
 Current Drug Targets, 2016 1

 XXX-XXX/14 $58.00+.00 © 2016 Bentham SciencePublishers

Soft Computing Techniques for the Protein Folding Problem on High

Performance Computing Architectures.

Antonio Llanes
a
, Andrés Muñoz

b
, Andrés Bueno-Crespo

a
, Teresa García-Valverde

b
, Antonia

Sánchez
a
, Francisco Arcas-Túnez

b
, Horacio Pérez-Sánchez

a
, José M. Cecilia*

a

aComputer Science Department, Bioinformatics and High Performance Computing Research Group

(BIOHPC), Universidad Católica San Antonio de Murcia (UCAM). Campus de los Jerónimos, s/n Guadalupe

30107 (Murcia) - Spain.
bComputer Science Department, Universal Knowledge Enhancement by Multidisciplinary Implementation

(UKEIM), Universidad Católica San Antonio de Murcia (UCAM). Campus de los Jerónimos, s/n Guadalupe

30107 (Murcia) - Spain.
Abstract: The protein-folding problem has been extensively studied during the last fifty years. The understanding of the

dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more

effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been

developed by different researchers in order to foresee the three-dimensional arrangement of atoms of proteins from their

sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel

algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this

revision work the past and last tendencies regarding protein folding simulations from both perspectives;hardware and

software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as

which hardware platforms have been used for running this kind of Soft Computing techniques.

Keywords: Soft Computing, Protein FoldingProblem, Protein Structure Prediction, Parallel Computing, Distributed Computing,

Metaheuristics, High Performance Computing.

1. INTRODUCTION

1.1. Protein folding problem

A noteworthy interrelation exists at the molecular level

between the structure of a protein and its biological function,

and in biochemistry we can find a diversity of such

functionalities. It is well known that the mechanism by

which a protein exerts its biological function is directly

related to its native three-dimensional structure, which is

precisely codified on its sequence of aminoacids[1].

 Being able to solve this problem is of outstanding
importance since having access to the information related to
the structure of these biomolecules, allows for being able to
explain how bioactive compounds can modulate their
biological activity and therefore paves the way to the drug
discovery process.

 In addition, one can find many more sequences than
structural information, mainly due to the last advances in
high-throughput sequencing and personalized medicine
efforts [1-2]. Thus, a noticeable interest exists in the
development of methodologies that, exploiting only
information extracted from sequences, can predict in detail
the structure of proteins.

1.2. The simulation problem

 Finding accurate solutions of the PSP problem is very
challenging, and researchers have developed many different
approaches in order to solve it by means of computer
simulation. These simulation methods receive as input a

protein sequence and outputtheir predictions for the protein
structures.

 Existing computer simulation methods for the PSP
problem can be classified depending on:

 a) the degree of details used in the protein model that
undergoes the computer simulation:there are detailed all-
atom models that try to accurately represent and describe
bonded and non-bonded interactions present in the folded
protein structure. From the other side, coarse grain models
can also be considered. In the last decades, the first
theoretical hypotheses concerning protein folding, such as
those stated by Dill et al.[2] were proposed. Main underlying
ideas indicated that forces implied in the protein folding
process were related with the intercommunication between
their aminoacids. But recently, a theory that states that non-
bonded interactions significantly contribute to the dynamics
of this mechanism, is being accepted, and researchers are
showing interest to the use of very simple models of
proteinsand other biological macromolecules. In this context,
the study of these coarse grain models through computer
simulation techniques can yield interesting results when their
predictions are contrasted with empirical measurements.

 b) the scoring function used for the estimation of the
interactions between the elements of the protein
model:thismathematical function will mainly depend on the
type of protein model used, and for a given model, it might
contain different sets of parameters that describe the relative
intensity of the interactions between the different elements of
the protein model. Its derivation or construction depends
usually on physical theories or statistical analyses performed
on previously available protein structures.

2Current Drug Targets, 2016 Llanes et al.

 c) the algorithm used for the global optimization problem
of the scoring function: once a given protein model and
scoring function have been chosen, a optimization methodis
selected for working on the global optimization problem. It
concerns the search of the most optimal value of the scoring
function, since we assume that this value will correspond to
the native protein fold [1]. Here it is possible to use methods
that take into account the dynamics of the system, such as
Molecular Dynamics [3], or stochastic methods that try to
solve the optimization problem not taking into account the
dynamics of the system [4]. The former is more realistic, but
at the same time it is more computationally demanding,
whereas the latter is much faster, but by using it we lose
information about the evolution of the system.

 Once we have chosen a model, scoring function and
optimization algorithm, we can still consider what is the
fastest way to carry out the required simulations depending
on the available hardware architectures.

1.3. Combination of models, algorithms and HPC.

 The choice of model and its associated algorithm is
mainly motivated by the required objectives, but it is also
constrained by the computer hardware characteristics
attainable in the relevant time frame. One of the most widely
studied models of protein folding is the hydrophobic-
hydrophilic (HP) model introduced by Dill [2]. In the
description of the HP model, the different amino acids that
form the macromolecular chain can be seen as a discretized
conformation in a three-dimensional grid or lattice. Here,
one of the most relevant underlying assumptions is that
hydrophobic forces contribute considerably to the folding
process, and the protein chain is modeled as an array of
hydrophobic or hydrophilic chains (H or P for nonpolar and
polar, respectively). Then, the most optimal protein
conformation is the one that augments that number of
nonpolar residues that are contiguous. In this case the folding
process can be described as a minimization of the free-
energy of the system, and it can be considered as NP-hard
problems [5]. This implies that such problems can not be
efficiently processed by a computer (for insights we refer the
reader to [6,7]).

 Models and their associated algorithms should not be
selected in isolation though. They must be evaluated in the
context of the computer hardware environment they are
going to run on. Algorithms that are designed to leverage
maximum performance on a particular hardware architecture
could become less effective on a different hardware.
Therefore, the selection must be made carefully, and may
change over time [8]. This issue even grows exponentially
nowadays as we are witnessing the consolidation of
heterogeneous systems (i.e., systems that use more than one
kind of processors), mainly motivated for the exacerbated
power consumption in current microprocessors, and trying to
follow the wake of Moore’s law. Such heterogeneity is found
at different levels from laptops to large-scale computers like
supercomputers, clouds, etc, and also where it emerges
naturally is in the low-power devices market such as
smartphones, tablet and so on. [9]. This emergent landscape
of computation in the high performance computing market
offers new opportunities in the simulation of protein

structure prediction. However, the recent 2014 United States
Department of the Energy (DoE) report on top ten exascale
research challenges [8] shows as one of the main challenges
for next years the design of Exascale algorithms. It will
require redesigning, or even reinventing the algorithms used
in current scientific and engineering codes, and potentially
reformulating the science problems to leverage billion-way
parallel architectures.

 In this sense, Soft Computing techniques are designed to
deal with the difficulties which arise in real problems by
including several factors like several levels of imprecision
into the calculation and taking this into account to even
change the granularity of the problem or somehow relaxing
the goal of optimization at some point[10]. The source of
inspiration of Soft Computing is based on the natural
processes, trying to formalize such processes to solve a
particular task. Techniques within this field include neural
networks, genetic algorithms (GA), evolutionary algorithms,
etc., having many of them a common ingredient in their
definition: parallelism as the way of speeding-up simulations
and providing practical implementations for a feasible search
of a single, unified and parameterized solution.

 This review article shows the last tendencies on the
prediction of protein structure by computer simulation and
our perspectives for the forthcoming years. We focus on both
the Soft Computing techniques that have been applied to
coarse-grain protein models, such as the HP-model since it is
one of the most widely used coarse-grain models in the
literature, and also the underlying hardware and
programming models that have been used to execute those
algorithms. The paper is structured as follows: Section 2
briefly introduces the reader into the main concepts
underlying this review. Section 3 shows the Soft Computing
techniques applied to protein folding methods before
discussingin Section 4 about new trends in novel algorithms
and architectures related to this problem. The paper finishes
with some conclusions on the current state of the art for this
topic.

2. BACKGROUND

2.1. Benchmarks in protein structure prediction.

 In order to test the accuracy and convenience of PSP
methods it is necessary to have control data (benchmarks) so
that we can check whether our predictions are reliable or not.
If our particular PSP model, scoring function and algorithm
can reproduce the structure of proteins for which
experimental structural data is available, we can continue
forward and start to make predictions for sequences for
which structures are still unknown. It is therefore of
outstanding importance to test our PSP methods against all
possible available benchmarks.

 The field of PSP benchmarks can be usually divided into
experimental and synthetic ones. When working with
detailed atomic models, we will be able to compare them
with structural data from online public databases such as
Protein Data Bank (PDB) [11]. In order to test the accuracy
of protein structure prediction methods, the current “gold
standard” rule is to compare the predicted structure with the
experimental one, and calculate the RMSD (Root Mean

HPC & Protein Folding Current Drug Targets, 20163

Structure Deviation) between them. This is only possible
when protein structures have been obtained by experimental
methods such as X-ray crystallography, nuclear magnetic
resonance, or cryo electron microscopy, and deposited in
public access databases such as PDB.

 In the case of coarse grain models we have two options.
The first one is to convert them to all-atom models and then
compare with experimental structures from PDB, and the
second one is (when the first possibility does not exist) to
compare them with synthetic data obtained previously from
other researchers who have performed an exhaustive search
of the solution space of the problem.

 Lastly, and independently of the detail of the method
used, we might be also interested in benchmarking the
computational speed of our PSP method, depending on its
hardware implementation, programming language used, etc.
This is also very relevant since the computational
performance of the method, and the availability of
computational resources the researchers have access to, will
dictate the size of the systems we want to study.

2.2. Soft Computing techniques

 From the algorithmic point of view, traditional hard
computing techniques are based on three main objectives:
precision, certainty and rigor. These requirements make the
computational cost of such algorithms very costly,
particularly to deal with real problems where the input size
grows exponentially. Actually, this is the departure point of
Soft Computing that tries to overcome the main difficulties
in real problems, with the thesis that precision and certainty
are sometimes unapproachable, and thus it may include the
tolerance for imprecision and uncertainty [12,13]. Therefore,
Soft Computingcan be defined as the antithesis of what we
have called Hard Computing. We refer the reader to [10,14]
for a more detailed definition of Soft Computing.

 Although several classification of Soft Computing
techniques have been proposed in the literature [12,13],
Figure 1 shows a consensus among all of them. Since the
fuzzy boom at the beginning of 90’s, many methodologies
based on these techniques have been proposed in the
literature [15,16]. Although Soft Computingis a term
introduced by Zadeh in 1994 [17], previous work was done

by the definition of fuzzy sets [18]. Fuzzy sets are the
pioneer paradigm in Soft Computing.They have been
included in many other Soft Computingmethods to provide
hybrid methods. Among these new methods we may
highlight Neural Networks [19], Support Vector Machines
[20], Fuzzy Logic [12], Metaheuristics [21] (including
techniques such as Evolutionary Computation [22, 23] or
Swarm Intelligence [24]), to name just a few. There are a
large number of algorithms within the umbrella of Soft
Computing. They are applied to different fields such as
symbol and pattern representation to enrich knowledge
representation, machine learning for flexible knowledge
acquisition, and inference by flexible knowledge processing.
Moreover, Soft Computingtechniques can be offered as a tool
to interact with or they can be integrated in a larger
framework where they provide unified and hybrid
architectures.Soft Computing has been successfully applied
to solve problems within the field of bioinformatics [25-27].
However, the large data sets generated from biological
experiments and new high-throughput technologies make
mandatory that modern Soft Computing approaches will be
scalable across large-scale problems. In Section 3, we briefly
introduce the Soft Computingtechniques that have been
applied to the protein folding problem.With that in mind, this
paper focuses on the functional approximation or
randomized search part of Soft Computing(see Figure 1) as it
is gaining popularity during the last few years.

