken to 
implement an architecture named Discovery Bus aimed at 
modeling molecular design workflows. This MAS follows 
the quantitative structure–property relationships (QSPR) 
model to predict the properties of novel proteins. 

 An excellent discussion of pros and cons when using 
MAS in protein folding is given in [68]. The main advantage 
of this approach resides in its flexibility: addition and 
removal of agents could be done at run-time and therefore it 
is possible to change the structure of the experiment (e.g., 
the protein’s structure). In practice, not only may the limit 
conditions and the simulation constraints be changed 
dynamically, but also elements from the structure could be 
added and removed during the simulation. This fact 
augments the potentialities of simulated experiments, 
enabling a virtual manipulation of the system simulating the 
protein folding, even when this is not possible in reality. This 
property extends in silico experiments to in virtuo 
experiments, i.e., not only enabling the change of values of 
the parameters characterizing simulations, but also the 
structure of the experiment during run-time in an easy 
manner thank to MAS features. As for the main disadvantage 
of the use of MAS in this topic, it has been criticized that 
simulations performed by means of multiagent systems are 
not totally validated against real data, diminishing their 
credibility.  Thus far, works in this area have focused on the 
reliability of MAS proposals from a qualitative point of 
view, showing that multiagent-based simulations are 
tantamount to other approaches. However, a quantitative 
validation must be performed to take MAS as a prominent 
alternative to protein folding. 

 

 

3. Implementation of protein folding methods. 

 This section summarizes main contributions on the field 
of Soft Computingapplied to the protein folding simulation. 
Particularly, we focus on the functional approximation or 
randomized search part of Soft Computing; i.e. Artificial 
Neural Networks and Metaheuristics, applied to the protein 
folding problem.  

 

3.1. Artificial Neural Networks and SVM. 

 Artificial Neural Networks (ANNs) have been widely 
used in the protein folding field. Specifically, the most 
relevant types of ANNs are the feedforward neural networks 
[69] and recurrent neural networks [70].  ANN can learn 
tasks without needing much prior knowledge, and moreover 
they are tolerant to errors and noisy data. While the most 
common use of ANNs in protein folding has been devoted to 
detect secondary structures [71-73], they have been also 
employed in other tasks such as predicting the 
posttranslational modifications [74-76]; to identify 
disordered regions [77]; to predict metal binding sites 
[78,79]; to assign sub-cellular localization [80-
82];classification of proteins into functional classes [83];  
reconstructing protein structures [84] and protein class 
prediction [73,85], among others. 

 Regarding the prediction task, classifying secondary 
structure is an easy job for a neural network, as for example 
to learn to distinguish between alpha-helices and beta-
strands models. This classification allows detecting the most 
three-dimensional structures as they are based on secondary 
ones. Although the alpha-helices and beta-strands is the main 
approach in the prediction task, there are some other papers 
that propose classifications among more than two classes 
[70,86,87]. Regarding the databases used by neural network, 
the most popular are the Protein Data Bank (PDB) [11] and 
the Structural Classification of Proteins dataset (SCOP) [88].   

 A major advance in the way in which the datasets are 
treated is to add sequences that are homogeneous to those 
that are being studying [89]. For example, given the same 
family of proteins, they share similar structural and 
functional features. For ANNs, this fact provides additional 
information in the inductive learning process that improves 
the task learning.  This method is known as Evolutionary 
Information, however to find these homogeneous sequences 
is not trivial. For this research line, it is very popular the PSI-
BLAST program [90]. 

 Support Vector Machine (SVM) can be focused on the 
same field of work than ANNs for protein folding 
[86,88,91], although SVM presents a much better 
performance for regression against classification in protein 
folding recognition [92]. Furthermore, they have been used 
to estimate the significance of the sequence-template 
alignments [93] and protein secondary structure prediction 
[94]. 

 It is worth mentioning that although neural networks 
have been widely used for protein folding, they have not 
been combined with high performance computing because 
the prediction of secondary structure do not imply a large 
computational complexity. However, new trends in neural 
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networks such as Deep Learning [95] have called for 
reconsidering high performance in the field of neural 
networks due to its computational complexity. In this sense, 
Deep Learning has been proposed to make use of graphical 
processing units (GPUs) and CUDA parallel computing. 
Hence, Deep Learning has been used for sequence-based 
residue–residue contact prediction [96] and later for protein 
secondary structure prediction [97]. These proposals have 
been implemented using CUDAMat [98], a Python library 
that provides methods of fast matrix calculations on CUDA-
enabled GPUs, providing high-level access to computing 
cores of graphics processing units. 

 

3.2 Metaheuristics. 

 There are different approaches to classify metaheuristic 
algorithms in the literature. A good review of metaheuristic 
classification can be found in[99], depicted here inFigure 2. 
This classification takes into account five different features 
of such algorithms, namely their origins;the number of 
solutions used at the same time; the way the objective 
function is used; the neighborhood structure; and the use 
they make of the search history. 

 Depending on their origins, a new trend in designing 
metaheuristics concerns nature-inspired methods. These 
methods take as a source of inspiration biological or physical 
principles. Nature-inspired methods are very attractive for 
practitioners in high performance computing, as they are 
inherently parallel in definition (e.g.they may be inspired by 
a “swarm”-like schema that uses several agents to optimize a 
function). Ants, bees and fireflies are only some examples of 
populations that inspired algorithms based on their social 
behavior. Those algorithms rely on swarm to deal with 
complex problems [100,101]. Despite of this trend, in the 
last part of this sectionare introduced the most important 
non-nature inspired algorithms applied to the PSP problem, 
such as local search methods. 

 Regarding the number of solutions used at the same time, 
we can find algorithms working with a single solution or 
trajectory (e.g.,Tabu Search) or with the evolution of a set of 
solutions (e.g., Genetic algorithms). On the other hand, some 
metaheuristics define static objective functions that do not 
change during the algorithm execution (e.g., Genetic 
algorithms), whereas others may be modified during the 
search trying to escape from local minima (e.g., Guided 
Local Search). 

 Metaheuristics may be also classified depending on their 
neighborhood structure. The one-neighborhood structure 
does not change the fitness landscape topology during the 
execution, while in the various neighborhood search it is 
possible to expand the search among different fitness 
landscapes. Finally, the use of memory in the metaheuristic 
is another discriminative feature, separating into algorithms 
that take into account previous states to perform the next 
action orthose that use a Markov process to decide the next 
action only based upon the current state. 

 In this paper we have adopteda classification of 
metaheuristics based on origins as it is one of the most used 
and easy to understand. 

 

 Next sections review the main metaheuristics employed 
in protein folding. 

 

3.2.1.Nature-inspired metaheuristics 

Ant Colony Optimization 

 One nature-based method that is proving to be 
increasingly popular is ant colony optimization (ACO) 
[102,103].This algorithm is based on foraging behavior 
observed in colonies of real ants, and it has been applied to a 
wide variety of combinatorial problems [104, 105], including 
vehicle routing [106], feature selection [107] and protein 
function prediction [108]. The method generally uses 
simulated “ants” (i.e., mobile agents), which first construct 
tours or paths on a network structure (corresponding to 
solutions to a problem), and then deposit “pheromone” (i.e., 
signaling chemicals) according to the quality of the solution 
generated. The algorithm takes advantage of emergent 
properties of the multi-agent system, in that positive 
feedback (facilitated by pheromone deposition) quickly 
drives the population to high-quality solutions. 

 ACO algorithms have been extensively applied to the 
protein folding although most of them are based on the 
coarse-grain HP model. For instance, Shmygelska and Hoos 
[109] applied ACO to optimize the protein folding based on 
the HP model in both 2 and 3 dimensions. There are also 
other ACO-based implementations that have been applied to 
this problem in the literature. Song et al [110] provides a 
rapid transfer pheromone matrix method, a scheme to avoid 
deadlock folding problems, adynamic method of pheromone 
updating and also three different local search methods. This 
work uses the tortilla 3D benchmark [111] for the 
experimental evaluation.  
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 Thalheim et al [112] combine the ACO with a branch and 
bound algorithm to enhance the protein folding simulation. 
For the experimental evaluation, they use proteins that are 
based on the bibliography and some of them come from 
PDB. Hu et al. [113] develop four different mechanismsto 
improve ACO algorithm, concretelyincludinga path retrieval 
method, the path construction, some folding heuristics and 
the pheromone attraction. These new mechanisms provide 
interesting results for solving protein folding problems with 
the HP square lattice model. Other hybrid approaches can be 
found at Chen et al. [114], where an ACO with genetic ideas 
was developed. 

 Some parallelization strategies have been applied to ACO 
solving the protein folding. [115] uses MPI to implement the 
parallel version of ACO.And in [116,117] OpenMPis used.  
It is noteworthy to highlight that only these few versions of 
parallelism have been implemented to solve the protein 
folding problem with ACO. From the High Performance 
Computing point of view, these parallel implementations use 
hardware clusters to evaluate their results.In  [115]an IBM 
Blade center composed of 9 nodes, each node comprised of 2 
2.4 Ghz Intel processors with 1 Gbyte of shared RAM is 
used. In  [116]authors use a single PC to evaluate the 
sequential algorithm results, and an IBM pServer with eight 
1.6GHz Power(gr) CPUs and 6GB RAM to run the parallel 
ones, which it seems not too fair. In  [117], authors run the 
CASP8 benchmark on a multicore PC, specifically an IBM 
p550 server with an 8-core 64-bit 1.6-GHz PowerPC CPU, 
and the CASP9 benchmark is run on a cluster with 20 nodes 
of 16-core 1.6-GHz AMD CPU per node. 

 Although it has been demonstrated that this algorithm 
can take advantage of the GPU massively parallelism [118], 
to the best of our knowledge we could not find any work in 
this direction for the protein structure prediction using 
coarse-grain models.  

ArtificialBeeColony 

 Artificial bee colony (ABC) algorithm is an optimization 
algorithm based on the behavior of honeybee swarms [119]. 
It provides a population-based search procedure in which the 
communication between bees is emulated to discover the 
best places with high nectar amount. Contrary to ACO, 
where only the HP model was targeted, ABC has been 
applied to different protein models such as HP, HP-SC, AB 
or ECEPP/3. There are several implementations of ABC 
applied to the protein folding problem. Zhang and Wu [120] 
use the HP-2D model to simulate the protein 
folding.However, authors use four Fibonacci sequences 
simulating proteins to test the algorithm instead of using a 
well-known benchmark like PDB or CASP.Another example 
of this algorithm can be found in [121], where synthetic 
sequences are created using Fibonacci sequences. Authors 
obtain experimental results with some PDB structures, 
though. 

 There are also parallel implementations of ABC that 
could be found in the literature. For example, in Benítez et 
al. [122-124], a complete study of different algorithm 
implementations can be found. Firstly, authors start 
implementing two parallel approximations of ABC algorithm 
in [122]: a master-slave implementation and a hybrid-
hierarchical one, both of them implemented using ANSI C 

with MPI.They continue with the same two parallel 
approximations with genetic algorithm in [123],and finally 
authors conclude with the same parallel implementations of a 
hybrid algorithm merging an ABC with a Genetic algorithm 
(ABC-GA algorithm) in [124]. These authors remark that in 
future work they will consider the use of alternative 
computing technologies, such as reconfigurable computing 
and General-Purpose Graphics Processing Units, to 
accelerate processing. Nonetheless, no further papers in this 
sense have been found, at least applied to the protein folding 
problem with these algorithms. Finally, Bahamish et al. 
[125] develop a modified ABC that optimizes the Marriage 
in Honey Bee Optimization algorithm. 

 All the experimental environments in  [120], [121]and 
[125]are based on single or multicores PCs.Benítez et al. 
[12-124] run their implementations on a 124 processing 
cores cluster. 

 Other papers considered in this area are Wang et al [126], 
where the Chaotic Artificial Bee Colony (CABC) algorithm, 
which combines the ABC algorithm with the chaotic search 
algorithm, is applied to 3D protein structure prediction; Li et 
al [127], where a balance-evolution artificial bee colony 
(BE-ABC) is presented and an AB off-lattice model is 
adopted, testedby Fibonacci sequences and proteins from the 
PDB as well; and [128], whereanother version of ABC is 
presented. These papers do not include any kind of HPC 
environment, and all the experiments run on a single PC. 