2.3 HPC platforms and programming models

 In what follows, we reprise and update our vision of the
High Performance Computing (HPC) arena, which was first
given in [28]. HPC techniques and platforms are being
applied for addressing many scientific challenges that would
be otherwise very difficult to solve. The number of
calculation required for this kind of scientific applications
requires large computing resources. Just to mention an
example, Anton is a supercomputer specially designed to
simulate protein movements that could aid the drug design
process [29].

 However, we are witnessing a revolution in this areaas
the Moore’s law that has driven the development of new
microprocessors in the last years [30,31], which is based on
the idea that the number of transistors in an microprocessor
would be doubled every two years, is running up against the
laws of physics [32,33]. While a new microprocessor
technology come up into the market, the industry has taken
the steady transition to heterogeneous computing systems
[34], with heterogeneity representing systems where nodes
combine traditional multicore architectures (CPUs) and
accelerators (mostly represented by GPU computing
movement [35]or Intel Xeon Phi cards [36]).Heterogeneity
limits system growing as it cannot be performed in an
incremental way anymore. In particular, concepts like energy
consumption, programmability, scalability, data location,
and reliability become challenges for tomorrow’s
cyberinfrastructure [37]. This Section summarizes current
trends in HPC platforms that are commonly used within the
field of Bioinformatics. Of particular interest to us
are,manycore architectures like Graphics Processing Units
(GPUs), clusters of computers also known as

Figure 1 - Classification of Soft Computing techniques

4Current Drug Targets, 2016 Llanes et al.

Supercomputers and cloud and distributed computing
architectures.

2.3.1 GPU computing

 Motivated by the computational demand of the
videogame industry, Nvidia introduced in 2006 a graphics
processing unit (GPU), codenamed CUDA (Compute
Unified Device Architecture), which made available the
computational power of those novel computing architectures
to the scientific community. Nowadays, they have become a
compelling alternative to the traditional architectures as they
deliver high rates of floating point performance and
massively parallelism at a very low cost, and thus
democratizing the high performance computing (HPC) arena
[38, 39].This movement was termed “GPGPU” which stands
for General-Purpose computation on Graphics Processing
Units. The GPGPU has promoted the use of this novel and
massively parallel architecture in a wide range of
applications, particularly in Bioinformatics, where
parallelism and arithmetic intensity are common
denominators in almost every application (we refer the
reader to GPU application catalog provided by Nvidia[40]).

 Following this trend almost all microprocessor
company(e.g. ATI/AMD, Intel, etc) have developed their
own hardware alternatives designed specifically
foraccelerating general purpose applications.Among them,
we may highlight Tesla-based GPUs from Nvidia,
Firestream is ATI/AMD alternative and finally the new Intel
Xeon Phicoprocessor which is based on Many Integrated
Core (MIC) architecture. Along with these hardware
components, those companies have also provided new
programming models to easily leverage the horsepower of
these emergent technologies.The first programming model
for GPGPU was CUDA [35] (Compute Unified Device
Architecture) provided by Nvidia that is specifically
developed for programming Nvidia’s GPUs. Nvidia has a
wide scientific community behind CUDA, and it offers
several educational and research communities to promote the
development of scientific applications with CUDA on
Nvidia's GPUs. ATI/AMDfirst offered a programming
model called Stream Computing which is not supported
anymore and Intel relies on vectorization instructions based
on X86programming. In 2008 the Khronos Group developed
an open standard for parallel programming on cross-platform
heterogeneous systems, called OpenCL[41]. OpenCL is an
attempt to provide a standard programming language that
allows multiplatform development on different devices like
GPUs, accelerators, multicore systems, etc.

 All of those novel programming models provide an easier
way to leverage massively parallel architectures. However,
programmers still have to deal with a new programming
paradigm, which is rather different to the traditional
sequential-basedarchitectures [42]. Moreover, those
computing architectures are nowadays plugged into the
motherboard through PCI Express bus. This fact provides
heterogeneous computers that may have a traditional CPU
and other computing devices like GPUs or accelerators. Each
of these processors have their own memory spaces, different
instruction set architectures and communication latencies.
Therefore, programmability here is not an easy task.

 Currently, the scientific community is looking for new
programming models and tools that hide those inherently
hardware particularities and provide an easier and faster way
to develop application on this new landscape of computation.
There are two different trends to provide such abstraction
layer. First, the execution of a given program efficiently on
different devices from a single source code [43,44]. Second,
the API development to extent traditional programming
languages like OMPSs for OpenMP [45],or OpenACCAPI
[46], which establishes several directives to specify loops
and regions of code in standard programming language such
as FORTRAN, C++, C.

2.3.2 Supercomputers

 High performance computer (also known as
Supercomputers) are those computers that are developed to
deal with great challenges within the industry and academia.
Statistics on supercomputers are provided in the TOP500 list
[34], where information about the number of systems
installed, the performance of each system or their location
among others is provided to manufactures and (potential)
users. Supercomputers within TOP500 are highly involved in
Bioinformatics research. For instanceTianhe-II and Titan,
two top supercomputers in this list, are heavily involved in
developing bioinformatics domain problems. Tianhe-II is
addressing the needs of genetic engineering and
biopharmaceutical simulations. Moreover, Titan is being
used for molecular similarity to provide a description of
membrane fusion. This is actually one of the main ways for
molecules to enter or exit from living cells. Other leading
examples are the supercomputer installed at the Leibniz
Supercomputer Center in Monaco (SuperMUC) and the Piz
Daint the CSCS/Swiss Bioinformatics Institute. The former
supercomputer is commonly used for running bioinformatics
applications like analysis of linkage disequilibrium in
genotyping. The later has been successfully applied to run a
challenge of evolutionary genomics based on calculating
selection events in genes achieving several orders of
acceleration.

 Supercomputers are adopting the use of accelerators to
speedup arithmetic intensive parts of the applications.
Actually, five of the ten fastest supercomputers in Top 500
list [34] include accelerators in their designs. Those
accelerators are basically limited to Intel Xeon Phi and
Nvidia GPUs architectures. However, these accelerators
increase the overall power consumption of the system which
is actually a big issue, particularly for large-scale datacenters
where Total Cost of Ownership is mainly influenced by the
power supply [47]. Indeed, the inclusion of these
accelerators can increase the power consumption of a cluster
node up to 30%.

 However, the total cost of ownership is not the only
concern to reduce overall power consumption in
supercomputers. Actually, this is now becoming mandatory
as the carbon footprint of those systems is actually very high,
and the reduction of carbon emissions is one of the main
challenges in the last 2015 United Nations Climate Change
Conference where the International Trade Union
Confederation has called for the goal to be "zero carbon,
zero poverty".For instance, the power consumption of TI

HPC & Protein Folding Current Drug Targets, 20165

supercomputers companies such as Google or Facebook,
consumed about 0.5% of the overall power consumption in
the world during 2005. If the cooling and power distribution
were also taken into account then the power consumption
increases up to 1% [48]. The high performance computing
community is trying to develop supercomputers and
infrastructures that reduce power consumption. Actually, the
GREEN500 list [49]shows the 500 most power efficient
supercomputers in the world. Indeed, we are envisioning a
shift from the traditional metrics like FLOPS (FLoating point
Operations Per Second) to FLOPS per watt.

 Virtualization techniques are placed as the main way to
reduce the overall power consumption in supercomputers, as
they enable to have several virtual machines running at the
same time in the same real hardware. Actually, datacenters
are adopting this new trend for several applications.Of
course, virtualization may have a performance impact. For
instance, Amazon Elastic Cloud Computing EC2offers a
virtual infrastructure of 26496 cores,
achieving484,2TeraFLOPS for the High Performance
Linpack benchmark, placing the cluster at position 101 in the
November 2014 Top500 list but this is actually a tradeoff the
scientific community has to deal with.

2.3.3 Cloud and distributed computing

 As previously explained, the TCO of having an in-
housesupercomputer is very high and it is not affordable for
small institutions [50]. Cloud computing is ubiquitous and
energy-efficient computer organization by its definition [51],
in which virtualization is the main ingredient to obtain great
energy reduction. In cloud computing platforms, services run
remotely in a ubiquitous and distributed computing set of
computers (a.k.a cloud) that may provide scalable and
virtualized resources. In this way, heavy workloads can be
migrated to other virtual nodes of the cloud, providing higher
levels of hardware utilization [52]. Cloud providers offer
their resources in a pay as you go fashion. Actually, it can be
seen as an alternative to physical infrastructures but this is
only useful for a specific amount of data and target execution
time.

 Cloud computing propose an on-demand scenario where
users only pay for the computational time usersutilize for
running their applications. There are several cloud
computing models: infrastructure as a service (IaaS),
platform as a service (PaaS), software as a service (SaaS),
and Data as a service (DaaS). Among them, IaaS is the most
commonly used model while the other may provide other
level of abstraction [53]. In the cloud, developers may use
several instances and thus they can create a parallel cluster
on demand. Like real hardware scenarios, those clusters can
be programmed using libraries such as the Message Passing
Interface (MPI). Those instances can be also used in a
batchprocessing mode, launching several instances of a
program and so on.

 Cloud computing platforms are very interesting for
bioinformatics practitioners mainly for the flexibility and the
cost-effectiveness. Truth be told, this actually depends on the
workloads they expect to run on the cloud but, in general,
small-medium bioinformatics laboratories, which may

perform bioinformatics analysis are moving to this
technology as they avoid cost and issues of having an in-
house computer infrastructure [54]. An alternative solution is
represented by Hybrid Clouds that have both the scalability
offered by cloud computing and the control and ad-hoc
customizations supplied by in-house computers [55].

 Those distributed solutions are evolving in the era of Big
Data to frameworks like Hadoopthat allows distributed
access to files. These frameworks are well suited for
distributed algorithms such as MapReduce [56]. MapReduce
is a programming environment to manage large data sets
with a parallel, distributed algorithm on a cluster. For
example, the PSIPRED [57] protein analysis workbench
leverages the Hadoop implementation of MapReduce to
launch several services to perform the execution of
prediction methods in a large-scale system. Moreover,
MapReduce has been also applied to provide an enhanced
framework where parallel genetic algorithms target the
protein folding in distributed environment [58].

 Finally, some efforts have been done in the volunteer
computing arena that is noteworthy to remark. Among them,
we may highlight Folding@Home [59] which is a volunteer
computing project that tries to solve the protein folding
problem by means of collective human knowledge.
Folding@Homehas been used in several medical
researcheslike to cure Alzheimer's disease, Huntington's
disease, and many forms of cancer, among other diseases.
This project is pioneer in the use of many novel computing
platforms such as Graphics Processing Units, CellBe
processor, multi and many core systems through MPI and
OpenMP language, as well as some smartphones for
distributed computing and scientific research [60].

 Kondow and Berlich [61] runs particle swarm
optimization (PSO) on cloud for the simulation of proteins
three-dimensional structure. They simulate all-atom force
field using ArFlock library, aimed at finding the folded state
of two proteins of different sizes starting from completely
extended conformations.

2.3.4. Multiagent systems

 Multiagent systems (MAS) can be also considered as a
platform to tackle Bioinformatics problems such as protein
folding. As defined in [62], they combine a flexible and
high-level paradigm with a technology developed at the
intersection between artificial intelligence and distributed
computing. A typical MAS is composed of several
autonomous entities –agents— that can communicate and
interact among them in a competitive or cooperative manner.
MAS are especially useful for simulation tasks, including the
behavior of biological systems [63], where the different parts
of the system have some individual features that distinguish
it from the rest.

 There are several works in the literature that have
adopted MAS to address the protein folding problem. For
example, a MAS using an independent energy model where
every amino acid is identifying with an agent is presented in
[64]. These amino-agents lay at the bottom level of the MAS
architecture, their positions being coordinated by a set of
cooperative agents in a higher level. Amino-agents

6Current Drug Targets, 2016 Llanes et al.

movements are based on Monte Carlo-like criterion and hill-
climbing strategy (to avoid local minimum). Coordination
agents act as orchestra director suspending amino-agents
movements when they are not improving a global strategy.
These coordination agents offer the possibility of designing
complex heuristics depending on external information and
on the search history. Thus, external knowledge from
databases can be injected to coordination agents to force
amino-agents to make movements oriented to improve the
energy results. Experimental tests performed in this MAS
show that the proposed coordination level always introduces
a better performance, but the energy function used is too
coarse to provide good biological model.

 Moreover, a MAS based on reinforcement learning for
solving bidimensional protein folding is showed in [65]. In
this case there are several basic agents trying to solve the
problem using the Q-learning algorithm [66] based on their
local knowledge and a reduced set of supervisor agents that
synchronize and coordinate the basic agents according to the
current best solution. Basic agents are distributed across
multiple processes/machines and they use a blackboard to
communicate with their supervisor agents. Authors claim
that this distributed proposal greatly reduces the
computational time employed in the training phase of the Q-
learning algorithm with respect to a non-distributed
approach. However, it must be further investigated how to
preserve the accuracy of the results using a MAS. Finally, in
[67] a competitive approach among agents is taken to
implement an architecture named Discovery Bus aimed at
modeling molecular design workflows. This MAS follows
the quantitative structure–property relationships (QSPR)
model to predict the properties of novel proteins.

 An excellent discussion of pros and cons when using
MAS in protein folding is given in [68]. The main advantage
of this approach resides in its flexibility: addition and
removal of agents could be done at run-time and therefore it
is possible to change the structure of the experiment (e.g.,
the protein’s structure). In practice, not only may the limit
conditions and the simulation constraints be changed
dynamically, but also elements from the structure could be
added and removed during the simulation. This fact
augments the potentialities of simulated experiments,
enabling a virtual manipulation of the system simulating the
protein folding, even when this is not possible in reality. This
property extends in silico experiments to in virtuo
experiments, i.e., not only enabling the change of values of
the parameters characterizing simulations, but also the
structure of the experiment during run-time in an easy
manner thank to MAS features. As for the main disadvantage
of the use of MAS in this topic, it has been criticized that
simulations performed by means of multiagent systems are
not totally validated against real data, diminishing their
credibility. Thus far, works in this area have focused on the
reliability of MAS proposals from a qualitative point of
view, showing that multiagent-based simulations are
tantamount to other approaches. However, a quantitative
validation must be performed to take MAS as a prominent
alternative to protein folding.

3. Implementation of protein folding methods.

 This section summarizes main contributions on the field
of Soft Computingapplied to the protein folding simulation.
Particularly, we focus on the functional approximation or
randomized search part of Soft Computing; i.e. Artificial
Neural Networks and Metaheuristics, applied to the protein
folding problem.

3.1. Artificial Neural Networks and SVM.

 Artificial Neural Networks (ANNs) have been widely
used in the protein folding field. Specifically, the most
relevant types of ANNs are the feedforward neural networks
[69] and recurrent neural networks [70]. ANN can learn
tasks without needing much prior knowledge, and moreover
they are tolerant to errors and noisy data. While the most
common use of ANNs in protein folding has been devoted to
detect secondary structures [71-73], they have been also
employed in other tasks such as predicting the
posttranslational modifications [74-76]; to identify
disordered regions [77]; to predict metal binding sites
[78,79]; to assign sub-cellular localization [80-
82];classification of proteins into functional classes [83];
reconstructing protein structures [84] and protein class
prediction [73,85], among others.

 Regarding the prediction task, classifying secondary
structure is an easy job for a neural network, as for example
to learn to distinguish between alpha-helices and beta-
strands models. This classification allows detecting the most
three-dimensional structures as they are based on secondary
ones. Although the alpha-helices and beta-strands is the main
approach in the prediction task, there are some other papers
that propose classifications among more than two classes
[70,86,87]. Regarding the databases used by neural network,
the most popular are the Protein Data Bank (PDB) [11] and
the Structural Classification of Proteins dataset (SCOP) [88].

 A major advance in the way in which the datasets are
treated is to add sequences that are homogeneous to those
that are being studying [89]. For example, given the same
family of proteins, they share similar structural and
functional features. For ANNs, this fact provides additional
information in the inductive learning process that improves
the task learning. This method is known as Evolutionary
Information, however to find these homogeneous sequences
is not trivial. For this research line, it is very popular the PSI-
BLAST program [90].

 Support Vector Machine (SVM) can be focused on the
same field of work than ANNs for protein folding
[86,88,91], although SVM presents a much better
performance for regression against classification in protein
folding recognition [92]. Furthermore, they have been used
to estimate the significance of the sequence-template
alignments [93] and protein secondary structure prediction
[94].

 It is worth mentioning that although neural networks
have been widely used for protein folding, they have not
been combined with high performance computing because
the prediction of secondary structure do not imply a large
computational complexity. However, new trends in neural

HPC & Protein Folding Current Drug Targets, 20167

networks such as Deep Learning [95] have called for
reconsidering high performance in the field of neural
networks due to its computational complexity. In this sense,
Deep Learning has been proposed to make use of graphical
processing units (GPUs) and CUDA parallel computing.
Hence, Deep Learning has been used for sequence-based
residue–residue contact prediction [96] and later for protein
secondary structure prediction [97]. These proposals have
been implemented using CUDAMat [98], a Python library
that provides methods of fast matrix calculations on CUDA-
enabled GPUs, providing high-level access to computing
cores of graphics processing units.

3.2 Metaheuristics.

 There are different approaches to classify metaheuristic
algorithms in the literature. A good review of metaheuristic
classification can be found in[99], depicted here inFigure 2.
This classification takes into account five different features
of such algorithms, namely their origins;the number of
solutions used at the same time; the way the objective
function is used; the neighborhood structure; and the use
they make of the search history.

 Depending on their origins, a new trend in designing
metaheuristics concerns nature-inspired methods. These
methods take as a source of inspiration biological or physical
principles. Nature-inspired methods are very attractive for
practitioners in high performance computing, as they are
inherently parallel in definition (e.g.they may be inspired by
a “swarm”-like schema that uses several agents to optimize a
function). Ants, bees and fireflies are only some examples of
populations that inspired algorithms based on their social
behavior. Those algorithms rely on swarm to deal with
complex problems [100,101]. Despite of this trend, in the
last part of this sectionare introduced the most important
non-nature inspired algorithms applied to the PSP problem,
such as local search methods.

 Regarding the number of solutions used at the same time,
we can find algorithms working with a single solution or
trajectory (e.g.,Tabu Search) or with the evolution of a set of
solutions (e.g., Genetic algorithms). On the other hand, some
metaheuristics define static objective functions that do not
change during the algorithm execution (e.g., Genetic
algorithms), whereas others may be modified during the
search trying to escape from local minima (e.g., Guided
Local Search).

 Metaheuristics may be also classified depending on their
neighborhood structure. The one-neighborhood structure
does not change the fitness landscape topology during the
execution, while in the various neighborhood search it is
possible to expand the search among different fitness
landscapes. Finally, the use of memory in the metaheuristic
is another discriminative feature, separating into algorithms
that take into account previous states to perform the next
action orthose that use a Markov process to decide the next
action only based upon the current state.

 In this paper we have adopteda classification of
metaheuristics based on origins as it is one of the most used
and easy to understand.

 Next sections review the main metaheuristics employed
in protein folding.

3.2.1.Nature-inspired metaheuristics

Ant Colony Optimization

 One nature-based method that is proving to be
increasingly popular is ant colony optimization (ACO)
[102,103].This algorithm is based on foraging behavior
observed in colonies of real ants, and it has been applied to a
wide variety of combinatorial problems [104, 105], including
vehicle routing [106], feature selection [107] and protein
function prediction [108]. The method generally uses
simulated “ants” (i.e., mobile agents), which first construct
tours or paths on a network structure (corresponding to
solutions to a problem), and then deposit “pheromone” (i.e.,
signaling chemicals) according to the quality of the solution
generated. The algorithm takes advantage of emergent
properties of the multi-agent system, in that positive
feedback (facilitated by pheromone deposition) quickly
drives the population to high-quality solutions.

 ACO algorithms have been extensively applied to the
protein folding although most of them are based on the
coarse-grain HP model. For instance, Shmygelska and Hoos
[109] applied ACO to optimize the protein folding based on
the HP model in both 2 and 3 dimensions. There are also
other ACO-based implementations that have been applied to
this problem in the literature. Song et al [110] provides a
rapid transfer pheromone matrix method, a scheme to avoid
deadlock folding problems, adynamic method of pheromone
updating and also three different local search methods. This
work uses the tortilla 3D benchmark [111] for the
experimental evaluation.

M
et

ah
eu

ri
st

ic
s

Origins

Nature-inspired

Non-nature-inspired

Solution search

Single-point

Population-based

Objective function

Static OF

Dynamic OF

Structure

One neighborhood

Various
neighborhood

Search history

Memory usage

Memory-less

Figure 2Classification of metaheuristics techniques

8Current Drug Targets, 2016 Llanes et al.

 Thalheim et al [112] combine the ACO with a branch and
bound algorithm to enhance the protein folding simulation.
For the experimental evaluation, they use proteins that are
based on the bibliography and some of them come from
PDB. Hu et al. [113] develop four different mechanismsto
improve ACO algorithm, concretelyincludinga path retrieval
method, the path construction, some folding heuristics and
the pheromone attraction. These new mechanisms provide
interesting results for solving protein folding problems with
the HP square lattice model. Other hybrid approaches can be
found at Chen et al. [114], where an ACO with genetic ideas
was developed.

 Some parallelization strategies have been applied to ACO
solving the protein folding. [115] uses MPI to implement the
parallel version of ACO.And in [116,117] OpenMPis used.
It is noteworthy to highlight that only these few versions of
parallelism have been implemented to solve the protein
folding problem with ACO. From the High Performance
Computing point of view, these parallel implementations use
hardware clusters to evaluate their results.In [115]an IBM
Blade center composed of 9 nodes, each node comprised of 2
2.4 Ghz Intel processors with 1 Gbyte of shared RAM is
used. In [116]authors use a single PC to evaluate the
sequential algorithm results, and an IBM pServer with eight
1.6GHz Power(gr) CPUs and 6GB RAM to run the parallel
ones, which it seems not too fair. In [117], authors run the
CASP8 benchmark on a multicore PC, specifically an IBM
p550 server with an 8-core 64-bit 1.6-GHz PowerPC CPU,
and the CASP9 benchmark is run on a cluster with 20 nodes
of 16-core 1.6-GHz AMD CPU per node.

 Although it has been demonstrated that this algorithm
can take advantage of the GPU massively parallelism [118],
to the best of our knowledge we could not find any work in
this direction for the protein structure prediction using
coarse-grain models.

ArtificialBeeColony

 Artificial bee colony (ABC) algorithm is an optimization
algorithm based on the behavior of honeybee swarms [119].
It provides a population-based search procedure in which the
communication between bees is emulated to discover the
best places with high nectar amount. Contrary to ACO,
where only the HP model was targeted, ABC has been
applied to different protein models such as HP, HP-SC, AB
or ECEPP/3. There are several implementations of ABC
applied to the protein folding problem. Zhang and Wu [120]
use the HP-2D model to simulate the protein
folding.However, authors use four Fibonacci sequences
simulating proteins to test the algorithm instead of using a
well-known benchmark like PDB or CASP.Another example
of this algorithm can be found in [121], where synthetic
sequences are created using Fibonacci sequences. Authors
obtain experimental results with some PDB structures,
though.