Particle swarm optimization. 

 The third kind of algorithm that is shown in this section 
is Particle Swarm Optimization (PSO).PSO is a stochastic 
population-based optimization technique that is based on the 
social behavior of fish schooling or bird flocking. Applied to 
the protein folding problem, in [129] the authors implement 
PSO with an algorithm to avoid local minimums named levy 
flight. Like other algorithms, a parallel approach is 
performed by authors in [130] implemented using MPI, 
which is the most common way to parallelize the algorithms 
reviewed in this field. None of these papers, neither Chen et 
al. [129] nor Hernández et al.[130,131],give details about the 
environment for running the experiments on. Solely in [130] 
authors say that experiments are implemented in a “dual-
core PC and a Cluster”. 

 Other PSO algorithmscan be found in Liu et al.[132] and 
Mansour et al.[133]. The latterhave also developed a genetic 
algorithm for protein structure prediction. Both papers adopt 
the HP model with no HPC environments. 

Genetic Algorithms 

 Genetic algorithms have been very used to address a 
broad range of combinatorial optimization problems that are 
NP-complete [134,135]. Genetic algorithms start from an 
initial randomly generated population of individuals. Over 
this initial population different selection, recombination and 
mutation operators are applied in order to evolve toward 
better solutions. In each iteration (generation), a function 
evaluates each individual, namely fitness function. On the 
one hand, the selection operator removes those individuals 
with worse fitness from a probabilistic point of view.  On the 
other hand, the recombination and mutation operators 
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generate variations of the individuals in order to produce 
new individuals. [136]. 

 One of the first proposals of evolutionary algorithms to 
the PSP problem was presented by Unger and Moult [137]. 
In this work, a genetic algorithm is applied as an extension 
of a traditional Monte Carlo method to include information 
exchange between a set of parallel simulations. This method 
proves to find better solutions in the bidimensional HP 
lattice model than the traditional Monte Carlo methods. 
Some years later, an improved version of the basic GA [138] 
was presented using a new crossover operator and a new 
search strategy to avoid the homogenization of the 
population. Since then, several works following this idea has 
been proposed using different operators and strategies [139-
145]. 

 Genetic algorithms constitute a good alternative in 
several optimization problems. Nevertheless, one of the 
disadvantages of the genetic algorithm in optimization 
problems is the slow convergence. Concretely, in problems 
like PSP, they can suffer from excessively slow convergence 
rate due to the high number of needed calculations. 

 In order to avoid such problem, there is an opportunity in 
the hybridization of evolutionary algorithms with other 
heuristics, machine learning techniques, etc. The hybrid 
genetic algorithms can improve the performance of the basic 
algorithm and the quality of the solutions. For instance, the 
algorithms proposed in [146-148] combine a GA with tabu 
search algorithm, showing better results for the PSP than a 
genetic algorithm alone. Other works have proposed GA 
combined with other techniques, like backtracking [149], 
hill-climbing [150] and simulated annealing [151] or Particle 
Swarm Optimization [130]. 

 As a result, since the PSP problem presents a large and 
complex search space, algorithms that combine local search 
methods with GA show significant improvements. In this 
sense, the combination of GA and local search using 
domain-specific knowledge, i.e. memetic algorithms [152] 
can help to find better solutions. Memetic algorithms (MA) 
use the concept of meme. A meme can be defined as a unit 
of cultural evolution which is able to local refinements. 
Some works have explored this mechanism for the PSP, 
resulting in that MAs are robust for finding structures across 
a range of models and difficulty [153-159]. 

 The described proposals define the PSP as a single-
objective optimization problem. This approach gets good 
results when one of the objective should be optimized or 
when all the objectives are not in conflict among them. 
Nevertheless, if several objectives should be optimized, a 
better approach is to consider the objectives separately, i.e., 
as a multiobjective optimization problem (MOP). A common 
problem in MOPs is the fact that usually there is no solution 
able to optimize all objectives at the same time. Therefore, 
the idea of optimum should be redefined and it is searched a 
solution that satisfies all the objectives in an acceptable 
manner. Some of the best well-known multiobjective 
evolutionary algorithms (MOEAs) are PAES-II, NSGA-II 
and MOEA/D. [160]. 

 In this sense, some works propose the formulation of the 
PSP problem as an MOP to be solved by an MOEA. For 

example, [160] considers the PSP problem as the problem of 
minimizing free Potential Energy (PE) and minimizing 
Solvent Accessible Surface area (SAS). Authors solve this 
MOP using a modified version of the popular NSGA-II. In a 
similar way, the work of Day et al. [161] proposes a 
multiobjectivization for the HP model which scores better 
results in most of the cases than using a single-objective. 
Another example of this approach is the work of Brasil et al. 
[162,163]. In this work a new MOEA based on tables, called 
MEAMT, is presented. MEAMT is able to use four 
objectives based on tables to solve the PSP problem.  In 
MEAMT, each table stores a subset of solutions with the 
best found solutions according to one of the objectives. More 
recently, several works have been proposed following this 
line of research. Some examples can be found in [164-167]. 

 A great deal of the GA’s popularity lies in its parallel 
nature and the inherent efficiency of parallel processing. 
MOEAs are a clear example of this parallelization, since 
their different objectives can be processed in parallel in an 
easy way. Despite the parallelization of MOEAs has been 
studied in several real-world problems, less work has been 
done in the parallel multiobjective approaches to PSP. 

 One of the works in this field has been developed by 
Calvo et al. [168-171]. They propose different parallel 
MOEAs approaches to the PSP problem reducing the 
complexity of the problem by the minimization of the set of 
variables involved in the process. Authors use 14 processors 
to execute parallel algorithms. They show that, although the 
quality of the solutions is not significantly improved, the 
process requires less time and presents a better parallel 
efficiency. 

 Tantar et al. [172] also propose a solution for the PSP 
using multiobjective parallel hybrid GAs (Hill Climbing 
local search [173] and simulated annealing [174] combined 
with GA) using computational grid. They use the ParadisEO-
CMW framework, which combine the PAradisEO 
framework and the Condor-MW middleware. ParadisEO 
[175] is an open source framework dedicated to distributed 
and parallel models and the design of a broad range of 
metaheuristics. The Condor3 system [176] provides 
mechanisms that support High Throughput Computing 
(HTC). The underlying support the experiments was 
GRID5000 (2500 processors, 2.5TB of cumulated memory 
and 100 TB of non-volatile storage capacity). The tests were 
addressed using the tryptophan-cage (Protein Data Bank ID 
1L2Y) and α-cyclodextrin proteins. Their studies show that, 
although the multiobjective GA increases the complexity, it 
provides more accurate solutions.  

 A different approximation for the PSP is proposed by 
Benítez et al. [177]. They present a parallel GA using the 
3DHP-Side Chain model. In their approach the parallelism is 
reached by the division of the load into several processors 
(slaves) that are coordinated by a master processor. While 
the slaves have to compute the individual’s fitness function, 
the master is in charge of the initialization the population and 
performing the rest of the GA operators. Since there is not 
dataset for the used model, the proposal was tested with a 
benchmark of synthetic sequences. Authors show that, 
although the results obtained are not the optimal, they are the 
best results found for the 3DHP-SC model. Finally, authors 
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show that parallel processing accelerates significantly the 
process, but they propose other hardware-based approaches 
in order to get a better performing. 

 Unfortunately, this technique can suffer from a 
bottleneck in the master processor. In order to avoid this 
problem, in [178] it is proposed a mesh NoC-based multicore 
architecture in which the single-master multi-slave design is 
partitioned in small islands where an island has slaves and a 
master processor. In order to avoid GA falling in local 
minimal within each island, authors define a GA which is 
able to migrate between the islands. The experiments are 
performed using 9 proteins from a benchmark of synthetic 
sequences for the lattice protein model. Results show an 
overall 310X speedup gain compared to the design of the 
single-master /slave. 

 Others works have proposed modified GAs in order to 
parallelize the problem. For example, Narayanan et al. [58] 
propose a simple GA in which the mutation and selection 
strategies are parallelized using the MapReduce [179] 
architecture. Authors pursue to obtain the optimal 
conformation of a protein using the two dimensional square 
HP model. The proposal is validated against benchmarks of 
synthetic sequences, showing that the convergence of the 
algorithm to the optimal is faster than the obtained with 
traditional techniques. 

 Another modified version of an evolutive algorithm 
inspired by the biological immune systems, namely the 
clonal selection algorithm (CSA), is presented in [180] for 
PSP on AB Off-Lattice model. Experiments are performed 
using sequences of Fibonacci for simulating the AB model. 
The interesting aspect of this work is that the algorithm is 
parallelized using the CUDA platform and GPUs. In fact, 
authors show that the speed can be improved effectively, but 
they do not measure the quality of obtained solutions. There 
are also other hybrid GAs with bioinspired algorithms like 
Scalabrin et al. [181], but no more discussion is necessary 
because this paper has been also considered in the 
bioinspired algorithms section. 

 To summarize, although more works should be done in 
this direction, in the last years the parallelization of MOEAs 
is getting more attention and several works are including it 
as their future works [182,183]. 

Other nature-inspired algorithms 

 Other bioinspired algorithms also worth mentioning are 
gathered in this section.Firstly, a Firefly Algorithm (FA) 
[184] has been tested in the protein folding problem. Firefly 
Algorithm is a new algorithm that is based on the flashing 
behaviors of firefly swarms. The main purpose of the flash 
of fireflies is to attract other fireflies. The FA’s assumptions 
consist in three basic rules: (1) sex of fireflies does not mind 
at all as all fireflies are unisex. Each firefly flashes in order 
to attract other fireflies regardless their sex; (2) the intensity 
of the flash is mainly due to attract a prey and to share food; 
(3) the more a firefly shines, the more attractive it is to 
others. Therefore, each firefly firstly moves toward a 
neighbor whom glow is brighter. In this paper, two 
dimension HP lattice model is tested in a single PC, a P4 
IBM with 3.1 GHz processor and 2 GB of RAM. 

 Only one approach to GP-GPU implementation has been 
found for bioinspired algorithms. Scalabrin et al. [181] (same 
authors of [122-124])have implemented a new algorithm 
named Population-Based Harmony Search, (PBHS). The 
Harmony Search is inspired by the improvisation process of 
a musician searching for the best harmony. The solution is 
represented by a harmony and the method of improvisation 
guides the balance between deep search and wide 
exploration. The results of this paper show that the 
implementation in CPU could be better when few data are 
used, but the GP-GPU is clearly better when data grow. The 
hardware experimental environment in this paper is an Intel 
processor (Core2-Quad at 2.8 GHz) and a NVIDIA GeForce 
GTX280. 

 Another bioinspired algorithm is the one developed by 
Cai et al. [185], where authors proposea new algorithm 
inspired by the plant growth process called Artificial Plant 
Optimization Algorithm (APOA). Photosynthesis operator, 
phototropism operator and apical dominance operator are 
designed in this paper.Another version of this algorithm can 
be found in [186], where authors implement the gravitropism 
mechanism that is neglected in the standard version. In this 
paper, authors employ this phenomenon to enhance the 
performance. To test the efficiency, they apply this new 
variant to solve protein structure prediction problem, 
including short sequences, Fibonacci sequences and real 
protein sequences, showing effective simulation results. The 
authors of these papers also present another bioinspired 
algorithm in [187] called Social Emotional Optimization 
Algorithm (SEOA). It is a new swarm intelligent 
methodology by simulating the human social behaviors. In 
this algorithm, each individual represents one virtual person 
in the searching space, all of them trying to promote to a 
high society position by collaboration and competition. In 
this paper, it is applied to predict the structure of toy model 
proteins. To test the performance, short sequence, Fibonacci 
sequence and real protein sequences are selected to compare. 
Simulation results show that this approach is valid. Authors 
do not use HPC environments in any of these papers 
commented in this paragraph. 