 There are also parallel implementations of ABC that
could be found in the literature. For example, in Benítez et
al. [122-124], a complete study of different algorithm
implementations can be found. Firstly, authors start
implementing two parallel approximations of ABC algorithm
in [122]: a master-slave implementation and a hybrid-
hierarchical one, both of them implemented using ANSI C

with MPI.They continue with the same two parallel
approximations with genetic algorithm in [123],and finally
authors conclude with the same parallel implementations of a
hybrid algorithm merging an ABC with a Genetic algorithm
(ABC-GA algorithm) in [124]. These authors remark that in
future work they will consider the use of alternative
computing technologies, such as reconfigurable computing
and General-Purpose Graphics Processing Units, to
accelerate processing. Nonetheless, no further papers in this
sense have been found, at least applied to the protein folding
problem with these algorithms. Finally, Bahamish et al.
[125] develop a modified ABC that optimizes the Marriage
in Honey Bee Optimization algorithm.

 All the experimental environments in [120], [121]and
[125]are based on single or multicores PCs.Benítez et al.
[12-124] run their implementations on a 124 processing
cores cluster.

 Other papers considered in this area are Wang et al [126],
where the Chaotic Artificial Bee Colony (CABC) algorithm,
which combines the ABC algorithm with the chaotic search
algorithm, is applied to 3D protein structure prediction; Li et
al [127], where a balance-evolution artificial bee colony
(BE-ABC) is presented and an AB off-lattice model is
adopted, testedby Fibonacci sequences and proteins from the
PDB as well; and [128], whereanother version of ABC is
presented. These papers do not include any kind of HPC
environment, and all the experiments run on a single PC.

Particle swarm optimization.

 The third kind of algorithm that is shown in this section
is Particle Swarm Optimization (PSO).PSO is a stochastic
population-based optimization technique that is based on the
social behavior of fish schooling or bird flocking. Applied to
the protein folding problem, in [129] the authors implement
PSO with an algorithm to avoid local minimums named levy
flight. Like other algorithms, a parallel approach is
performed by authors in [130] implemented using MPI,
which is the most common way to parallelize the algorithms
reviewed in this field. None of these papers, neither Chen et
al. [129] nor Hernández et al.[130,131],give details about the
environment for running the experiments on. Solely in [130]
authors say that experiments are implemented in a “dual-
core PC and a Cluster”.

 Other PSO algorithmscan be found in Liu et al.[132] and
Mansour et al.[133]. The latterhave also developed a genetic
algorithm for protein structure prediction. Both papers adopt
the HP model with no HPC environments.

Genetic Algorithms

 Genetic algorithms have been very used to address a
broad range of combinatorial optimization problems that are
NP-complete [134,135]. Genetic algorithms start from an
initial randomly generated population of individuals. Over
this initial population different selection, recombination and
mutation operators are applied in order to evolve toward
better solutions. In each iteration (generation), a function
evaluates each individual, namely fitness function. On the
one hand, the selection operator removes those individuals
with worse fitness from a probabilistic point of view. On the
other hand, the recombination and mutation operators

HPC & Protein Folding Current Drug Targets, 20169

generate variations of the individuals in order to produce
new individuals. [136].

 One of the first proposals of evolutionary algorithms to
the PSP problem was presented by Unger and Moult [137].
In this work, a genetic algorithm is applied as an extension
of a traditional Monte Carlo method to include information
exchange between a set of parallel simulations. This method
proves to find better solutions in the bidimensional HP
lattice model than the traditional Monte Carlo methods.
Some years later, an improved version of the basic GA [138]
was presented using a new crossover operator and a new
search strategy to avoid the homogenization of the
population. Since then, several works following this idea has
been proposed using different operators and strategies [139-
145].

 Genetic algorithms constitute a good alternative in
several optimization problems. Nevertheless, one of the
disadvantages of the genetic algorithm in optimization
problems is the slow convergence. Concretely, in problems
like PSP, they can suffer from excessively slow convergence
rate due to the high number of needed calculations.

 In order to avoid such problem, there is an opportunity in
the hybridization of evolutionary algorithms with other
heuristics, machine learning techniques, etc. The hybrid
genetic algorithms can improve the performance of the basic
algorithm and the quality of the solutions. For instance, the
algorithms proposed in [146-148] combine a GA with tabu
search algorithm, showing better results for the PSP than a
genetic algorithm alone. Other works have proposed GA
combined with other techniques, like backtracking [149],
hill-climbing [150] and simulated annealing [151] or Particle
Swarm Optimization [130].

 As a result, since the PSP problem presents a large and
complex search space, algorithms that combine local search
methods with GA show significant improvements. In this
sense, the combination of GA and local search using
domain-specific knowledge, i.e. memetic algorithms [152]
can help to find better solutions. Memetic algorithms (MA)
use the concept of meme. A meme can be defined as a unit
of cultural evolution which is able to local refinements.
Some works have explored this mechanism for the PSP,
resulting in that MAs are robust for finding structures across
a range of models and difficulty [153-159].

 The described proposals define the PSP as a single-
objective optimization problem. This approach gets good
results when one of the objective should be optimized or
when all the objectives are not in conflict among them.
Nevertheless, if several objectives should be optimized, a
better approach is to consider the objectives separately, i.e.,
as a multiobjective optimization problem (MOP). A common
problem in MOPs is the fact that usually there is no solution
able to optimize all objectives at the same time. Therefore,
the idea of optimum should be redefined and it is searched a
solution that satisfies all the objectives in an acceptable
manner. Some of the best well-known multiobjective
evolutionary algorithms (MOEAs) are PAES-II, NSGA-II
and MOEA/D. [160].

 In this sense, some works propose the formulation of the
PSP problem as an MOP to be solved by an MOEA. For

example, [160] considers the PSP problem as the problem of
minimizing free Potential Energy (PE) and minimizing
Solvent Accessible Surface area (SAS). Authors solve this
MOP using a modified version of the popular NSGA-II. In a
similar way, the work of Day et al. [161] proposes a
multiobjectivization for the HP model which scores better
results in most of the cases than using a single-objective.
Another example of this approach is the work of Brasil et al.
[162,163]. In this work a new MOEA based on tables, called
MEAMT, is presented. MEAMT is able to use four
objectives based on tables to solve the PSP problem. In
MEAMT, each table stores a subset of solutions with the
best found solutions according to one of the objectives. More
recently, several works have been proposed following this
line of research. Some examples can be found in [164-167].

 A great deal of the GA’s popularity lies in its parallel
nature and the inherent efficiency of parallel processing.
MOEAs are a clear example of this parallelization, since
their different objectives can be processed in parallel in an
easy way. Despite the parallelization of MOEAs has been
studied in several real-world problems, less work has been
done in the parallel multiobjective approaches to PSP.

 One of the works in this field has been developed by
Calvo et al. [168-171]. They propose different parallel
MOEAs approaches to the PSP problem reducing the
complexity of the problem by the minimization of the set of
variables involved in the process. Authors use 14 processors
to execute parallel algorithms. They show that, although the
quality of the solutions is not significantly improved, the
process requires less time and presents a better parallel
efficiency.

 Tantar et al. [172] also propose a solution for the PSP
using multiobjective parallel hybrid GAs (Hill Climbing
local search [173] and simulated annealing [174] combined
with GA) using computational grid. They use the ParadisEO-
CMW framework, which combine the PAradisEO
framework and the Condor-MW middleware. ParadisEO
[175] is an open source framework dedicated to distributed
and parallel models and the design of a broad range of
metaheuristics. The Condor3 system [176] provides
mechanisms that support High Throughput Computing
(HTC). The underlying support the experiments was
GRID5000 (2500 processors, 2.5TB of cumulated memory
and 100 TB of non-volatile storage capacity). The tests were
addressed using the tryptophan-cage (Protein Data Bank ID
1L2Y) and α-cyclodextrin proteins. Their studies show that,
although the multiobjective GA increases the complexity, it
provides more accurate solutions.

 A different approximation for the PSP is proposed by
Benítez et al. [177]. They present a parallel GA using the
3DHP-Side Chain model. In their approach the parallelism is
reached by the division of the load into several processors
(slaves) that are coordinated by a master processor. While
the slaves have to compute the individual’s fitness function,
the master is in charge of the initialization the population and
performing the rest of the GA operators. Since there is not
dataset for the used model, the proposal was tested with a
benchmark of synthetic sequences. Authors show that,
although the results obtained are not the optimal, they are the
best results found for the 3DHP-SC model. Finally, authors

10Current Drug Targets, 2016 Llanes et al.

show that parallel processing accelerates significantly the
process, but they propose other hardware-based approaches
in order to get a better performing.

 Unfortunately, this technique can suffer from a
bottleneck in the master processor. In order to avoid this
problem, in [178] it is proposed a mesh NoC-based multicore
architecture in which the single-master multi-slave design is
partitioned in small islands where an island has slaves and a
master processor. In order to avoid GA falling in local
minimal within each island, authors define a GA which is
able to migrate between the islands. The experiments are
performed using 9 proteins from a benchmark of synthetic
sequences for the lattice protein model. Results show an
overall 310X speedup gain compared to the design of the
single-master /slave.

 Others works have proposed modified GAs in order to
parallelize the problem. For example, Narayanan et al. [58]
propose a simple GA in which the mutation and selection
strategies are parallelized using the MapReduce [179]
architecture. Authors pursue to obtain the optimal
conformation of a protein using the two dimensional square
HP model. The proposal is validated against benchmarks of
synthetic sequences, showing that the convergence of the
algorithm to the optimal is faster than the obtained with
traditional techniques.

 Another modified version of an evolutive algorithm
inspired by the biological immune systems, namely the
clonal selection algorithm (CSA), is presented in [180] for
PSP on AB Off-Lattice model. Experiments are performed
using sequences of Fibonacci for simulating the AB model.
The interesting aspect of this work is that the algorithm is
parallelized using the CUDA platform and GPUs. In fact,
authors show that the speed can be improved effectively, but
they do not measure the quality of obtained solutions. There
are also other hybrid GAs with bioinspired algorithms like
Scalabrin et al. [181], but no more discussion is necessary
because this paper has been also considered in the
bioinspired algorithms section.

 To summarize, although more works should be done in
this direction, in the last years the parallelization of MOEAs
is getting more attention and several works are including it
as their future works [182,183].

Other nature-inspired algorithms

 Other bioinspired algorithms also worth mentioning are
gathered in this section.Firstly, a Firefly Algorithm (FA)
[184] has been tested in the protein folding problem. Firefly
Algorithm is a new algorithm that is based on the flashing
behaviors of firefly swarms. The main purpose of the flash
of fireflies is to attract other fireflies. The FA’s assumptions
consist in three basic rules: (1) sex of fireflies does not mind
at all as all fireflies are unisex. Each firefly flashes in order
to attract other fireflies regardless their sex; (2) the intensity
of the flash is mainly due to attract a prey and to share food;
(3) the more a firefly shines, the more attractive it is to
others. Therefore, each firefly firstly moves toward a
neighbor whom glow is brighter. In this paper, two
dimension HP lattice model is tested in a single PC, a P4
IBM with 3.1 GHz processor and 2 GB of RAM.

 Only one approach to GP-GPU implementation has been
found for bioinspired algorithms. Scalabrin et al. [181] (same
authors of [122-124])have implemented a new algorithm
named Population-Based Harmony Search, (PBHS). The
Harmony Search is inspired by the improvisation process of
a musician searching for the best harmony. The solution is
represented by a harmony and the method of improvisation
guides the balance between deep search and wide
exploration. The results of this paper show that the
implementation in CPU could be better when few data are
used, but the GP-GPU is clearly better when data grow. The
hardware experimental environment in this paper is an Intel
processor (Core2-Quad at 2.8 GHz) and a NVIDIA GeForce
GTX280.

 Another bioinspired algorithm is the one developed by
Cai et al. [185], where authors proposea new algorithm
inspired by the plant growth process called Artificial Plant
Optimization Algorithm (APOA). Photosynthesis operator,
phototropism operator and apical dominance operator are
designed in this paper.Another version of this algorithm can
be found in [186], where authors implement the gravitropism
mechanism that is neglected in the standard version. In this
paper, authors employ this phenomenon to enhance the
performance. To test the efficiency, they apply this new
variant to solve protein structure prediction problem,
including short sequences, Fibonacci sequences and real
protein sequences, showing effective simulation results. The
authors of these papers also present another bioinspired
algorithm in [187] called Social Emotional Optimization
Algorithm (SEOA). It is a new swarm intelligent
methodology by simulating the human social behaviors. In
this algorithm, each individual represents one virtual person
in the searching space, all of them trying to promote to a
high society position by collaboration and competition. In
this paper, it is applied to predict the structure of toy model
proteins. To test the performance, short sequence, Fibonacci
sequence and real protein sequences are selected to compare.
Simulation results show that this approach is valid. Authors
do not use HPC environments in any of these papers
commented in this paragraph.

 Several hybrid approximations have been implemented,
as for example in Benitez et al. [122], discussed above.
Other papers with this point of view areNemati et al. [108],
showing an implementation that combines a hybrid genetic
and ACO algorithm; and also in Lin and Su [188], where
authors implement a hybrid genetic and PSO algorithm.
Moreover, although several modifications in algorithms have
been tested, no improvements in hardware environments are
found, since in [108] authors run the algorithm in a 3.0 GHz
CPU and 512 MB of RAM, and no specification was found
about hardware in [188].

 To summarize, these papers give us the idea that several
implementations of different algorithms have been tested
during last years. Perhaps the more common algorithms at
this point are ACO and ABC, although some other
algorithms with different implementations have been found,
for example hybrids algorithms. On the other hand, too little
parallel implementations have been developed for these
algorithms, and the exploitation of High Performance
Architectures is reduced to the executions of parallel
implementations based on MPI and OPENMP. Other types

HPC & Protein Folding Current Drug Targets, 201611

of more intensive data parallelism, like GP-GPU
implementations, are expected to be widely developed, but
unfortunately, the implementation in[181] byScalabrin et al.
has been the only one found in this direction.

 It is worth mentioning other reviews on this area, such as
[189,190], that show the same point of view of different
algorithms applied to the protein folding problem, although
none of them elaborate a review from the High Performance
Computing view.

3.2.2. Non-nature-inspired metaheuristics

 Non-nature-inspired algorithms are mainly based on local
search methods. They are a family of metaheuristic
algorithms aimed at solving NP-hard optimization problems.
Applied to protein folding, they try to obtain the minimum
energy structure in polynomial time from a set of candidate
solutions sampled from the search space. The main idea is to
start from a folded protein deemed as a potential solution and
then modify it (i.e., move to a neighbor solution in the search
space) trying to obtain a slight improvement in the energy
structure. Local search methods possess the main advantage
of rapid convergence to better quality solutions, if not
optimal, when efficient neighborhood functions are
employed. However, an optimal solution cannot be
guaranteed since the candidate solutions are randomly
selected and the optimal one could not be included nor
reached from the selected ones. Another drawback to take
into account is that these methods get locked in a local
optimum very often and may revisit the same set of solutions
repeatedly.

 Among the local search methods for protein folding
simulation, Tabu search[191] is the most frequently found in
the literature. The basic feature of this method is the use of
memory structures to save solutions already explored. Then,
if a potential solution is explored again in a specific period
of time, it is considered tabu (i.e., forbidden) and therefore it
is not expanded in order to promote the exploration of new
regions in the search space. Tabu search algorithms applied
to protein folding are also based on this feature, and they
differ in the moves definition and how to avoid local optima.

 Apart from Tabu search, hill climbing[192] and
simulated annealing (SA)[193,194] are other two local
search algorithms applied to protein folding. Hill climbing
consists in starting with a random solution and changing a
single element of the protein structure iteratively and
incrementally while each change produces a better solution,
until no further improvements can be made. On the other
hand, simulated annealing uses a probabilistic heuristic to
change from one random solution to another random solution
with the aim of moving to a state of lower energy, but it still
possible to change to a worse solution, i.e., a state of higher
energy (and in this manner avoid local optima). The
probability to move from a state s to a state’s depends on the
energy of each state and on a global dynamic variable called
temperature (T), which is initiated to a high value. As usual,
if s’ is considered better than s, then the movement is
performed. However, if s’ is considered worse than s, it is
still possible to make that movement depending on T. For
higher values of T, the probability of making this “worse”

movement is higher. As T decreases through iterations, this
probability also decreases, simulating the annealing process
in metal. In this manner, it is possible during the initial phase
of the process to move towards less promising solutions so
as to avoid local optima, but at the end of the process --when
T has values next to 0-- the probability of selecting worse
solutions is almost inexistent. It is worth mentioning that
both algorithms are normally used in combination with
genetic or stochastic algorithms, as an alternative to improve
the efficiency in the latter.

 In the next paragraphs we review some of the most
relevant works on protein folding for each local search
algorithm.

Tabu Search.

 [195] describes a generic tabu search plus a set of new
moves for named “pull moves”, that modifies the basic Tabu
search by moving one aminoacid a small distance and then
pull the chain along, stopping as soon as possible. These
moves are complete (all existing configurations can be
reached from the initial one), reversible and local (displace
as few vertices as possible). As a result, authors propose
small adjustments to a given configuration in order to
improve the effectiveness of Tabu search in protein folding
for HP-2D models. [196] also addresses HP-2D models.
Moves are defined as changes of single angles of consecutive
positions in the vector representing the protein, whereas the
tabu list consists of forbidden angle moves to avoid reverse
moves in a specific number of iterations. Authors claim to
find optimal conformations for all short sequences from 5 to
12 aminoacids.

 [197] explores on HP energy models on 3D FCC lattices.
The Tabu method is composed of a function to initialize the
model in a randomized, structured manner; a fitness function
to guide the search; and efficient data structures to avoid
cycles.. Authors obtain the first foldings in the well-known
“Harvard instances”[198], 10 different proteins on the cubic
lattice. This work has been revisited in [199], where the tabu
algorithm is combined with constraint programming. Results
show to be promising and reliable for proteins consisting in
less than 100 aminoacids. Eventually, all the previous results
on HP energy models on 3D FCC lattices have been
outperformed by the work in[200]. This paper defines a
hydrophobic-core centric local search algorithm named SS-
Tabu. Movements are defined as a coil spinning around a
dynamic hydrophobic-core center (HCC) by means of a
diagonal move to build the cores. In order to avoid local
minima, two different techniques named random-walk
(based on the pull moves defined in[195] and relay-restart
are defined. Another appealing approach on 3D HP lattices
is proposed in[201] where authors develop an hybrid search
algorithm that combines an enhanced particle swarm
algorithm with an enhanced tabu search algorithm. The
former appends the operation of crossover (single-point and
two-point crossover) whereas the latter adds the operation of
mutation. The main idea resides in using the tabu search
algorithm to “help” the swarm algorithm to avoid local
minimum. This hybrid algorithm has been implemented by
MATLAB R2009b under a Windows XP system and tested
through Fibonacci sequences and some PDB real proteins.
Results show that it is superior to other 3D HP algorithms up

12Current Drug Targets, 2016 Llanes et al.

to sequences no longer than 48 aminoacids. A different
approach for obtaining minimum energy in oligopeptides is
presented in[202]. Moves are based on the dihedral angles in
the protein’s skeleton and the cost function is the empirical
energy function ECEPP/3. It is aimed at working in angle
space while keeping bond length and bond angle values
constant. The algorithm is parallelized by executing several
moves simultaneously. Hence, it is created a partitioning of
the set of possible movements on p subsets of approximately
the same size, and every partition is evaluated in p different
processors. In this manner every processor finds its best
move, and the best between these is eventually selected. The
main drawback in this approach is the extensive
communication requirement among processors. It has been
tested using the Met-enkephalinpentapetide, showing a real
speed-up compared to related techniques due to the
parallelization process. As a result, Tabu search is
considered valid for conformational searches of peptides
when an optimal combination of tabu parameter values can
be found.

 Xiaolong et al. proposes a tabu algorithm whose main
feature is the generation of the initial solution for 3D AB off-
lattice models [203]. Instead of using a random function, a
better-informed method is defined by locating hydrophobic
residues at the center of three-dimension space and locating
hydrophilic residues surrounding hydrophobic ones. In[204]
a similar heuristic for the initial solution is employed and a
new one is defined for conformation updating in 2D AB off-
lattice models. The conformation updating heuristic consists
in picking out hydrophilic monomers squeezed among
hydrophobic monomers and placing them in certain spots in
2D space to speed up the search for lower-energy states.

Hill Climbing.

 Regarding hill climbing works in the protein folding area,
we have found that this technique is usually combined with
genetic algorithms to improve the results of the latter. Thus,
in [205] a hybrid of hill-climbing and ERS-GA (genetic
algorithm with elite-based reproduction strategy), named
HHGA, is proposed for protein structure prediction on the
HP-2D triangular lattice. Two hill climbing strategies are
proposed: In the first one, the algorithm selects its neighbour
residues from the current solution. These residues are
generated as in mutation operations, i.e., randomly changing
its direction. In the second one, the neighbour residues are
generated following a method similar to the crossover
operation. Hence, five neighbours are generated by changing
the direction of the second segment after the crossover point,
where rotation angles are 60°, 120°, 180°, 240° and 300°,
respectively. If any of the five folding directions leads to a
superior fitness to the original direction, this neighbour will
replace the current solution. A benchmark composed of eight
HP-2D protein sequences up to 64 aminoacids is evaluated
and compared to simple genetic algorithms [206] and tabu
search [207], demonstrating that HHGA produces a similar
outcome to the those algorithms, but at the cost of
incrementing the running time. Another work adopting hill
climbing along with a genetic algorithm can be found in
[208], which relies on hill-climbing recombination and

mutation to support the search process of the evolutive
algorithm for HP proteins. Here, the crossover operation is
dynamically performed, allowing offspring to be added in
the population during the same generation in an
asynchronous manner. In this model, the proposed mutation
operator is problem-specific and it is applied in a steepest-
ascent hill-climbing manner. Moreover, to avoid local
optima, redundant individuals may be replaced with new
genetic material thanks to an explicit diversification stage
which is carried out periodically during the population
evolution. Standard S1-S8 HP proteins are employed as a
benchmark and they are evaluated by the hybrid model
presented in the paper and compared to other three simpler
models, namely a simple evolutionary algorithm, an
evolutionary algorithm with diversification stage and an
evolutionary algorithm with hill climbing but without
diversification. Results show that using hill climbing to
support evolutive algorithm is clearly beneficial with respect
to other models neglecting its use and it could compete with
other algorithms such as memetics. Another hybrid GA-hill
climbing algorithm, this time to fold proteins from
knowledge of the primary sequence and predictions of its
secondary structure, can be found in[209]. Dihedral angles
are used to represent the protein’s structure augmented with
a four-helix bundle to improve the folding simulation
conditions. According to the obtained results, the inclusion
of a hill climbing algorithm to execute local searches in the
GA outperforms 20% and 50% the execution of the pure,
original GA in [210]. In conclusion, it can be stated that hill
climbing algorithms are not practical by their own in protein
folding, but they are rather combined with genetic
algorithms to improve the latter.

Simulated annealing.

 Like hill climbing, SA is mainly adopted for improving
other global search algorithms. For example, [211]
introduces a protein folding simulation procedure on FCC
lattice that employs a constraint satisfaction problem (CSP)
solver to generate neighbourhood states for a simulated
annealing-based local search method. This proposal has been
evaluated using three basic proteins for tuning (namely,
4RXN, 1ENH, 4PTI) and then several proteins selected from
PDB, with length varying from 54 to 74 aminoacids. Results
show that the hybrid approach outperforms CSP alone both
in accuracy and efficiency, and outperforms local search
alone in accuracy but not in time.