 Several hybrid approximations have been implemented, 
as for example in Benitez et al. [122], discussed above. 
Other papers with this point of view areNemati et al. [108], 
showing an implementation that combines a hybrid genetic 
and ACO algorithm; and also in Lin and Su [188], where 
authors implement a hybrid genetic and PSO algorithm. 
Moreover, although several modifications in algorithms have 
been tested, no improvements in hardware environments are 
found, since in [108] authors run the algorithm in a 3.0 GHz 
CPU and 512 MB of RAM, and no specification was found 
about hardware in [188]. 

 To summarize, these papers give us the idea that several 
implementations of different algorithms have been tested 
during last years. Perhaps the more common algorithms at 
this point are ACO and ABC, although some other 
algorithms with different implementations have been found, 
for example hybrids algorithms. On the other hand, too little 
parallel implementations have been developed for these 
algorithms, and the exploitation of High Performance 
Architectures is reduced to the executions of parallel 
implementations based on MPI and OPENMP. Other types 
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of more intensive data parallelism, like GP-GPU 
implementations, are expected to be widely developed, but 
unfortunately, the implementation in[181] byScalabrin et al. 
has been the only one found in this direction. 

 It is worth mentioning other reviews on this area, such as 
[189,190], that show the same point of view of different 
algorithms applied to the protein folding problem, although 
none of them elaborate a review from the High Performance 
Computing view. 

 

3.2.2. Non-nature-inspired metaheuristics 

 Non-nature-inspired algorithms are mainly based on local 
search methods. They are a family of metaheuristic 
algorithms aimed at solving NP-hard optimization problems. 
Applied to protein folding, they try to obtain the minimum 
energy structure in polynomial time from a set of candidate 
solutions sampled from the search space. The main idea is to 
start from a folded protein deemed as a potential solution and 
then modify it (i.e., move to a neighbor solution in the search 
space) trying to obtain a slight improvement in the energy 
structure.  Local search methods possess the main advantage 
of rapid convergence to better quality solutions, if not 
optimal, when efficient neighborhood functions are 
employed. However, an optimal solution cannot be 
guaranteed since the candidate solutions are randomly 
selected and the optimal one could not be included nor 
reached from the selected ones. Another drawback to take 
into account is that these methods get locked in a local 
optimum very often and may revisit the same set of solutions 
repeatedly. 

 Among the local search methods for protein folding 
simulation, Tabu search[191] is the most frequently found in 
the literature. The basic feature of this method is the use of 
memory structures to save solutions already explored. Then, 
if a potential solution is explored again in a specific period 
of time, it is considered tabu (i.e., forbidden) and therefore it 
is not expanded in order to promote the exploration of new 
regions in the search space. Tabu search algorithms applied 
to protein folding are also based on this feature, and they 
differ in the moves definition and how to avoid local optima. 

 Apart from Tabu search, hill climbing[192] and 
simulated annealing (SA)[193,194] are other two local 
search algorithms applied to protein folding. Hill climbing 
consists in starting with a random solution and changing a 
single element of the protein structure iteratively and 
incrementally while each change produces a better solution, 
until no further improvements can be made.  On the other 
hand, simulated annealing uses a probabilistic heuristic to 
change from one random solution to another random solution 
with the aim of moving to a state of lower energy, but it still 
possible to change to a worse solution, i.e., a state of higher 
energy (and in this manner avoid local optima). The 
probability to move from a state s to a state’s depends on the 
energy of each state and on a global dynamic variable called 
temperature (T), which is initiated to a high value. As usual, 
if s’ is considered better than s, then the movement is 
performed. However, if s’ is considered worse than s, it is 
still possible to make that movement depending on T. For 
higher values of T, the probability of making this “worse” 

movement is higher. As T decreases through iterations, this 
probability also decreases, simulating the annealing process 
in metal. In this manner, it is possible during the initial phase 
of the process to move towards less promising solutions so 
as to avoid local optima, but at the end of the process --when 
T has values next to 0-- the probability of selecting worse 
solutions is almost inexistent. It is worth mentioning that 
both algorithms are normally used in combination with 
genetic or stochastic algorithms, as an alternative to improve 
the efficiency in the latter. 

 In the next paragraphs we review some of the most 
relevant works on protein folding for each local search 
algorithm. 

Tabu Search. 

 [195] describes a generic tabu search plus a set of new 
moves for named “pull moves”, that modifies the basic Tabu 
search by moving one aminoacid a small distance and then 
pull the chain along, stopping as soon as possible. These 
moves are complete (all existing configurations can be 
reached from the initial one), reversible and local (displace 
as few vertices as possible). As a result, authors propose 
small adjustments to a given configuration in order to 
improve the effectiveness of Tabu search in protein folding 
for HP-2D models. [196] also addresses HP-2D models. 
Moves are defined as changes of single angles of consecutive 
positions in the vector representing the protein, whereas the 
tabu list consists of forbidden angle moves to avoid reverse 
moves in a specific number of iterations. Authors claim to 
find optimal conformations for all short sequences from 5 to 
12 aminoacids. 

 [197] explores on HP energy models on 3D FCC lattices. 
The Tabu method is composed of a function to initialize the 
model in a randomized, structured manner; a fitness function 
to guide the search; and efficient data structures to avoid 
cycles.. Authors obtain the first foldings in the well-known 
“Harvard instances”[198], 10 different proteins on the cubic 
lattice. This work has been revisited in [199], where the tabu 
algorithm is combined with constraint programming. Results 
show to be promising and reliable for proteins consisting in 
less than 100 aminoacids. Eventually, all the previous results 
on HP energy models on 3D FCC lattices have been 
outperformed by the work in[200]. This paper defines a 
hydrophobic-core centric local search algorithm named SS-
Tabu. Movements are defined as a coil spinning around a 
dynamic hydrophobic-core center (HCC) by means of a 
diagonal move to build the cores. In order to avoid local 
minima, two different techniques named random-walk 
(based on the pull moves defined in[195] and relay-restart 
are defined. Another appealing approach on 3D HP lattices  
is proposed in[201] where authors develop an hybrid search 
algorithm that combines an enhanced particle swarm 
algorithm with an enhanced tabu search algorithm. The 
former appends the operation of crossover (single-point and 
two-point crossover) whereas the latter adds the operation of 
mutation. The main idea resides in using the tabu search 
algorithm to “help” the swarm algorithm to avoid local 
minimum. This hybrid algorithm has been implemented by 
MATLAB R2009b under a Windows XP system and tested 
through Fibonacci sequences and some PDB real proteins. 
Results show that it is superior to other 3D HP algorithms up 
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to sequences no longer than 48 aminoacids. A different 
approach for obtaining minimum energy in oligopeptides is 
presented in[202]. Moves are based on the dihedral angles in 
the protein’s skeleton and the cost function is the empirical 
energy function ECEPP/3. It is aimed at working in angle 
space while keeping bond length and bond angle values 
constant. The algorithm is parallelized by executing several 
moves simultaneously. Hence, it is created a partitioning of 
the set of possible movements on p subsets of approximately 
the same size, and every partition is evaluated in p different 
processors. In this manner every processor finds its best 
move, and the best between these is eventually selected. The 
main drawback in this approach is the extensive 
communication requirement among processors. It has been 
tested using the Met-enkephalinpentapetide, showing a real 
speed-up compared to related techniques due to the 
parallelization process. As a result, Tabu search is 
considered valid for conformational searches of peptides 
when an optimal combination of tabu parameter values can 
be found. 

 Xiaolong et al. proposes a tabu algorithm whose main 
feature is the generation of the initial solution for 3D AB off-
lattice models [203]. Instead of using a random function, a 
better-informed method is defined by locating hydrophobic 
residues at the center of three-dimension space and locating 
hydrophilic residues surrounding hydrophobic ones. In[204] 
a similar heuristic for the initial solution is employed and a 
new one is defined for conformation updating in 2D AB off-
lattice models. The conformation updating heuristic consists 
in picking out hydrophilic monomers squeezed among 
hydrophobic monomers and placing them in certain spots in 
2D space to speed up the search for lower-energy states. 

Hill Climbing. 

 Regarding hill climbing works in the protein folding area, 
we have found that this technique is usually combined with 
genetic algorithms to improve the results of the latter. Thus, 
in [205] a hybrid of hill-climbing and ERS-GA (genetic 
algorithm with elite-based reproduction strategy), named 
HHGA, is proposed for protein structure prediction on the 
HP-2D triangular lattice. Two hill climbing strategies are 
proposed: In the first one, the algorithm selects its neighbour 
residues from the current solution. These residues are 
generated as in mutation operations, i.e., randomly changing 
its direction. In the second one, the neighbour residues are 
generated following a method similar to the crossover 
operation. Hence, five neighbours are generated by changing 
the direction of the second segment after the crossover point, 
where rotation angles are 60°, 120°, 180°, 240° and 300°, 
respectively. If any of the five folding directions leads to a 
superior fitness to the original direction, this neighbour will 
replace the current solution. A benchmark composed of eight 
HP-2D protein sequences up to 64 aminoacids is evaluated 
and compared to simple genetic algorithms [206] and tabu 
search [207], demonstrating that HHGA produces a similar 
outcome to the those algorithms, but at the cost of 
incrementing the running time. Another work adopting hill 
climbing along with a genetic algorithm can be found in 
[208], which relies on hill-climbing recombination and 

mutation to support the search process of the evolutive 
algorithm for HP proteins. Here, the crossover operation is 
dynamically performed, allowing offspring to be added in 
the population during the same generation in an 
asynchronous manner. In this model, the proposed mutation 
operator is problem-specific and it is applied in a steepest-
ascent hill-climbing manner. Moreover, to avoid local 
optima, redundant individuals may be replaced with new 
genetic material thanks to an explicit diversification stage 
which is carried out periodically during the population 
evolution. Standard S1-S8 HP proteins are employed as a 
benchmark and they are evaluated by the hybrid model 
presented in the paper and compared to other three simpler 
models, namely a simple evolutionary algorithm, an 
evolutionary algorithm with diversification stage and an 
evolutionary algorithm with hill climbing but without 
diversification. Results show that using hill climbing to 
support evolutive algorithm is clearly beneficial with respect 
to other models neglecting its use and it could compete with 
other algorithms such as memetics. Another hybrid GA-hill 
climbing algorithm, this time to fold proteins from 
knowledge of the primary sequence and predictions of its 
secondary structure, can be found in[209]. Dihedral angles 
are used to represent the protein’s structure augmented with 
a four-helix bundle to improve the folding simulation 
conditions. According to the obtained results, the inclusion 
of a hill climbing algorithm to execute local searches in the 
GA outperforms 20% and 50% the execution of the pure, 
original GA in [210]. In conclusion, it can be stated that hill 
climbing algorithms are not practical by their own in protein 
folding, but they are rather combined with genetic 
algorithms to improve the latter. 

Simulated annealing. 

 Like hill climbing, SA is mainly adopted for improving 
other global search algorithms. For example, [211] 
introduces a protein folding simulation procedure on FCC 
lattice that employs a constraint satisfaction problem (CSP) 
solver to generate neighbourhood states for a simulated 
annealing-based local search method. This proposal has been 
evaluated using three basic proteins for tuning (namely, 
4RXN, 1ENH, 4PTI) and then several proteins selected from 
PDB, with length varying from 54 to 74 aminoacids. Results 
show that the hybrid approach outperforms CSP alone both 
in accuracy and efficiency, and outperforms local search 
alone in accuracy but not in time.  

 Another approach consisting in a combination of 
Bayesian and SA functions is described in [212]. It uses 
Bayesian scoring functions to assemble native-like structures 
from fragments of unrelated protein structure with similar 
local sequences. The simulated annealing contributes to 
generate native-like structures for small helical proteins in a 
rapid manner.  Finally, it is worth mentioning the approach 
in[213] based on a pure SA algorithm in 3D HP protein 
folding simulations aimed at experimentally determining 
upper bounds for the maximum depth of local minima of the 
underlying energy and for the stopping criterion. Tests on the 
well-known ten benchmarks 

38 Review of Soft Computing techniques for the Protein Folding on HPC



 Current Drug Targets, 2016 13 

 XXX-XXX/14 $58.00+.00 © 2016 Bentham SciencePublishers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

given by [214] show that the maximum escape height from 
local minima can be upper bounded by n^(⅔) whereas the 
stopping criterion complies with the number of Markov 
chain transitions that lead to minimum conformations. 