 Another approach consisting in a combination of
Bayesian and SA functions is described in [212]. It uses
Bayesian scoring functions to assemble native-like structures
from fragments of unrelated protein structure with similar
local sequences. The simulated annealing contributes to
generate native-like structures for small helical proteins in a
rapid manner. Finally, it is worth mentioning the approach
in[213] based on a pure SA algorithm in 3D HP protein
folding simulations aimed at experimentally determining
upper bounds for the maximum depth of local minima of the
underlying energy and for the stopping criterion. Tests on the
well-known ten benchmarks

 Current Drug Targets, 2016 13

 XXX-XXX/14 $58.00+.00 © 2016 Bentham SciencePublishers

given by [214] show that the maximum escape height from
local minima can be upper bounded by n^(⅔) whereas the
stopping criterion complies with the number of Markov
chain transitions that lead to minimum conformations.

Further tests must be carried out on real foldings of short
protein sequences to validate these results, which could serve
as appropriate starting conformations for folding simulations
of real protein sequences and realistic energy functions.

Figure 3 - Number of publications in protein folding, protein structure prediction or HP model

Figure 4 - Number of publications for Neural Networks and Metaheuristics techniques applied to protein folding

14Current Drug Targets, 2016 Llanes et al.

4. TRENDS IN DESIGNING NOVEL ALGORITHMS
AND ARCHITECTURES

 This section provides quantitative information about the
main contributions in the field of Metaheuristics applied to
PSP, mainly based on coarse-grain models. Moreover, we
show what kind of hardware architectures have been used to
run these novel algorithms on. Our deep search literature
review follows a methodology that is firstly described to let
the reader reproduce the experiments.

4.1. Experimental methodology

For this experimental study, we have used the Web of

Knowledge (WOK, formerly known as ISI Web of

Knowledge) [215]. WOK belongs to Thomson Reuters

Corporation and it is an academic citation indexing and

search service to provide bibliographic content and tools to

access, analyze and manage multiple research information.

A particular interest to us is the WOK advanced search

tool. This tool offers a very powerful search tool to look for

different research articles using formal rules based on field

tags, Boolean operators, parentheses, and query sets to create

your own query. Booleans operators include AND, OR,

NOR, SAME and NEAR. The following field tags are the

most interesting for our searches purposes:

 TS = Topic. Searches the Topic fields in all

databases in your institution subscription. Topic

fields include Titles, Abstracts, Keywords and

Indexing fields such as Systematics, Taxonomic

Terms and Descriptors.

 SU = Research Area. Searches the Research Areas

field within a Full Record.

 GP=Group Author. Searches the Group Author(s)

and Book Group Author(s) fields within of a record.

 AU=Author. Searches for author names of journal

articles and books in the Author(s) field and the

Corporate Author(s) field.

 The most interesting filed tag for our data mining
purpose is TS as we are looking for articles related to protein
folding, different Metaheurtistics techniques and particular
hardware implementations. For instance, the following
pattern searches for articles in which either “Protein folding”
or “Protein Structure Prediction” or “HP model” are included
in the article’s Title, Abstract or Keywords.

 However, the information obtained from this tool may
have some inaccuracies as we are dealing with unstructured
data. For instance, the terms “Neural Networks” and “Protein

Folding” may be included in chemistry research articles
about the brain, which clearly is not our scope. Therefore,
after searching for some keywords we dida carefully review
on ambiguous papers and checked whether they were related
to the topics we are really looking for. Moreover, the WOK
does not have very up-to-date information. Some recent
papers are not included in their databases, and therefore, the
quantitative information of the last couple of years may be
incomplete. This issue mayaffect our conclusions regarding
to the hardware trends as hardware platforms have evolved
very rapidly in the last five years. As a result, we have also
included articles from other databases such as Google
Scholar, arXiv, CiteSeer(X), DBLP and IEEEXplore, to
name just a few.

4.2. Trends in Soft Computing for the protein folding

 In the first place, Figure 3shows the number of
publications within the field of protein folding, protein
structure prediction or coarse-grain HP model available in
the WOK. The rule to perform this search is the following:

 From Figure 3 we can state that the Protein Structure
Prediction is a very active field of research that began in
eighties and it is still an object of continuous research with
approximately 2.500 published papers per year.

 Next, Figure 4shows the number of publications related
to the protein folding that use Soft Computing techniques.
Here we have grouped Soft Computing techniques into two
different categories: Neural Networks and Metaheuristics.
According to this figure, Neural Networks have been the
most active research topic from the nineties. However,
Metaheuristics has recently attracted interest in the protein
folding community. In the last few years the number of
articles published in Metaheuristics is at the top of the Soft
Computing techniques applied to the protein folding. Local
Search techniques, however, are almost always combined
with other global techniques such as genetic algorithms,
swarm intelligence or ant colony optimization to provide
hybrid Soft Computing techniques. They improve the
optimization process of those global search techniques to
avoid stalling in local optimum, as noted in Section 3.2.2.
The following rule is only an example of how we have
obtained the number of publications for Neural Networks:

TS = ("protein folding" OR "protein structure prediction"
OR "HP model")

or "extreme learning machine*" or "multilayer
perceptron*")

HPC & Protein Folding Current Drug Targets, 201615

 Figure 5shows the number of publications in WOK

related to both:the protein folding and different kind of

Metaheuristics that area classified depending on their

origins.The keywords used to do this search include for the

nature-inspired metaheuristics:Genetic algorithm, Ant

Colony Optimization, Artificial Bee Colony, Particle Swarm

Optimization, Firefly Algorithm, Population-Based Harmony

Search, memetic algorithm, Artificial Plant Optimization

Algorithm and Social Emotional Optimization Algorithm.

For non-nature-inspired metaheuristics the keywords are hill

climbing, simulated annealing and tabu search. Some issues

come up with this search as these keywords may belong to

the same algorithmic family. For instance, ACO and ABC

are population based methods which is also another keyword

in Figure 5. Therefore, the number of publications depends

on what keywords have been included in the article. Finally,

those Metaheuristics that we could not find any work related

to protein folding have not been included in Figure 5.

 Figure 5places Genetic Algorithms are widely used in
this area as they are one of the pioneer in Metaheuristic
research. Particle Swarm and Ant Colony Optimization
techniques are at the second place of the techniques used for
protein structure prediction. Some variations of these
Metaheuristics like memetics, firefly or Artifical Bee Colony
are also applied in the literature but their use is marginal.

 Figure 5shows the number of publication for different
kind of non-nature metaheuristics that are mainly local
search techniques. As previously described, local search
techniques are used along with other global techniques to
provide hybrid search method that improve simulation’s

quality and performance. The methods used in the protein
folding arena are Tabu search, simulated annealing and hill
climbing. The latter is widely used to improve the search
provided by Metaheuristics. Although Tabu search is very
close to hill climbing, the computational cost of tabu is
higher than hill climbing, and thus it is not so convenient to
integrate it in a hybrid method. Simulated Annealing is,
however, a very powerful local search and it is actually the
most studied in the literature.

4.3. Trends in hardware architectures for Soft
Computing techniques applied to the protein folding

 A common computational feature shared by many Soft

Computing methods is their inherent massive parallelism.

Most of them are population-based, that is, a collection of

agents “collaborate” to find an optimal (or at least a

satisfactory) solution. Because of this inherently parallel

nature, these methods are well-suited to leverage parallel,

distributed or even GPU architectures. Table 1summarizes

the hardware platforms that have been used to improve the

execution of different Soft Computing techniques.Neural

Networks are basically executed on single core processors.

Although there are some efforts in parallelizing neural

networks applied to other problems, to the best of our

knowledge there is only a work that cares about

performancein this kind of algorithms applied to coarse-

grain protein folding. Moreover, this algorithm is based on

deep learning, which has many layers and thus the

computational requirements increase drastically. Genetic

Figure 5 Number of publications that use Metaheuristics according to their origin.

16Current Drug Targets, 2016 Llanes et al.

algorithms are, however, very tied to parallel architectures.

They are based on a population of entities where the island-

model is very attractive to improve the solution.

 In the parallel island-model of genetic programming, the

population for a given run is divided into semi-isolated

subpopulations. Each subpopulation is assigned to a separate

processor or node of computing system and it proceeds

independently to each other. Once each instance of the

genetic algorithm finishes (or other interval), a relatively

small percentage of the individuals in each subpopulation are

probabilistically selected (based on fitness) for migration

from each processor to various neighboring processors. This

idea has been implemented on different platforms from

clusters of computer nodes to grid computing environments.

There are also other different parallel algorithms based on

data approach that are better suited to GPUs. ACO, ABC and

PSO also use the island model to leverage cluster computing

architectures. Population Based Harmony Search has been

implemented on GPUs as well. Finally, local search

techniques have been also improve with some ways of

parallelism in different architectures. Nonetheless, as

previously mentioned, these methods are always combined

to other methods, and therefore, they are also involved in

other rows of the Table 1.

4.4. Summary

 This section briefly summarizes the strengths and

weaknesses of the reviewed algorithms grouped into main

categories we have used throughout the paper. First of all,

Artificial Neural Networks (ANNs) have been successfully

applied to the protein's secondary structure prediction. The

ANN computational cost of learning, applied to this

problem, is affordable for sequential architectures, and thus

it does not require the use of high performance computing.

 Moreover, the ANNs offer an abstraction layer that

provides solutions without having deep-knowledge of the

problem domain that is very appreciated for non-domain

experts within this area. However, we have only found few

works using ANN that target more complex protein

structure. This actually limits the successful of these

techniques. Indeed, new trends in neural networks, such as

deep learning, are demonstrating very good results in other

domain fields [216]. They demand the use of high

performance computing. The search for the ANN optimal

architecture; i.e. the number of neurons within the hidden

layer or even the number of layers, can be a very time

consuming process.

 This paper divides Metaheuristics for their origins into

two main groups; nature and non-nature-inspired. Nature-

inspired metaheuristics provide very good solutions in a

reduced time-frame but they do not guarantee optimal

solutions. Algorithms like ACO, ABC, PSO and so on, are

based on swarm intelligence to solve problems. They are

inherently parallel, and therefore, theoretically well-suited

for parallelization on emergent architectures. This feature

has been explored in few papers, but indeed, we still see

many remaining work in this area.Moreover, genetic

algorithms have the advantage that they could escape from

suboptimal local maximum/minimum. They are population-

based and they use stochastic operators that allow searching

in different regions, thus if the population finds a better

fitness value can move away from the suboptimal solutions.

Genetic algorithms are also inherently parallel as population-

based algorithms and therefore they are also well-suited for

parallelization. Nevertheless, genetic algorithms also have

some disadvantages whenever they target problems like

protein folding. Sometimes genetic algorithms may converge

very slowly, especially near an optimum. Some hybrid

approximations have been presented for the protein folding

problem in order to solve such problem. In that sense,

genetic algorithms could suffer of the opposite problem and

they can converge prematurely to the suboptimal solutions if

the operators are not efficient enough. Finally, another

disadvantage inherently associated to genetic algorithms is

finding the algorithm parameters; it is not straightforward at

all and very problem-dependent.

 Non-nature-inspired metaheuristics, which in this paper

are basically focused onlocal search techniques, provide

appealing solutions for 2D/3D HP models. They can be

easily combined with other global algorithms such as

Genetic Algorithms or ACO to improve their solutions. They

can quickly converge to better quality solutions, even

optimal, when efficient neighborhood functions are

employed and they could serve as appropriate starting

conformations for folding simulations of real protein

sequences and realistic energy functions.However, local

search algorithms by themselves cannot guarantee an

optimal solution. The candidate solutions are randomly

selected and the optimal one could not be included nor

reached from the selected ones. Also they may get locked in

a local optimum very often and may revisit the same set of

solutions repeatedly.