Further tests must be carried out on real foldings of short 
protein sequences to validate these results, which could serve 
as appropriate starting conformations for folding simulations 
of real protein sequences and realistic energy functions. 

  

Figure 3 - Number of publications in protein folding, protein structure prediction or HP model 

Figure 4 - Number of publications for Neural Networks and Metaheuristics techniques applied to protein folding 
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4. TRENDS IN DESIGNING NOVEL ALGORITHMS 
AND ARCHITECTURES 

 This section provides quantitative information about the 
main contributions in the field of Metaheuristics applied to 
PSP, mainly based on coarse-grain models. Moreover, we 
show what kind of hardware architectures have been used to 
run these novel algorithms on.  Our deep search literature 
review follows a methodology that is firstly described to let 
the reader reproduce the experiments.     

 

4.1. Experimental methodology  

For this experimental study, we have used the Web of 

Knowledge (WOK, formerly known as ISI Web of 

Knowledge) [215]. WOK belongs to Thomson Reuters 

Corporation and it is an academic citation indexing and 

search service to provide bibliographic content and tools to 

access, analyze and manage multiple research information. 

 

A particular interest to us is the WOK advanced search 

tool. This tool offers a very powerful search tool to look for 

different research articles using formal rules based on field 

tags, Boolean operators, parentheses, and query sets to create 

your own query. Booleans operators include AND, OR, 

NOR, SAME and NEAR.  The following field tags are the 

most interesting for our searches purposes:  

 TS = Topic. Searches the Topic fields in all 

databases in your institution subscription. Topic 

fields include Titles, Abstracts, Keywords and 

Indexing fields such as Systematics, Taxonomic 

Terms and Descriptors.  

 SU = Research Area. Searches the Research Areas 

field within a Full Record.  

 GP=Group Author. Searches the Group Author(s) 

and Book Group Author(s) fields within of a record. 

 AU=Author. Searches for author names of journal 

articles and books in the Author(s) field and the 

Corporate Author(s) field. 

 The most interesting filed tag for our data mining 
purpose is TS as we are looking for articles related to protein 
folding, different Metaheurtistics techniques and particular 
hardware implementations. For instance, the following 
pattern searches for articles in which either “Protein folding” 
or “Protein Structure Prediction” or “HP model” are included 
in the article’s Title, Abstract or Keywords.  

                       
                                  
               

 However, the information obtained from this tool may 
have some inaccuracies as we are dealing with unstructured 
data. For instance, the terms “Neural Networks” and “Protein 

Folding” may be included in chemistry research articles 
about the brain, which clearly is not our scope. Therefore, 
after searching for some keywords we dida carefully review 
on ambiguous papers and checked whether they were related 
to the topics we are really looking for. Moreover, the WOK 
does not have very up-to-date information. Some recent 
papers are not included in their databases, and therefore, the 
quantitative information of the last couple of years may be 
incomplete. This issue mayaffect our conclusions regarding 
to the hardware trends as hardware platforms have evolved 
very rapidly in the last five years. As a result, we have also 
included articles from other databases such as Google 
Scholar, arXiv, CiteSeer(X), DBLP and  IEEEXplore, to 
name just a few. 

 

4.2. Trends in Soft Computing for the protein folding 

 In the first place, Figure 3shows the number of 
publications within the field of protein folding, protein 
structure prediction or coarse-grain HP model available in 
the WOK. The rule to perform this search is the following: 

                      
                                
              

 From Figure 3 we can state that the Protein Structure 
Prediction is a very active field of research that began in 
eighties and it is still an object of continuous research with 
approximately 2.500 published papers per year. 

 Next, Figure 4shows the number of publications related 
to the protein folding that use Soft Computing techniques. 
Here we have grouped Soft Computing techniques into two 
different categories: Neural Networks and Metaheuristics. 
According to this figure, Neural Networks have been the 
most active research topic from the nineties. However, 
Metaheuristics has recently attracted interest in the protein 
folding community. In the last few years the number of 
articles published in Metaheuristics is at the top of the Soft 
Computing techniques applied to the protein folding. Local 
Search techniques, however, are almost always combined 
with other global techniques such as genetic algorithms, 
swarm intelligence or ant colony optimization to provide 
hybrid Soft Computing techniques. They improve the 
optimization process of those global search techniques to 
avoid stalling in local optimum, as noted in Section 3.2.2.  
The following rule is only an example of how we have 
obtained the number of publications for Neural Networks:  

TS = ("protein folding" OR "protein structure prediction" 
OR "HP model") 

                                              

                                                 

or "extreme learning machine*" or "multilayer 
perceptron*") 
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 Figure 5shows the number of publications in WOK 

related to both:the protein folding and different kind of 

Metaheuristics that area classified depending on their 

origins.The keywords used to do this search include for the 

nature-inspired metaheuristics:Genetic algorithm, Ant 

Colony Optimization, Artificial Bee Colony, Particle Swarm 

Optimization, Firefly Algorithm, Population-Based Harmony 

Search, memetic algorithm, Artificial Plant Optimization 

Algorithm and Social Emotional Optimization Algorithm. 

For non-nature-inspired metaheuristics the keywords are hill 

climbing, simulated annealing and tabu search. Some issues 

come up with this search as these keywords may belong to 

the same algorithmic family. For instance, ACO and ABC 

are population based methods which is also another keyword 

in Figure 5. Therefore, the number of publications depends 

on what keywords have been included in the article. Finally, 

those Metaheuristics that we could not find any work related 

to protein folding have not been included in Figure 5. 

 Figure 5places Genetic Algorithms are widely used in 
this area as they are one of the pioneer in Metaheuristic 
research. Particle Swarm and Ant Colony Optimization 
techniques are at the second place of the techniques used for 
protein structure prediction. Some variations of these 
Metaheuristics like memetics, firefly or Artifical Bee Colony 
are also applied in the literature but their use is marginal. 

 Figure 5shows the number of publication for different 
kind of non-nature metaheuristics that are mainly local 
search techniques. As previously described, local search 
techniques are used along with other global techniques to 
provide hybrid search method that improve simulation’s 

quality and performance. The methods used in the protein 
folding arena are Tabu search, simulated annealing and hill 
climbing. The latter is widely used to improve the search 
provided by Metaheuristics. Although Tabu search is very 
close to hill climbing, the computational cost of tabu is 
higher than hill climbing, and thus it is not so convenient to 
integrate it in a hybrid method. Simulated Annealing is, 
however, a very powerful local search and it is actually the 
most studied in the literature. 

 

4.3. Trends in hardware architectures for Soft 
Computing techniques applied to the protein folding 

 A common computational feature shared by many Soft 

Computing methods is their inherent massive parallelism. 

Most of them are population-based, that is, a collection of 

agents “collaborate” to find an optimal (or at least a 

satisfactory) solution. Because of this inherently parallel 

nature, these methods are well-suited to leverage parallel, 

distributed or even GPU architectures.  Table 1summarizes 

the hardware platforms that have been used to improve the 

execution of different Soft Computing techniques.Neural 

Networks are basically executed on single core processors. 

Although there are some efforts in parallelizing neural 

networks applied to other problems, to the best of our 

knowledge there is only a work that cares about 

performancein this kind of algorithms applied to coarse-

grain protein folding.  Moreover, this algorithm is based on 

deep learning, which has many layers and thus the 

computational requirements increase drastically. Genetic 

Figure 5 Number of publications that use Metaheuristics according to their origin. 
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algorithms are, however, very tied to parallel architectures. 

They are based on a population of entities where the island-

model is very attractive to improve the solution.  

 

 In the parallel island-model of genetic programming, the 

population for a given run is divided into semi-isolated 

subpopulations. Each subpopulation is assigned to a separate 

processor or node of computing system and it proceeds 

independently to each other. Once each instance of the 

genetic algorithm finishes (or other interval), a relatively 

small percentage of the individuals in each subpopulation are 

probabilistically selected (based on fitness) for migration 

from each processor to various neighboring processors. This 

idea has been implemented on different platforms from 

clusters of computer nodes to grid computing environments. 

There are also other different parallel algorithms based on 

data approach that are better suited to GPUs. ACO, ABC and 

PSO also use the island model to leverage cluster computing 

architectures. Population Based Harmony Search has been 

implemented on GPUs as well. Finally, local search 

techniques have been also improve with some ways of 

parallelism in different architectures. Nonetheless, as 

previously mentioned, these methods are always combined 

to other methods, and therefore, they are also involved in 

other rows of the Table 1.   

 
4.4. Summary 

 This section briefly summarizes the strengths and 

weaknesses of the reviewed algorithms grouped into main 

categories we have used throughout the paper. First of all, 

Artificial Neural Networks (ANNs) have been successfully 

applied to the protein's secondary structure prediction. The 

ANN computational cost of learning, applied to this 

problem, is affordable for sequential architectures, and thus 

it does not require the use of high performance computing.  

 

 Moreover, the ANNs offer an abstraction layer that 

provides solutions without having deep-knowledge of the 

problem domain that is very appreciated for non-domain 

experts within this area. However, we have only found few 

works using ANN that target more complex protein 

structure. This actually limits the successful of these 

techniques. Indeed, new trends in neural networks, such as 

deep learning, are demonstrating very good results in other 

domain fields [216]. They demand the use of high 

performance computing. The search for the ANN optimal 

architecture; i.e. the number of neurons within the hidden 

layer or even the number of layers, can be a very time 

consuming process.   

 

 This paper divides Metaheuristics for their origins into 

two main groups; nature and non-nature-inspired. Nature-

inspired metaheuristics provide very good solutions in a 

reduced time-frame but they do not guarantee optimal 

solutions. Algorithms like ACO, ABC, PSO and so on, are 

based on swarm intelligence to solve problems. They are 

inherently parallel, and therefore, theoretically well-suited 

for parallelization on emergent architectures. This feature 

has been explored in few papers, but indeed, we still see 

many remaining work in this area.Moreover, genetic 

algorithms have the advantage that they could escape from 

suboptimal local maximum/minimum. They are population-

based and they use stochastic operators that allow searching 

in different regions, thus if the population finds a better 

fitness value can move away from the suboptimal solutions. 

Genetic algorithms are also inherently parallel as population-

based algorithms and therefore they are also well-suited for 

parallelization.  Nevertheless, genetic algorithms also have 

some disadvantages whenever they target problems like 

protein folding. Sometimes genetic algorithms may converge 

very slowly, especially near an optimum. Some hybrid 

approximations have been presented for the protein folding 

problem in order to solve such problem. In that sense, 

genetic algorithms could suffer of the opposite problem and 

they can converge prematurely to the suboptimal solutions if 

the operators are not efficient enough. Finally, another 

disadvantage inherently associated to genetic algorithms is 

finding the algorithm parameters; it is not straightforward at 

all and very problem-dependent. 

 

 Non-nature-inspired metaheuristics, which in this paper 

are basically focused onlocal search techniques, provide 

appealing solutions for 2D/3D HP models. They can be 

easily combined with other global algorithms such as 

Genetic Algorithms or ACO to improve their solutions. They 

can quickly converge to better quality solutions, even 

optimal, when efficient neighborhood functions are 

employed and they could serve as appropriate starting 

conformations for folding simulations of real protein 

sequences and realistic energy functions.However, local 

search algorithms by themselves cannot guarantee an 

optimal solution. The candidate solutions are randomly 

selected and the optimal one could not be included nor 

reached from the selected ones. Also they may get locked in 

a local optimum very often and may revisit the same set of 

solutions repeatedly. 
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SoftComputing 

Technique 

Algorithm Hardware 

Platform 

Data Set Model Ref 

Neural 

Networks 

Deep Learning CUDA D329, SVMCON_TEST 

and CASP9 

HP 2D [96,97] 

NNPIF (Neural 

Network Pairwise 

Interaction Fields) 

Single core PDB  HP 2D [84] 

MLP (Multilayer 

Perceptron) 

Single core PDB, SCOP  HP 2D [72,73] 

MLP + tailored 

early-stopping 

Single core PDB  HP 2D [85] 

MLP + 

Evolutionary 

information 

Single core PDB  HP 2D [71] 

SVM (Support 

Vector Machine) 

Single core SCOP  HP 2D [86,91,94] 

Genetic 

algorithms 

Multiobjective GA 14 processors  1CRN protein Atomic model 

based on the 

dihedrals angle 

base between the 

Cα  

[168-171] 

Hybrid 

Multiobjective GA 

(Simulated 

Annealing and Hill 

Climbing) 

ParadisEO-

CMW 

framework. 

GRID5000 

tryptophan-cage (Protein 

Data Bank ID 1L2Y) and 

α-cyclodextrin proteins 

Atomic model 

based on the 

dihedrals angle 

base between the 

Cα 

[173,174] 

Simple GA MapReduce 

architecture 

(cluster) 

Benchmarks of synthetic 

sequences 

HP model [179] 

Parallel GA (single-

master multi-slave) 

Master-slaves 

processors 

Benchmarks of synthetic 

sequences 

3DHP-Side Chain 

model 

[177] 

Parallel GA (multi-

master multi-slave) 

Mesh NoC-

based multicore 

architecture 

Benchmarks of synthetic 

sequences 

Lattice protein 

model 

[178] 

Clonal selection 

algorithm (CSA) 

GPUs and 

CUDA platform 

Fibonacci based 

sequences 

AB Off-Lattice 

model 

[180] 

ACO Parallel ACO Cluster http://www.cs.sandia.gov/

tech 

reports/compbio/tortilla-

hp-benchmarks.html 

HP 3D [115] 

Parallel ACO Single PC and 

Cluster 

- HP 2D [116] 

Parallel ACO - 

packBackbone 

CASP 8 

Multicore PC. 

CASP 9 run on 

a Cluster. 

CASP 8/9 HP 3D [117] 

ABC Parallel ABC. MPI Cluster 

Networked 

computers 

with 124 

processing cores 

Sequences from 

bibliography 

HP 3D Side-Chain [122] 

Modified ABC. 

IF-ABC 

Multicore PC 

(Matlab) 

Fibonacci based 

sequences. 

PDB sequences. 

AB [121] 

Modified ABC. 

MHBO 

Multicore PC 

Visual C++ 

Met-enkphaline Atomic model 

based on the 

dihedrals angle 

base between the 

[125] 
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Cα 

PSO Parallel PSO Multicore PC 

and a cluster 

Sequences from 

bibliography 

Atomic model 

based on the 

dihedrals angle 

base between the 

Cα 

[130] 

PBHS Population Based 

Harmony Search 

Multicore PC.  

NVIDIA 

GeForce 

GTX280. 

Benchmarks of synthetic 

sequences. 

AB 2D [181] 

Tabu Search Pull moves similar 

to de 

Gennesreptation 

model. 

HuGS 

middleware 

(Human-Guided 

Search) 

Sequences from 

bibliography 

HP-2D [195] 

Protein’s angles-

based moves 

Single core 

PC AMD Duron 

700Mhz Linux 

Sequences from 

bibliography 

HP-2D [196] 

Tabu search + 

Constraint 

programming 

A cluster of 

Dell 

Power Edge 

1950 4-core 

IntelE5430 

processor with 

2.66GHz and 

16Gb RAM (no 

parallelism) 

Sequences from 

bibliography 

HP 3D FCC lattice [199] 

Spiral Search Tabu - Sequences from 

bibliography 

CASP 8/9 

HP 3D FCC lattice [200] 

Particle Swarm 

Optimizer + Tabu 

Search 

MATLAB 

R2009b under a 

Windows XP 

system. 

Fibonacci based 

sequences PDB proteins: 

IBXL, IEDP, IAGT 

HP 3D FCC lattice [201] 

Empirical energy 

function ECEPP/3 

SGI Origin 

2000 computers 

parallelized (32 

processors) 

Distributed 

memory 

MPI for 

interprocessor 

communication 

Met-

enkephalinpentapetide 

Atomic model 

based on the 

dihedrals angle 

base between the 

Cα 

[202] 

Well-informed 

initial solution 

- Fibonacci based 

sequences (13, 21, 34) 

PDB (1BXL, 1EDP, 

1AGT) 

 

3D AB  off-lattice [203] 

Heuristic for 

conformation 

updating 

Intel Core2 

Duo, 2.66 GHz 

processor and 

2.0 GB of RAM 

Fibonacci based 

sequences (13, 21, 34,55) 

PDB (1AGT, 1AHO) 

2D AB  off-lattice [204] 

Hill Climbing Montecarlo + hill 

climbing 

Linda Tuple 

Spaces (Agents) 

Multithread C 

Two Opteron 

dual core CPU 

at 2 GHz 

Several proteins from 

PDB 

1. coarse grained 

structures based on 

previous 

bibliography 

2. Own model 

[64] 

Genetic algorithm + 

hill climbing 

Single core 

Intel i7-920 

Sequences from 

bibliography 

2D HP Triangular 

lattice 

[205] 
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machines 

Genetic algorithm + 

hill climbing 

- S1-S8 standard HP 

proteins 

2D HP [208] 

Genetic algorithm + 

hill climbing 

SGI Onyx2      

12 × R10000 

supercomputer 

Folding of the alpha 

carbon atoms of 100 

non-redundant test 

proteins 

Dihedral angles to 

augmented with a 

four-helix bundle 

[209] 

Simulated 

annealing 

Time-dependent 

cooling schedule 

Gentoo Linux 

on a 2.4 GHz 

Intel Pentium 

IV processor 

Sequences from 

bibliography 

 HP 3D [213] 

Table 1 Summary of the hardware platforms used to improve different Soft Computing techniques.  

 

CONCLUSIONS AND FUTURE WORK 

 The protein folding problem is a very well-known topic 
that has been widely studied during the last fifty years. 
Indeed, this review article showsthat the protein structure 
prediction problemis still a very active field of research 
nowadays, where many novel techniques and algorithms 
have been applied by means of computer simulation, mainly 
due to their high computational requirements. Our review 
focuses on both computational aspects:  

 1.-From the algorithmic point of view, we center on novel 
algorithms within the Soft Computing fieldthat have been 
applied mainly to the coarse-grain protein-folding problem, 
and focusing mostly on the HP-model.A particular interest to 
us are Neural Networks and Metaheuristics, as they are 
increasing in popularity during the last decade.The 
combination of these methods with local search techniques 
produces very powerful search strategies that providesome 
remarkable and interesting solutions to this problem. In this 
sense, and to the best of our knowledge, we have not found 
any work that design a hyper-heuristic or parametrized 
metaheuristic schema for the problem of the prediction of 
protein structure. These techniques provides a high-level of 
abstraction to look for the best metaheuristic to be applied to 
a concrete problem. Basically, metaheuristics search 
solutions within the problem domain and hyper-heuristics do 
the search within the search space of heuristics. Future 
designs should not only consider a metaheuristic, they 
should design a hyper-heuristic to provide a wide search 
within the space solution though. Besides, new trends in 
neural networks, such as deep learning, are gaining 
popularity, and we envision them as a good alternative for 
the protein structure prediction problem. However, fruitful 
works in this area should be designed taking care of 
computational requirements they intrinsically have by its 
definition, and thus they should designed on massively 
parallel architectures. 

 2.-From the hardware point of view, there are also some 
relevant contributions in the literature. Most of Soft 
Computing techniques are inspired bynature and they are 
massively parallel by their definition.Therefore they are well 
suited for implementation on parallel or even massively 
parallel architectures. After a deep literature review, we 
concludethat the gap between hardware and software in the 
simulation of protein folding is still very wide. There are 
some works that combine novel hardware and software 
techniques but they representjust an incipient research line. 

We are witnessing a revolution in hardware platforms where 
massive and heterogeneous platforms are dominating the 
marketsuch as GPUs.There are many applications already 
working right on the scientific and engineering fields. 
Changing them to run with billion-way parallelism will 
require redesigning or even reinventing the algorithms used 
in them, and potentially reformulating the science problems.  

 The protein folding simulation is a multidisciplinary field 
of research where scientists from different areas work 
together in order to solve challenges of the next century. 
Although many success cases have been reported in this 
review, there are still many aspects on the scientific side that 
need improvement. Just to name a few, the focus of 
application of these techniques relies on the study of single 
systems such as isolated proteins, but an “out of the box” 
approach should be followed in order to exploit them in 
more complex systems such as the ones in study by systems 
biology, as the cell as a whole. Also, techniques reviewed in 
this paper for the PSP problem might be directly applied to 
other biological macromolecules such as disordered proteins, 
nucleic acids, polymers, and systems with relevant 
nanotechnological interest. However, solving the problem of 
the prediction of protein structure, it is not an easy task. The 
workflow in Bioinformatics to create efficient tools is a long 
pipeline where each stage may take several years. Once 
theoretical models have been defined by experts from 
fundamental research fields such as physics, biology and 
chemistry, computer scientists need to define algorithms to 
simulate such models in computers. Moreover, as we move 
to a sustainable world, there are also other important 
concerns to take into accountas performance and energy 
efficiency of such algorithms on particular hardware 
architectures.  Understanding how to bridging the gaps 
between hardware and software will be the key to solve 
mission-critical science problems at exascale. 

 From our point of view, future developments in this area 
should be aware of this landscape of computation.First of all, 
the physical limitations of silicon-based architectures are 
threatening the evolution of processors. Heterogeneous 
computing including GPUs, multiprocessors, or low-power 
processors come to the rescue when no answer looms on the 
horizon.Particularly, GPUs are showing great benefits in 
terms of performance and power consumption. The ratios 
compared with CPUs are expected toincrease even more as 
long as the problem size keeps growing and GPU 
microarchitectures take the next step forward. Moreover, the 
novel interest of governments in green computing makes 
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mandatory developsscientific power-aware applications that 
use all hardware resources at minimum power-budget.  
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José M. Cecilia

Bioinformatics and High Performance Computing Research Group (BIO-HPC),
Computer Science Department,
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Abstract. Ant Colony Optimisation (ACO) is a bio-inspired population-
based metaheuristic which emulates the ant colony’s behavior to solve
problems computationally. Indeed, it is a swarm-based algorithm as it
needs the interactions among all ants to provide good solutions to a par-
ticular problem. This collective computation is theoretically well-suited
for parallelisation as several ants run in parallel looking for solutions,
sharing their findings among them. In this paper, we design an ACO
metaheuristic to solve the Protein Folding Problem using a simplified
model (HP) that identifies amino acids like Hydrophobic (H) or Polar(P),
attending to the attraction or the rejection that the amino acid present
against water. We also propose a parallel ACO version applied to the HP
model on Graphics Processing Units (GPUs) using Compute Unified De-
vice Architecture (CUDA). Our results reveal up to 7x speed-up factor
compared to a sequential counterpart version. Results and conclusions
about this parallel version suggests a broader area of inquiry, where re-
searchers within the fields of Bioinformatics may learn to adapt similar
problems to the tupla of an optimization method and GPU architecture.

Keywords: ACO, HP, GPUs, HPC, CUDA

1 Introduction

Ant Colony Optimization (ACO) was originally introduced by Dorigo et al. [12].
This is a stochastic algorithm used to solve several computational problems by
simulating the behavior of an ant colony. As in the real life, an ant does not have
enough intelligence to solve a particular problem by itself, but all ants within
the colony can cooperate to solve problems efficiently. This algorithm can be
classified as Swarm Intelligence [20], or Metaheuristics [17], both of them belong
to a large number of algorithms within the umbrella of Soft Computing [27, 3].
ACO has been probed in a variety of problems, including vehicle routing [28],
feature selection [6], or autonomous robot [15].

Of particular interest to us is hydrophobichydrophilic (HP) model introduced
by Dill [8] to reduce the protein folding complexity. This model assumes that the
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hydrophobic interactions make an important contribution to the free energy of
the folding process, so a protein is modeled as an specific sequence of hydrophobic
(H for nonpolar) or hydrophilic (P for polar) monomers. The optimal solution
to this model is the conformation with more number of adjacencies between H’s
that originally were not contiguous. This problem is a NP-complete optimization
problem according to [2].