HPC & Protein Folding Current Drug Targets, 201617

SoftComputing

Technique

Algorithm Hardware

Platform

Data Set Model Ref

Neural

Networks

Deep Learning CUDA D329, SVMCON_TEST

and CASP9

HP 2D [96,97]

NNPIF (Neural

Network Pairwise

Interaction Fields)

Single core PDB HP 2D [84]

MLP (Multilayer

Perceptron)

Single core PDB, SCOP HP 2D [72,73]

MLP + tailored

early-stopping

Single core PDB HP 2D [85]

MLP +

Evolutionary

information

Single core PDB HP 2D [71]

SVM (Support

Vector Machine)

Single core SCOP HP 2D [86,91,94]

Genetic

algorithms

Multiobjective GA 14 processors 1CRN protein Atomic model

based on the

dihedrals angle

base between the

Cα

[168-171]

Hybrid

Multiobjective GA

(Simulated

Annealing and Hill

Climbing)

ParadisEO-

CMW

framework.

GRID5000

tryptophan-cage (Protein

Data Bank ID 1L2Y) and

α-cyclodextrin proteins

Atomic model

based on the

dihedrals angle

base between the

Cα

[173,174]

Simple GA MapReduce

architecture

(cluster)

Benchmarks of synthetic

sequences

HP model [179]

Parallel GA (single-

master multi-slave)

Master-slaves

processors

Benchmarks of synthetic

sequences

3DHP-Side Chain

model

[177]

Parallel GA (multi-

master multi-slave)

Mesh NoC-

based multicore

architecture

Benchmarks of synthetic

sequences

Lattice protein

model

[178]

Clonal selection

algorithm (CSA)

GPUs and

CUDA platform

Fibonacci based

sequences

AB Off-Lattice

model

[180]

ACO Parallel ACO Cluster http://www.cs.sandia.gov/

tech

reports/compbio/tortilla-

hp-benchmarks.html

HP 3D [115]

Parallel ACO Single PC and

Cluster

- HP 2D [116]

Parallel ACO -

packBackbone

CASP 8

Multicore PC.

CASP 9 run on

a Cluster.

CASP 8/9 HP 3D [117]

ABC Parallel ABC. MPI Cluster

Networked

computers

with 124

processing cores

Sequences from

bibliography

HP 3D Side-Chain [122]

Modified ABC.

IF-ABC

Multicore PC

(Matlab)

Fibonacci based

sequences.

PDB sequences.

AB [121]

Modified ABC.

MHBO

Multicore PC

Visual C++

Met-enkphaline Atomic model

based on the

dihedrals angle

base between the

[125]

18Current Drug Targets, 2016 Llanes et al.

Cα

PSO Parallel PSO Multicore PC

and a cluster

Sequences from

bibliography

Atomic model

based on the

dihedrals angle

base between the

Cα

[130]

PBHS Population Based

Harmony Search

Multicore PC.

NVIDIA

GeForce

GTX280.

Benchmarks of synthetic

sequences.

AB 2D [181]

Tabu Search Pull moves similar

to de

Gennesreptation

model.

HuGS

middleware

(Human-Guided

Search)

Sequences from

bibliography

HP-2D [195]

Protein’s angles-

based moves

Single core

PC AMD Duron

700Mhz Linux

Sequences from

bibliography

HP-2D [196]

Tabu search +

Constraint

programming

A cluster of

Dell

Power Edge

1950 4-core

IntelE5430

processor with

2.66GHz and

16Gb RAM (no

parallelism)

Sequences from

bibliography

HP 3D FCC lattice [199]

Spiral Search Tabu - Sequences from

bibliography

CASP 8/9

HP 3D FCC lattice [200]

Particle Swarm

Optimizer + Tabu

Search

MATLAB

R2009b under a

Windows XP

system.

Fibonacci based

sequences PDB proteins:

IBXL, IEDP, IAGT

HP 3D FCC lattice [201]

Empirical energy

function ECEPP/3

SGI Origin

2000 computers

parallelized (32

processors)

Distributed

memory

MPI for

interprocessor

communication

Met-

enkephalinpentapetide

Atomic model

based on the

dihedrals angle

base between the

Cα

[202]

Well-informed

initial solution

- Fibonacci based

sequences (13, 21, 34)

PDB (1BXL, 1EDP,

1AGT)

3D AB off-lattice [203]

Heuristic for

conformation

updating

Intel Core2

Duo, 2.66 GHz

processor and

2.0 GB of RAM

Fibonacci based

sequences (13, 21, 34,55)

PDB (1AGT, 1AHO)

2D AB off-lattice [204]

Hill Climbing Montecarlo + hill

climbing

Linda Tuple

Spaces (Agents)

Multithread C

Two Opteron

dual core CPU

at 2 GHz

Several proteins from

PDB

1. coarse grained

structures based on

previous

bibliography

2. Own model

[64]

Genetic algorithm +

hill climbing

Single core

Intel i7-920

Sequences from

bibliography

2D HP Triangular

lattice

[205]

HPC & Protein Folding Current Drug Targets, 201619

machines

Genetic algorithm +

hill climbing

- S1-S8 standard HP

proteins

2D HP [208]

Genetic algorithm +

hill climbing

SGI Onyx2

12 × R10000

supercomputer

Folding of the alpha

carbon atoms of 100

non-redundant test

proteins

Dihedral angles to

augmented with a

four-helix bundle

[209]

Simulated

annealing

Time-dependent

cooling schedule

Gentoo Linux

on a 2.4 GHz

Intel Pentium

IV processor

Sequences from

bibliography

 HP 3D [213]

Table 1 Summary of the hardware platforms used to improve different Soft Computing techniques.

CONCLUSIONS AND FUTURE WORK

 The protein folding problem is a very well-known topic
that has been widely studied during the last fifty years.
Indeed, this review article showsthat the protein structure
prediction problemis still a very active field of research
nowadays, where many novel techniques and algorithms
have been applied by means of computer simulation, mainly
due to their high computational requirements. Our review
focuses on both computational aspects:

 1.-From the algorithmic point of view, we center on novel
algorithms within the Soft Computing fieldthat have been
applied mainly to the coarse-grain protein-folding problem,
and focusing mostly on the HP-model.A particular interest to
us are Neural Networks and Metaheuristics, as they are
increasing in popularity during the last decade.The
combination of these methods with local search techniques
produces very powerful search strategies that providesome
remarkable and interesting solutions to this problem. In this
sense, and to the best of our knowledge, we have not found
any work that design a hyper-heuristic or parametrized
metaheuristic schema for the problem of the prediction of
protein structure. These techniques provides a high-level of
abstraction to look for the best metaheuristic to be applied to
a concrete problem. Basically, metaheuristics search
solutions within the problem domain and hyper-heuristics do
the search within the search space of heuristics. Future
designs should not only consider a metaheuristic, they
should design a hyper-heuristic to provide a wide search
within the space solution though. Besides, new trends in
neural networks, such as deep learning, are gaining
popularity, and we envision them as a good alternative for
the protein structure prediction problem. However, fruitful
works in this area should be designed taking care of
computational requirements they intrinsically have by its
definition, and thus they should designed on massively
parallel architectures.

 2.-From the hardware point of view, there are also some
relevant contributions in the literature. Most of Soft
Computing techniques are inspired bynature and they are
massively parallel by their definition.Therefore they are well
suited for implementation on parallel or even massively
parallel architectures. After a deep literature review, we
concludethat the gap between hardware and software in the
simulation of protein folding is still very wide. There are
some works that combine novel hardware and software
techniques but they representjust an incipient research line.

We are witnessing a revolution in hardware platforms where
massive and heterogeneous platforms are dominating the
marketsuch as GPUs.There are many applications already
working right on the scientific and engineering fields.
Changing them to run with billion-way parallelism will
require redesigning or even reinventing the algorithms used
in them, and potentially reformulating the science problems.

 The protein folding simulation is a multidisciplinary field
of research where scientists from different areas work
together in order to solve challenges of the next century.
Although many success cases have been reported in this
review, there are still many aspects on the scientific side that
need improvement. Just to name a few, the focus of
application of these techniques relies on the study of single
systems such as isolated proteins, but an “out of the box”
approach should be followed in order to exploit them in
more complex systems such as the ones in study by systems
biology, as the cell as a whole. Also, techniques reviewed in
this paper for the PSP problem might be directly applied to
other biological macromolecules such as disordered proteins,
nucleic acids, polymers, and systems with relevant
nanotechnological interest. However, solving the problem of
the prediction of protein structure, it is not an easy task. The
workflow in Bioinformatics to create efficient tools is a long
pipeline where each stage may take several years. Once
theoretical models have been defined by experts from
fundamental research fields such as physics, biology and
chemistry, computer scientists need to define algorithms to
simulate such models in computers. Moreover, as we move
to a sustainable world, there are also other important
concerns to take into accountas performance and energy
efficiency of such algorithms on particular hardware
architectures. Understanding how to bridging the gaps
between hardware and software will be the key to solve
mission-critical science problems at exascale.

 From our point of view, future developments in this area
should be aware of this landscape of computation.First of all,
the physical limitations of silicon-based architectures are
threatening the evolution of processors. Heterogeneous
computing including GPUs, multiprocessors, or low-power
processors come to the rescue when no answer looms on the
horizon.Particularly, GPUs are showing great benefits in
terms of performance and power consumption. The ratios
compared with CPUs are expected toincrease even more as
long as the problem size keeps growing and GPU
microarchitectures take the next step forward. Moreover, the
novel interest of governments in green computing makes

20Current Drug Targets, 2016 Llanes et al.

mandatory developsscientific power-aware applications that
use all hardware resources at minimum power-budget.

ACKNOWLEDGEMENTS

 This work is jointly supported by the FundaciónSéneca
(Agencia Regional de Ciencia y Tecnología, Región de
Murcia) under grants 15290/PI/2010 and 18946/JLI/13, by
the Spanish MEC and European Commission FEDER under
grant with reference TEC2012-37945-C02-02 and TIN2012-
31345, by the Nils Coordinated Mobility under grant 012-
ABEL-CM-2014A, in part financed by the European
Regional Development Fund (ERDF). We also thank
NVIDIA for hardware donation within UCAM GPU
educational and research centers.Finally, we thank
anonymous reviewers for their constructive and valuable
comments.

 Current Drug Targets, 2016 21

 XXX-XXX/14 $58.00+.00 © 2016 Bentham SciencePublishers

REFERENCES

[1] Dill KA, MacCallum JL. The protein-folding problem,

50 years on. Science 2012; 338(6110): 1042-6.

[2] Dill KA, Bromberg S, Yue K, et al. Principles of protein

folding a perspective from simple exact models. Protein

Sci 1995; 4(4): 561-602.

[3] Shaw DE, Dror RO, Salmon JK, et al. In:Millisecond-

scale molecular dynamics simulations on Anton.

Proceedings of the Conference on: High Performance

Computing Networking, Storage and Analysis. Portland,

IEEE 2009; pp 1-11.

[4] Merlitz H, Wenzel W. Comparison of stochastic

optimization methods for receptor–ligand docking. Chem

Phys Lett 2002; 362(3): 271-7.

[5] Baker D. A surprising simplicity to protein folding.

Nature. 2000; 405(6782): 39-42.

[6] Berger B, Leighton T. Protein folding in the

hydrophobic-hydrophilic (HP) model is NP-complete. J

Comput Biol 1998; 5(1): 27-40.

[7] Fraenkel AS. Complexity of protein folding. Bull Math

Biol 1993; 55(6): 1199-210.

[8] U.S. Department of Energy. Report on Top Ten Exascale

Research Challenges.2014. Available at:

http://science.energy.gov/~/media/ascr/ascac/pdf/meeting

s/20140210/Top10reportFEB14.pdf

[9] Asanovic K, Bodik R, Catanzaro BC, et al. The

landscape of parallel computing research: A view from

Berkeley. California; 2006. Report No.: UCB/EECS-

2006-183.