Due to the relevance of Protein Folding Problem and the effectiveness of
the HP model, intensive research work in this line has been recently developed.
Therefore, several approaches based on the application of different optimization
methods are described in literature including Monte Carlo methods [25], evolu-
tionary algorithms [24, 16], and particle swarm optimization [21], just to name
a few.

The choice of model and its associated algorithm is mainly motivated by the
required objectives, but it is also constrained by the computer hardware charac-
teristics attainable in the relevant time frame. The role of the software developer
is increasingly important as their algorithms are expected to handle a soft bal-
ance between performance, power consumption and the quality obtained in the
results. About performance, developers have to test different implementations,
considering which code fits perfectly with the hardware platform where they run
their codes. About power consumption, this issue is increasingly importance spe-
cially in large clusters [23]. Finally, developers have to take care about quality
due to the inherit stochastic nature of ACO, so the goal of ACO is to reduce
drastically the computation time maintaining the quality of the results.

This paper shows the parallelisation of ACO metaheuristic on Graphics Pro-
cessing Units to solve the Protein Folding Problem using HP model. Our im-
plementation leads to factor gains exceeding 7x as applied to the protein fold-
ing when compared to its sequential counterpart version running on a similar
single-threaded high-end CPU. Moreover, an extensive discussion focused on dif-
ferent implementation paths on GPUs shows the way to deal with parallel graph
connected components. The rest of the paper is structured as follows: First, a
description of ACO and HP are introduced, next we describe the process used to
implement the parallel version, giving details of our design. Then, preliminary
experimental results are shown to finish with some conclusions and directions
for future work.

2 Methodology

This section describes HP model for the protein folding as well as the way we
adapt the ACO algorithm to optimize this problem. Moreover, we briefly re-
view the main characteristics of CUDA for those who are not familiar with this
programming model.

2.1 Description of HP model

HP model for the protein folding problem was introduced by Dill et. al [8],
and it has been widely used to predict protein structures, like [1, 4, 22]. In HP
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model each protein sequence is represented as a string A = a1, a2, .., an, where
ai ∈ H,P and 1 ≤ i ≤ n. A conformation of A is defined by a sequence of fold
directions starting from the lattice site occupied by the first amino acid a1. The
different protein conformations are restricted to self-avoiding paths on two or
three dimensions. Most protein structure prediction methodologies assume that
the native state of the protein is defined by the lowest value of the Gibbs free en-
ergy what is estimated by a specific scoring function, which strongly depends on
the coarse-grained or all-atom model used for representing the protein structure
[9].

In HP model, the energy of a conformation is defined by a scoring function
that assumes that the hydrophobic interactions make an important contribution
to the free energy of the folding process. The optimal solution to this model
will be the conformation with more number of adjacencies between H’s (topo-
logical contacts) that originally weren’t contiguous in the given sequence. Thus,
the Protein Folding Problem is translated into an optimization problem as fol-
lows: Given an amino acid sequence A = a1, a2, .., an, find an energy minimizing
conformation Co.

ECo = min{E(C)∀C} (1)

Where C is a valid conformation of the string A and E(C) is defined by

EC =
∑

i,j

e(ai, aj) (2)

where

e(ai, aj) =

{
−1 if ai, aj = HH and they form a topological contact
0 otherwise

Therefore, the objective function for the HP protein folding problem is defined
by Eq. 2, and its values will be referred as scoring values. The goal of our parallel
version of ACO is the computation of the conformations which achieve minimum
values of the energy function according to Eq. 2.

2.2 Ant Colony Optimization for the protein folding based on HP
model

Ant Colony Optimization (ACO) [11, 7, 13] is based on foraging behavior ob-
served in colonies of real ants. The method generally uses simulated ”ants”
(i.e., mobile agents), which first construct tours or paths on a network structure
(corresponding to solutions for a problem), and then deposit ”pheromone” (i.e.,
signaling chemicals) according to the quality of the solution generated. The algo-
rithm takes advantage of emergent properties of the multi-agent system, where
positive feedback (facilitated by pheromone deposition) quickly drives the pop-
ulation to high quality solutions.

The original ACO method (called the Ant System [12]) was developed by
Dorigo in the 1990s, and this version (or slight variants thereof, such as the MAX-
MIN Ant System (MMAS) [26]) is still in regular use [5, 19, 14]. The Ant Sys-
tem (AS) algorithm is divided into two main stages: Conformation construction
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and Pheromone update. Conformation construction is based on m ants building
protein conformations in parallel. Those protein conformations are constructed
based on a probabilistic action choice rule, called the random proportional rule
in order to decide which position to place the next amino acid (restricted to H
or P). The probability for ant k, placed at position i, of amino acid j is given
by the equation 3

pki,j =
[τi,j ]

α
[ηi,j ]

β

∑
l∈Nk

i
[τi,l]

α
[ηi,l]

β
, if j ∈ Nk

i , (3)

where ηi,j = Ci,j is a heuristic value that represents the number of non-
contiguous H-H contacts, α and β are two parameters which determine the rela-
tive influences of the pheromone trail and the heuristic information respectively,
and Nk

i is the feasible neighbourhood of ant k when at position i. This latter
set represents the set of positions that ant k has not yet visited; the probability
of choosing a position outside Nk

i is zero (this prevents an ant returning to a
position, which is not allowed in the HP model). By this probabilistic rule, the
probability of choosing a particular edge (i, j) increases with the value of the
associated pheromone trail τi,j and of the heuristic information value ηi,j . The
random proportional rule ends with a selection procedure, which is done anal-
ogously to the roulette wheel selection procedure of evolutionary computation
(for more detail see [10], [18]). Each value ταi,jη

β
i,j of a position j that ant k has

not visited yet determines a slice on a circular roulette wheel, the size of the slice
being proportional to the weight of the associated choice. Next, the wheel is spun
and the position to which the marker points is chosen as the next position for ant
k. Furthermore, each ant k maintains a memory, Mk, called the tabu list, which
contains the positions already visited. This memory is used to define the feasible
neighbourhood, and also allows an ant to both to compute the conformation’s
score T k it generated, and to retrace the path to deposit pheromone.

After all ants have constructed their protein conformations, the pheromone
trails are updated. This is achieved by first lowering the pheromone value on all
edges by a constant factor, and then adding pheromone on edges that ants have
crossed in their conformations. Pheromone evaporation is implemented by

τi,j ← (1− ρ)τi,j , ∀(i, j) ∈ L, (4)

where 0 < ρ ≤ 1 is the pheromone evaporation rate. After evaporation, all
ants deposit pheromone on their visited edges:

τi,j ← τi,j +

m∑

k=1

∆τki,j , ∀(i, j) ∈ L, (5)

where ∆τij is the amount of pheromone ant k deposits. This is defined as
follows:

∆τki,j =

{
1/Ck if e(i, j)k belongs to T k

0 otherwise
(6)
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where Ck, the score of the conformation T k built by the k-th ant, is computed
as the sum of number of non-contiguous H-H contacts belonging to T k. According
to equation 6, the better an ant’s conformation, the more pheromone the edges
belonging to this conformation receive. In general, edges that are used by many
ants, receive more pheromone, and are therefore more likely to be chosen by ants
in future iterations of the algorithm.

2.3 CUDA programming model

Before we discuss our parallel versions, we briefly review the main characteristics
of CUDA, for the benefit of readers who are unfamiliar with the programming
model. CUDA is based on a hierarchy of abstraction layers; the thread is the
basic execution unit; threads are grouped into blocks, each of which runs on
a single multiprocessor, where they can share data on a small but extremely
fast memory. A grid is composed of blocks, which are equally distributed and
scheduled among all multiprocessors. The parallel sections of an application are
executed as kernels in a SIMD (Single Instruction Multiple Data) fashion, that
is, with all threads running the same code. A kernel is therefore executed by
a grid of thread blocks, where threads run simultaneously grouped in batches
called warps, which are the scheduling units.

3 Parallel Ant Colony Optimization on GPUs for the HP
protein folding

This Section summarizes the parallelization process of the Ant Colony Optimiza-
tion as applied to the HP protein folding using CUDA. Algorithm 1 shows Single
Program Multiple Data (SPMD) pseudocode for the AS. Firstly, all AS struc-
tures for the HP protein folding problem (Conformation matrix, number of amino
acids,...) are initialized. Next, the conformation construction and pheromone up-
date stages are performed until the convergence criterion is reached (number of
iterations in our case). Both stages are executed by each ant and it can be re-
peated several times from the beginning to restart the computation. This restarts
are implemented to avoid stalling in local optimum.

Algorithm 1 Sequential pseudocode of ACO-HP

1: for each epoch do
2: for each ant do
3: conformationConstruction()
4: updatePheromoneMatrix()
5: end for
6: end for

In what follows, we describe the parallelization approach for both main ker-
nels of ACO algorithm: Conformation construction and Pheromone Update.
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3.1 Conformation construction parallelization

The ”traditional” task parallelism approach to conformation construction is
based on the observation that ants run in parallel looking for the best pro-
tein conformation they can find. Therefore, any inherent parallelism exists at
the level of individual ants. To implement this idea of parallelism using CUDA,
each ant is identified as a CUDA thread, and threads are equally distributed
among CUDA thread blocks. Each thread deals with the task assigned to each
ant; i.e., maintenance of an ants memory (list of all visited positions, and so on)
and movement which is mainly based on the random proportional rule previously
explained.

3.2 Pheromone update parallelization

The final stage in the ACO algorithm is pheromone update, which comprises
two main tasks: pheromone evaporation and pheromone deposit. The first step
is quite straightforward to implement in CUDA, as a single thread can indepen-
dently calculate the Eq. 4 for each entry of the pheromone matrix, thus lowering
the pheromone value on all edges by a constant factor.

Ants then deposit different quantities of pheromone on the edges that they
have crossed to create their conformations. As stated previously, the quantity of
pheromone deposited by each ant depends on the quality of the protein confor-
mation found by that ant. This kernel allocates a thread per each amino acid,
which is placed at different positions. Each ant generates its own private con-
formation in parallel, and they may place an amino acid into the same position
as another ant. This fact forces us to use atomic instructions for accessing the
pheromone matrix.

4 Experimental Results

This section briefly shows the experimental results obtained with our implemen-
tation. First of all we review our experimental set up. Then we proceed with an
evaluation of both sequential and parallel versions before we present the exper-
imental results.

4.1 Hardware environment

During our experimental study, we have used the following platforms:

– On the CPU side: Four Intel Xeon X7550 processors running at 2 GHz
and plugged into a quad-channel motherboard endowed with 128 Gigabytes
of DDR3 memory.

– On the GPU side: GPU NVIDIA Tesla Kepler K40c with 2.880 cores,
(15 multiprocessors with 192 cores each), running at 880 MHz, offering a
processing power up to 5.068 GFLOPS. It also have 12 GB of GDDR5 RAM
with ECC capability and a buswidth of 384 bits, giving a bandwidth of 288
GB per second.
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Table 1. Hardware Description

Vendor and type
Family
Class
Model
Year

Intel CPU
Haswell
Xeon
X7750
2015

NVIDIA
Kepler
Tesla
K40c
2014

Processing elements

Cores per multiprocessor
Number of multiprocessors
Total number of cores
Clock Frequency (MHz)

(does not
apply)

8
2000

192
15

2880
880

Maximum number of GPU threads
Per multiprocessor
Per block
Per warp

(does
not

apply)

2048
1024

32

SRAM Memory
(per multiprocessor in GPU)

Shared (only GPU)
L1 Cache
(Shared + L1)

32 KB L1D
and
32 KB L1I

16 or 48 KB
48 or 16 KB

64 KB

L2 Cache
L3 Cache

(shared by all cores)
256 KB
16 MB

1536 KB
(d.n.a)

DRAM Memory

Size (MB)
Speed (MHz)
Width (bits)
Bandwidth (GB/s)
Tecnology

131072
2x666

256
42.66

DDR3

11520
2x3004

384
288.34

GDDR5

CUDA Compute Capabilities (d.n.a.) 3.5

Table 1 shows a detailed descriptions of all these platforms. Moreover, we use
gcc 4.8.2 with the -O3 flag to compile on the CPU, and the CUDA compiler/driver-
/runtime version 6.5 to compile and run on the GPU.

4.2 Profiling

This section briefly shows the performance analysis for both GPUs and CPU
codes. The profiling is performed with Microsoft Visual Profiler for the sequential
code, and with NVIDIA Visual Profiler for the CUDA code. Figure 1 shows the
sequential code profiling where the Conformation Construction stage takes more
than half of total computation time, this function is the responsible to create a
valid conformation for each ant. In second position is the pheromone stage which
is actually parallelized as well.

The table 2 summarizes all the kernels implemented in the new parallel code,
with theirs occupancy rate. All kernels have a high occupancy rate.

4.3 Execution results

This section shows our experimental results from several points of view. Firstly,
we evaluate the scalability of our parallel implementation, varying the number
of ants from 256 to 8192 ants (see Table 3). In the conformation construction
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Fig. 1. Main functions for our ACO implementation

Table 2. Kernel occupancy

Function Name Duration (µs) Occupancy

conformationConstruction Cuda 1.888.756,607 62.50%

startPheromoneMatrix Cuda 65.182,431 100%

pheromoneVaporize Cuda 51.420,896 100%

stateVectorGenerator 1.198,016 75%

updatePheromoneMatrix Cuda 51,904 100%

iamax kernel 8,479 100%

updatePheromoneMatrix BestSolution Cuda 5,216 100%

stage, each ant is identify to a CUDA thread and those threads are equally
divided into blocks. Therefore, the number of threads per block depends on
the number of ants set. Our algorithm prevents this situation by setting our
empirically demonstrated optimum thread block layout for each case. Whenever
the number of ants is large enough, the best configuration is for 256 threads per
block.

Table 3 shows a great scalability along with the number of ants. However,
it also shows that with a low number of ants, sequential code run even faster
than the parallel version. It is due to the extra charge of transferring of data
between host and device, in these cases, CPU can support the charge of the
complexity of the problem in order to maintain advantage from the parallel
implementation. But, in the other hand, as soon as we increment the number of
ants, the sequential code experiments an exponential increment of time, unlike
the CUDA version. This is exactly what we expect as the data parallelism in
this problem is not very high, besides, we have implemented the kernel with
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more time consumption ”conformationConstruction()”, and we established the
association from one ant to one thread, our benefits become higher when we
increase the number of ants.

Table 3. Execution time (in seconds) for both: sequential and CUDA implementations
of HP protein folding problem by varying the number of ants.

Execution Time (sec.)

Number of Ants Sequential Version CUDA Version

256 16.188 53.2158

512 30.114 53.4919

1024 59.035 53.891

2048 117.434 53.2006

4096 234.533 57.8629

8192 483.835 67.3611

Table 3 shows the execution times in seconds for both implementations we
have developed in this work. These experimental results are obtained by using
as a benchmark the ”1tuk” protein which contains up to 67 amino acids in a 3-
D fashion. Moreover, ACO parameters include the following: 1000-independent
ACO runs, α = 1 and β = 3.

Fig. 2. Execution time in seconds for the execution of sequential and CUDA ACO
implementations for different proteins that have different number of amino acids.
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Figure 2 shows the execution time fixing the number of ants (up to 2048),
and varying proteins in order to test the algorithm with several number of amino
acids. It is noteworthy to point out that the parallel version is faster than the
sequential counterpart version in all the proteins tested. In this case, when the
number of amino acids is increased, the differences between sequential and par-
allel version get closer, this is for the same reason that previously was presented,
since we established the association of one thread to one ant, our benefits be-
come higher when the number of ants is increased, beating the sequential code
by a wide margin.

5 Conclusions and outlook

Ant Colony Optimization (ACO) belongs to the family of population-based
metaheuristics that has been successfully applied to many NP-complete prob-
lems. In this work, we present a parallel version of ACO algorithm as applied to
the protein folding problem on Graphics Processing Units. We use a well-known
coarse grained HP model that classifies amino acids into Hydrophobic (H) or Po-
lar(P), attending to the attraction or the rejection that the amino acid present
against water. We identify the natural parallelism of ACO; i.e. ants running in
parallel to find out a solution with threads in the cuda programming model. Our
experimental results leads performance gains up to 7x speedup factor compared
to its sequential counterpart version.

The tupla ACO and protein folding on GPUs is still at a relatively early
stage, and we acknowledge that we have tested a relatively simple variant of the
algorithm and the protein model. But, with many other types of combinations
still to be explored, this field seems to offer a promising and potentially fruitful
area of research. Especially due to the nature of the problem, this is not a
problem with a lot of data to compute, only 4 (in 2 dimensions) or 6 (in 3
dimensions) operations we can do simultaneously. However, some algorithmic
improvements may be introduced to enhance performance. Among them, we may
highlight to provide a data-parallelism design that takes advantage of vector-
fashion execution in current processor architectures.

Acknowledgements

This work has been funded by grants from the Fundación Séneca of the Región
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26. Thomas Stützle and Holger H Hoos. Max–min ant system. Future generation
computer systems, 16(8):889–914, 2000.
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Caṕıtulo 3

Resultados

Este caṕıtulo resume los resultados más relevantes obtenidos durante la elaboración
de la tesis, aśı como las conclusiones derivadas de la misma y caminos futuros a
explorar. También se proporcionan los datos relativos a la calidad de las publicaciones
que componen esta tesis.

3.1 Resultados

En primer lugar, y por comenzar cronológicamente con los art́ıculos incluidos en la tesis,
se destacan los resultados obtenidos del art́ıculo [19]. Este art́ıculo es el que posibilita la
primera toma de contacto con el Ant Colony Optimization, la cual sirve para conocer el
algoritmo en profundidad y aprender cuáles son sus etapas más cŕıticas que concentran
la mayor carga computacional. Este conocimiento es fundamental para el desarrollo
de la tesis, y además, sirve para contrastar la ejecución de las distintas versiones del
algoritmo en diferentes plataformas, comparando entre plataformas de AMD, NVIDIA
e INTEL. Se obtienen resultados que concluyen que la implementación que obtiene
mejores resultados en los tests es la de CUDA, frente a la migrada a OpenCL y frente
a la secuencial ofrecida por M.Dorigo y T.Stützle en [13].

Una vez analizado y diseñado la paralelización del algoritmo ACO en aceleradores,
y demostrado que las GPUs de Nvidia es la alternativa más eficiente de las estudiadas,
nos planteamos cómo escalar a un clúster heterogéneo basado en CPUs y GPUs de
Nvidia para abordar problemas que requieran un ingente número de computaciones.
En este art́ıculo [27], se propone un escenario de supercomputación donde el clúster
heterogéneo puede tener GPUs de diferentes capacidades computacionales (diferencias
substanciales llegando hasta 4x). En este entorno, se plantean estrategias de balanceo
de carga para analizar el impacto que puede alcanzar en el tiempo de ejecución y en
la calidad de los resultados. Es importante destacar que esto no es únicamente un
resultado teórico, y en el art́ıculo se muestran los resultados que sustentan esta teoŕıa,
aśı como la implementación para llevar a cabo estas estrategias, basadas en MPI y
OpenMP.

Si bien en [19] se manifiesta una inquietud por el consumo energétio, que se define
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como uno de los nuevos cuellos de botella existentes, con la inclusión de plataformas
más orientadas al consumo que al rendimiento como la APU frente a los servidores
de alta gama, es en el art́ıculo [27] donde esta inquietud por el consumo energético
llega a cotas más altas, realizando mediciones de consumo en la ejecución en clústeres
heterogéneos. Estos resultados también se muestran en el art́ıculo, realizando cambios
en la frecuencia de reloj a la que trabajan las tarjetas medianto el mecanimso hardware
GPU BoostTM, (sólo para tarjetas NVIDIA a partir de la K40 de la familia Kepler,
motivo por el que nos centramos en clústeres basados en NVIDIA), dichos cambios de
frecuencia se analizan para contrastar el consumo energético de las distintas tarjetas a
las diferentes frecuencias soportadas.

Se puede considerar que una de las aportaciones de esta tesis es el planteamiento
de diferentes estrategias para las ejecuciones en clústeres heterogéneos, (reinicios y
búsqueda intensiva), con las que se mantienen todos los recursos computacionales
trabajando en su totalidad, y con las que se mantienen o incluso mejoran la calidad
final de las soluciones aportadas por los algoritmos, tal y como se muestra en el art́ıculo.

El último de los art́ıculos de los que consta esta tesis [28], muestra la conciencia que
tienen los investigadores en el uso de recursos computacionales de alto rendimiento en
sus investigaciones, usándolos en problemas reales y complejos, no sólo para benchmarks
sintéticos. Las conclusiones de esta investigación, es que sólo aquellos investigadores
con un perfil tecnológico más marcado, son los que muestran mayor inquietud en los
desarrollos paralelos y en el uso de plataformas de alto rendimiento, a pesar de estar más
que contrastado los beneficios que estos entornos ofrecen. Por otro lado, este hecho abre
las puertas a futuros desarrollos en este campo para cualquier otro problema diferente
al planteado en el art́ıculo del plegamiento de protéınas.

Fuera de lo que son los art́ıculos del compendio, como ya se destacó con anterioridad,
también se incluye una comunicación en un congreso internacional [29], y la aportación
con la que este art́ıculo contribuye es la de contrastar todos los conocimientos teóricos
adquiridos sobre el algoritmo, a un problema real como el plegado de protéınas.
Concretamente, esta motivación es plasmada en una implementación en CUDA del
algoritmo ACO, aplicada al plegado de protéınas por medio de un modelo simplificado
denominado H-P y en el que se consiguen aceleraciones de hasta un factor de 7x.
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3.2 Conclusión y v́ıas futuras

En esta sección del documento se presentan las conclusiones de esta tesis doctoral. Es
importante tener en cuenta que el desarrollo de una tesis doctoral no debe ser un fin
en śı mismo, sino una puerta que se abre al área de la investigación, y con la que se
pueden sentar las bases de conocimiento necesario para iniciar una carrera investigadora
fruct́ıfera, por lo que, igual de importante deben ser los resultados conseguidos, que las
conclusiones y v́ıas futuras del trabajo para seguir investigando. La primera toma de
contacto con el algoritmo Ant Colony Optimization en [19] se considera fundamental,
no sólo para el desarrollo de la tesis, sino como la obligada adquisición del conocimiento
necesario por parte del doctorando del algoritmo en profundidad, que debe acompañarle
durante el resto de su carrera investigadora.

Uno de los puntos más motivantes para futuros desarrollos, es que los resultados
obtenidos son alentadores. Un claro ejemplo son las estrategias de ejecución planteadas
en [27], las cuales son portables a cualquier ejecución que se plantee en entornos de
ejecución similares. De hecho, una de las posibles v́ıas de ampliación para continuar
las investigaciones desarrolladas durante esta tesis, es trasladar estas estrategias a
la implementación paralela de ACO sobre el modelo H-P realizada en [29]. Si los
resultados son como los conseguidos en [27], podremos mejorar tanto en rendimiento
como en calidad en los resultados. Siguiendo en esta v́ıa, aprovechando las nuevas
implementaciones de las que disponemos tras la realización de esta tesis, se plantea
la posibilidad de escalar los algortimos diseñados a clústeres heterogéneos no sólo de
GPUs de NVIDIA, sino a clústeres que cuentan con tarjetas NVIDIA y AMD.

A continuación se muestra una serie de ĺıneas de investigación que se encuentran en
v́ıas de desarrollo, manteniendo una ĺınea continúısta con la presentada en este trabajo,
concretamente con el objetivo 1:Análisis, diseño y optimización del ACO en GPUs,
estas ĺıneas son:

Se plantea la optimización algoŕıtmica del ACO en sus fases más costosas, la
construcción del tour y la actualización de feromonas.

• Realizar un estudio de la fase de actualización de feromona, en la que se realiza
tanto el depósito como la evaporización de feromona, haciéndose prioritario el uso
de instrucciones atómicas para mantener el rigor en las actualizaciones debido a
las condiciones de carrera que pueden plantearse en el patrón de acceso. Dicho
estudio se plantea en base a diferentes plataformas, en las cuales las unidades
atómicas son implementadas con distinto acierto, y con latencias diferentes.

• Otra de las v́ıas futuras que se encuentran en un avanzado estado de desarrollo
es una nueva propuesta para la fase de selección de la siguiente ciudad a visitar
por una hormiga, Selection Procedure. Tradicionalmente, el método de selección
utilizado ha sido el de la ruleta, Roulette Wheel o Método de MonteCarlo, que
reproduce la información heuŕıstica que se mantiene en la estrucutra choice info,
y ampliamente utilizado en muchos de los algoritmos evolutivos. El primer
acercamiento en la literatura para la paralelización de este método puramente
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secuencial es en [10], donde se propone un método denominado I-Roulette que es
totalmente paralelo. La nueva propuesta que se ha desarrollado, es un algoritmo
al que se le llama SS-Roulette, en mención a los patrones Scan-Stencil, que son
los que usa en su implementación, y que, además de ser del orden de 19x-45x
veces más rápido, reproduce la información heuŕıstica contenida en choice info
de una manera mucho más exacta.

• Tambien se está desarrollando un estudio en cuanto a la granularidad en el diseño
del algoritmo. Esto es, si obtenemos mejores resultados mapeando en el algoritmo
una hormiga a un bloque, o una hormiga a un warp, (Unidad de planifiación en
cuda), o, lo que es incluso más interesante, intentar diseñar un cambio en el
tamaño del warp mediante las nuevas funciones que nos ofrece CUDA 8.0, para
ver si un tamaño mayor de warp al que está diseñado en la arquitectura de
NVIDIA puede ofrecernos alguna ventaja en este tipo de algoritmos.

Otra de las v́ıas futuras para esta trabajo es la implementación del algoritmo para
otros procesadores vectoriales, dado que todas las aportaciones que se realizan son en
el sentido de vectorizar el algoritmo para aprovechar al máximo los recursos hardware
de estas nuevas plataformas. Concretamente, se considera el nuevo procesador Intel
Xeon Phi como un candidato a ejecutar el algoritmo y contrastar los rendimientos
que se obtienen en esta plataforma. De igual manera, existen actualmente entornos
virtualizados de GPUs, tales como rCUDA [16], con los que se pretende paliar tanto
el consumo energético como reducir el coste para estos entornos heterogéneos de altas
prestaciones, puede resultar muy interesante comparar los resultados de rCUDA, con
otros clústeres como con los que se han trabajado en esta tesis.

Para plantear nuevos retos en la aplicación real del algoritmo al campo cient́ıfico,
una vez que se estudia un problema como el del plegamiento de protéınas, se presentan
varias posibilidades de actuación, existen multitud de modelos de entre los cuales, se
ha elegido el modelo H-P, pero se pueden trasladar las ideas a otras implementaciones
mediante otro tipo de modelos que simulen de manera más precisa el comportamiento
del plegado de protéınas. Otro de los objetivos impĺıcitos de una tesis doctoral, aunque
no en su desarrollo, sino como un fin último, es la divulgación del conocimiento cient́ıfico
al público en general, quizá por el marcado perfil docente del doctorando, este punto
se considera de especial interés, y se plantea el objetivo de la divulgación del área
cient́ıfico que ha formado parte del estudio en el trabajo, el plegado de protéınas, que
sigue siendo un reto en la actualidad para la bioloǵıa molecular, y con el que se tiene la
certeza de poder conseguir logros de relevancia acercando el problema a la sociedad y a
la comunidad docente, por ejemplo por medio de la implementación de una aplicación
móvil que, partiendo de una gamificación en este área, acerque al público a un mayor
conocimiento del problema en cuestión. Este es un punto en el que ya se han realizado
los primeros pasos, participando en concurrencia de proyectos nacionales para obtener
los recursos necesarios para su desarrollo, partiendo de un prototipo funcional con un
nivel de madurez tecnológica TRL 6.
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3.3 Datos relativos a la calidad de las publicaciones

En este apartado se aportan todos los ı́ndices principales de calidad de las revistas en
las que han sido publicados los art́ıculos que componen el compendio de la presente
tesis doctoral.

3.3.1 Comparative evaluation of platforms for parallel Ant
Colony Optimization - The Journal of Supercomputing

Con las siguientes figuras se aportan los datos relativos a la calidad de la revista The
journal of Supercomputing, en la que fue publicado el art́ıculo Comparative evaluation of
platforms for parallel Ant Colony Optimization., primero de los art́ıculos que conforman
la presente tesis doctoral.

JOURNAL OF SUPERCOMPUTING
ISSN: 0920-8542
SPRINGER
VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS

Go to Journal Table of Contents  Go to Ulrich’s

Titles
ISO: J. Supercomput.
JCR Abbrev: J SUPERCOMPUT

Categories

Languages
ENGLISH

12 Issues/Year;

USA COMPUTER SCIENCE,
HARDWARE & ARCHITECTURE -
SCIE;
COMPUTER SCIENCE, THEORY &
METHODS - SCIE;
ENGINEERING, ELECTRICAL &
ELECTRONIC - SCIE;

Figura 3.1: T́ıtulo y datos de la revista de publicación.

Key Indicators

2015 1,236 1.088 0.890 1.013 0.115 209 3.0 6.9 0.00432 0.298 99.52 0.49275 51.531

2014 912 0.858 0.648 0.884 0.168 279 2.9 6.7 0.00284 0.242 99.64 0.31765 44.579

2013 694 0.841 0.626 0.870 0.155 277 3.3 7.3 0.00217 0.248 99.64 0.23940 44.231

2012 580 0.917 0.727 0.867 0.188 224 4.2 8.4 0.00147 0.228 100.00 Not A… 49.286

2011 335 0.578 0.496 0.523 0.155 103 5.2 8.0 0.00145 0.238 100.00 Not A… 28.518
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Figura 3.2: Indicadores clave de los últimos cinco años.
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JCR Impact Factor

2015 23/51 Q2 55.882 47/105 Q2 55.714

2014 25/50 Q2 51.000 56/102 Q3 45.588

2013 29/50 Q3 43.000 47/102 Q2 54.412

2012 28/50 Q3 45.000 39/100 Q2 61.500

2011 37/50 Q3 27.000 68/99 Q3 31.818

JCR
Year

COMPUTER SCIENCE, HARDWARE &
ARCHITECTURE

R k Q til JIF P til

COMPUTER SCIENCE, THEORY & METHODS

Rank Quartile JIF Percentile

Figura 3.3: Factor de impacto de los últimos cinco años
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3.3.2 Dynamic load balancing on heterogeneous clusters for
parallel ant colony optimization - Cluster Computing

En las figuras 3.4-3.6 se reflejan los datos relativos a la calidad de la revista Cluster
Computing-The Journal of Networks Software Tools and Applications, en la que fue
publicado el art́ıculo Dynamic load balancing on heterogeneous clusters for parallel ant
colony optimization., otro de los art́ıculos que soportan este trabajo.

Cluster Computing-The Journal of Networks Software Tools
and Applications
ISSN: 1386-7857
SPRINGER
233 SPRING ST, NEW YORK, NY 10013

Go to Journal Table of Contents  Go to Ulrich’s

Titles
ISO: Cluster Comput.
JCR Abbrev: CLUSTER COMPUT

Categories

Languages
ENGLISH

4 Issues/Year;

USA

COMPUTER SCIENCE,
INFORMATION SYSTEMS - SCIE;
COMPUTER SCIENCE, THEORY &
METHODS - SCIE;

Figura 3.4: T́ıtulo y datos de la revista de publicación.

Key Indicators

2015 588 1.514 0.966 1.359 0.157 121 3.2 6.5 0.00130 0.329 100.00 0.14838 69.717

2014 425 1.510 0.969 1.353 0.094 106 4.9 7.2 0.00084 0.288 100.00 0.09409 73.552

2013 276 0.949 0.762 1.145 0.056 71 4.9 6.8 0.00097 0.421 100.00 0.10674 53.415

2012 274 0.776 0.758 0.848 0.111 27 6.7 8.0 0.00083 0.329 100.00 Not A… 44.515

2011 233 0.519 0.481 0.634 0.031 32 7.9 6.9 0.00080 0.302 100.00 Not A… 25.657
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Figura 3.5: Indicadores clave de los últimos cinco años.
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JCR Impact Factor

2015 50/144 Q2 65.625 28/105 Q2 73.810

2014 42/139 Q2 70.144 24/102 Q1 76.961

2013 74/135 Q3 45.556 40/102 Q2 61.275

2012 79/132 Q3 40.530 52/100 Q3 48.500

2011 101/135 Q3 25.556 74/99 Q3 25.758

JCR
Year

COMPUTER SCIENCE, INFORMATION SYSTEMS

Rank Quartile JIF Percentile

COMPUTER SCIENCE, THEORY & METHODS

Rank Quartile JIF Percentile

Figura 3.6: Factor de impacto de los últimos cinco años
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3.3.3 Soft Computing Techniques for the Protein Folding Pro-
blem on High Performance Computing Architectures -
Current Drug Targets

En las figuras 3.7-3.9 se muestran los datos relativos a la calidad de la revista Current
Drug Targets, en la que fue publicado el art́ıculo Soft Computing Techniques for the
Protein Folding Problem on High Performance Computing Architectures., el último de
los art́ıculos que conforman este compendio.

CURRENT DRUG TARGETS
ISSN: 1389-4501
BENTHAM SCIENCE PUBL LTD
EXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES

Go to Journal Table of Contents  Go to Ulrich’s

Titles
ISO: Curr. Drug Targets
JCR Abbrev: CURR DRUG TARGETS

Categories

Languages
ENGLISH

8 Issues/Year;

U ARAB EMIRATES PHARMACOLOGY & PHARMACY -
SCIE

Figura 3.7: T́ıtulo y datos de la revista de publicación.

Key Indicators

2015 4,547 3.029 2.996 3.341 0.795 146 5.3 6.4 0.01020 0.881 97.26 1.16208 70.784

2014 4,269 3.021 2.994 3.260 0.726 113 4.6 6.9 0.01078 0.881 97.35 1.20692 70.000

2013 4,328 3.597 3.495 3.558 0.635 159 4.5 7.2 0.01219 1.013 94.97 1.34364 79.883

2012 3,837 3.848 3.803 3.549 0.667 165 4.6 6.8 0.01244 1.066 0.00 Not A… 81.801

2011 3,376 3.553 3.526 3.692 1.335 170 4.2 6.7 0.01286 1.092 0.00 Not A… 79.119
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Figura 3.8: Indicadores clave de los últimos cinco años.
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JCR Impact Factor

2015 75/255 Q2 70.784

2014 77/255 Q2 70.000

2013 52/256 Q1 79.883

2012 48/261 Q1 81.801

2011 55/261 Q1 79.119

JCR
Year

PHARMACOLOGY & PHARMACY

Rank Quartile JIF Percentile

Figura 3.9: Factor de impacto de los últimos cinco años
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José M Cecilia. Parallel ant colony optimization for the hp protein folding problem.
In International Conference on Bioinformatics and Biomedical Engineering, pages
615–626. Springer, 2016.

[30] Mark Lundstrom. Moore’s law forever? Science, 299(5604):210–211, 2003.

[31] Andrew McAfee, Erik Brynjolfsson, Thomas H Davenport, DJ Patil, and Dominic
Barton. Big data. The management revolution. Harvard Bus Rev, 90(10):61–67,
2012.

[32] Gordon Moore. Moore’s law. Electronics Magazine, 38(8), 1965.

[33] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda. Queue, 6(2):40–53, 2008.

[34] NVIDIA. www.nvidia.es, 18 de Julio de 2016.

[35] Ibrahim H Osman and Gilbert Laporte. Metaheuristics: A bibliography. Annals
of Operations research, 63(5):511–623, 1996.

[36] Rafael S Parpinelli, Heitor S Lopes, and Alex Alves Freitas. Data mining
with an ant colony optimization algorithm. IEEE transactions on evolutionary
computation, 6(4):321–332, 2002.

[37] Maria Rodriguez-Fernandez, Jose A Egea, and Julio R Banga. Novel metaheu-
ristic for parameter estimation in nonlinear dynamic biological systems. BMC
bioinformatics, 7(1):1, 2006.



82 BIBLIOGRAFÍA
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