[10] Li X, Ruan D, van der Wal AJ. Discussion on soft

computing at FLINS'96. Int J Intell Syst 1998; 13(2-3):

28-300.

[11] Berman H, Westbrook J, Feng Z, et al. The protein data

bank. Nucleic Acids Res 2000; 28(1): 235-42.

[12] Zadeh LA. Soft computing and fuzzy logic. IEEE

Software 1994; 11(6): 48-56.

[13] Verdegay JL., Yager RR, Bonissone PP. On heuristics

as a fundamental constituent of soft computing. Fuzzy

Set Syst 2008; 159(7): 846-55.

[14] Bonissone PP. Soft computing: the convergence of

emerging reasoning technologies. Soft Comput 1997;

1(1): 6-18.

[15] Bonissone PP. In:Hybrid Soft Computing for

Classification and Prediction Applications. Proceedings

of the First International Conference on Computing in

an Imperfect World. London: Springer-Verlag 2002; pp

352-3.

[16] Mitra S, Pal SK, Mitra P. Data mining in soft

computing framework: a survey. IEEE T Neural

Networ 2002; 13(1): 3-14.

[17] Zadeh LA. Fuzzy logic, neural networks, and soft

computing. Commun ACM 1994; 37(3): 77-84.

[18] Zadeh LA. Fuzzy sets. Inform Control 1965; 8(3): 338-

53.

[19] Haykin S, Network N. A comprehensive foundation.

Neural Networks 2004; 2(2004).

[20] Hearst MA, Dumais ST, Osman E, Platt J, Scholkopf B.

Support vector machines. IEEE Intell Syst App 1998;

13(4): 18-28.

[21] Glover F, Kochenberger GA. Handbook of

metaheuristics. Springer Science & Business Media

2003.

[22] Back T, Fogel DB, Michalewicz Z. Handbook of

Evolutionary Computation Bristol, UK: IOP Publishing

Ltd. 1997.

[23] Davis L. Handbook of genetic algorithms, New York:

Van Nostrand Reinhold 1991.

[24] Kennedy J, Kennedy JF, Eberhart RC. Swarm

intelligence, Morgan Kaufmann 2001.

[25] Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM,

García JM. High-throughput parallel blind virtual

screening using BINDSURF. Bioinformatics. 2012; 13.

[26] Jena RK, Aqel MM, Srivastava P, Mahanti PK. Soft

computing methodologies in bioinformatics. Eur J Sci

Res 2009; 26(2): 189-203.

[27] Mitra S, Hayashi Y. Bioinformatics with soft

computing. IEEE T Syst Man Cy C 2006; 36(5): 616-

35.

[28] Peréz-Sánchez, H, Cecilia, J M, Merelli, I. In:The role

of High Performance Computing in Bioinformatics.

Proceedings of International Work-Conference on

Bioinformatics and Biomedical Engineering. Granada,

Spain: 2014; pp 494-506.

[29] Shaw DE, Maragakis P, Lindorff-Larsen, K, et al.

Atomic-level characterization of the structural

dynamics of proteins. Science 2010; 330(6002): 341-6.

[30] Schaller RR. Moore's law: past, present and future.

IEEE Spectr 1997; 34(6): 52-9.

[31] Schulz M. The end of the road for silicon? Nature

1999; 399(6738): 729-30.

[32] Pavlus J. The Search for a New Machine. Sci Am 2015;

312(5): 58-63.

[33] Huang A. Moore's Law is Dying (and that could be

good). IEEE Spectr 2015; 52(4): 43-7.

22Current Drug Targets, 2016 Llanes et al.

[34] Top500 The List. Available at: http://www.top500.org/

[accesed June 24,2015].

[35] Kirk DB, Wen-mei WH. Programming massively

parallel processors: a hands-on approach, MA, USA:

Elsevier 2013.

[36] Jeffers J, Reinders J. Intel Xeon Phi coprocessor high-

performance programming, MA, USA: Elsevier 2013.

[37] Carretero J, García-Blas J, Singh DE, et al.

In:Optimizations to enhance sustainability of MPI

applications. Proceedings of the 21st European MPI

Users' Group Meeting. Kyoto, Japan: ACM New York

2014; pp 145.

[38] Garland M, Le Grand S, Nickolls J, et al. Parallel

computing experiences with CUDA. IEEE micro 2008;

(4): 13-27.

[39] Nickolls J, Buck I, Garland M, Skadron K. Scalable

parallel programming with CUDA. ACM Queue 2008;

6(2): 40-53.

[40] nVIDIA. GPU Accelerated. Available at:

http://www.nvidia.com/content/gpu-

applications/PDF/GPU-apps-catalog-mar2015.pdf

[accessed May 30,2015].

[41] Tsuchiyama R, Nakamura T, Iizuka T, Asahara A, Miki

S, Tagawa S. The OpenCL programming book. Fixstars

Corporation 2010.

[42] Garland M, Kirk DB. Understanding throughput-

oriented architectures. Commun ACM 2010; 58-66.

[43] Kim HS, El Hajj I, Stratton J, Lumetta S, Hwu WM.

In:Locality-centric thread scheduling for bulk-

synchronous programming models on CPU

architectures. Proceedings of the 13th Annual

IEEE/ACM International Symposium on Code

Generation and Optimization. San Francisco, CA,

USA: IEEE Computer Society Washington 2015; pp

257-68.

[44] Chang LW, Dakkak A, Rodrigues CI, Hwu WM. In:

Tangram: a High-level Language for Performance

Portable Code Synthesis. Proceedings of

Programmability Issues for Heterogeneous Multicores.

Amsterdam, Netherlands, 2015.

[45] The OpenMP API specification for parallel

programming. Available at: http://openmp.org/wp/

[accessed May 30,2015].

[46] OpenACC, Directives for accelerators. Available at:

http://www.openacc-standard.org/ [accessed May 30,

2015].

[47] Fan X, Weber WD, Barroso LA. In: Power

provisioning for a warehouse-sized computer.

Proceedings of the 34th annual international

symposium on Computer architecture. San Diego, CA,

USA: ACM New York 2007; pp 13-23.

[48] Koomey JG. Worldwide electricity used in data centers.

Environ Res 2008; 3(3).

[49] The Green 500 List. Available at:

http://www.green500.org/ [accessed June 24, 2015].

[50] Guerrero GD, Wallace RM, Vázquez Poletti JL, et al.

A performance/cost model for a CUDA drug discovery

application on physical and public cloud

infrastructures. Concurrency-Pract Ex 2014; 26(10):

1787-98.

[51] Hewwit C. ORGs for Scalable, Robust, Privacy-

Friendly Client Cloud Computing/Carl Hewitt. IEEE

Internet Comput 2008; 12(5): 96-9.

[52] Berl A, Gelenbe E, Di Girolamo M, et al. Energy-

efficient cloud computing. Comput J 2010; 53(7):

1045-51.

[53] Armbrust M, Fox A, Griffith R, et al. A view of cloud

computing. Commun ACM 2010; 53(4): 50-8.

[54] D'Agostino D, Clematis A, Quarati A, et al. Cloud

infrastructures for in silico drug discovery: economic

and practical aspects. Biomed Res Int 2013; 19.

[55] D'Agostino D, Galizia A, Clematis A, Mangini M,

Porro I, Quarati A. A QoS-aware broker for hybrid

clouds. Computing 2013; 95(1): 89-109.

[56] Shvachko K, Kuang H, Radia S, Chansler R. In: The

Hadoop distributed file system. Proceedings of the 26th

Symposium on Mass Storage Systems and

Technologies (MSST). Incline Village, NV: IEEE

2013; pp 89-109.

[57] Buchan DW, Minneci F, Nugent TC, Bryson K, Jones

DT. Scalable web services for the PSIPRED Protein

Analysis Workbench. Nucleic Acids Res 2013; 41(1):

349-57.

[58] Narayanan AH, Krishnakumar U, Judy MV. In: An

Enhanced MapReduce Framework for Solving Protein

Folding Problem Using a Parallel Genetic Algorithm.

Proceedings of the 48th Annual Convention of

Computer Society of India. Springer International

Publishing 2014; pp 241-50.

[59] Beberg AL, Ensign DL, Jayachandran G, Khaliq S,

Pande VS. In: Folding@ home: Lessons from eight

years of volunteer distributed computing. Proceedings

of Parallel & Distributed Processing. Rome: IEEE

2009; pp 1-8.

[60] Folding@Home. Available at:

http://folding.stanford.edu/home/the-science [accessed

June 15, 2015].

[61] Kondov I, Berlich R. In: Protein structure prediction

using particle swarm optimization and a distributed

parallel approach. Proceedings of the 3rd workshop on

Biologically inspired algorithms for distributed

systems. Karlsruhe, Germany: ACM New York 2011;

pp 35-42.

[62] Wooldridge M. An Introduction to Multiagent Systems

Chichester, UK: John Wiley and Sons 2002.

http://www.top500.org/
http://www.nvidia.com/content/gpu-applications/PDF/GPU-apps-catalog-mar2015.pdf
http://www.nvidia.com/content/gpu-applications/PDF/GPU-apps-catalog-mar2015.pdf
http://openmp.org/wp/
http://www.openacc-standard.org/
http://www.green500.org/
http://folding.stanford.edu/home/the-science

HPC & Protein Folding Current Drug Targets, 201623

[63] Cannata N, Corradini F, Merelli E, Omicini A, Ricci A.

In: An agent-oriented conceptual framework for

systems biology. Proceedings of Transactions on

computational systems biology III. Berlin, Springer

2005 pp. 105-22.

[64] Bortolussi L, Dovier A, Fogolari F. Agent-based

protein structure prediction. Multiagent and Grid

Systems 2007; 3(2): 183-97.

[65] Czibula G, Bocicor MI, Czibula IG. Solving the protein

folding problem using a distributed q-learning

approach. Int J Comput Inf Sci 2011;(5): 404-13.

[66] Czibula G, Bocicor M, Czibula I. A reinforcement

learning model for solving the folding problem. Int J

Comput Appl T 2011; 2: 171–82.

[67] Cartmell J, Enoch S, Krstajic D, Leahy DE. Automated

QSPR through competitive workflow. J Comput Aid

Mol Des 2005; 19(11): 821-33.

[68] Amigoni F, Schiaffonati V. In: Multiagent-based

simulation in biology. Proceeding of the Model-Based

Reasoning in Science, Technology, and Medicine.

Berlin, Springer 2007; pp 179-91.

[69] Hornik K, Stinchcombe M, White H. Multilayer

feedforward networks are universal approximators.

Neural networks 1989; 2(5): 359-66.

[70] Pollastri G, Przybylski D, Rost B, Baldi P. Improving

the prediction of protein secondary structure in three

and eight classes using recurrent neural networks and

profiles. Proteins 2002; 47: 228–35.

[71] Rost B, Sander C. Combining evolutionary information

and neural networks to predict protein secondary

structure. Proteins 1994; 19(1): 55-72.

[72] Chandonia JM, Karplus M. Neural networks for

secondary structure and structural class predictions.

Protein Sci 1995; 4(2): 275-85.

[73] Chandonia JM, Karplus M. The importance of larger

data sets for protein secondary structure prediction with

neural networks. Protein Sci 1996; 5(4): 768-74.

[74] Blom N, Hansen J, Blaas D, Brunak S. Cleavage site

analysis in picornaviralpolyproteins: discovering

cellular targets by neural networks. Protein Sci 1996;

5(11): 2203-16.

[75] Nielsen H, Engelbrecht J, Brunak S, von Heijne G. A

neural network method for identification of prokaryotic

and eukaryotic signal peptides and prediction of their

cleavage sites. Int J Neural Syst 1997; 8: 581-99.

[76] Nielsen H, Brunak S, von Heijne G. Machine learning

approaches for the prediction of signal peptides and

other protein sorting signals. Protein Eng 1999; 12(1):

3-9.

[77] Li X, Romero P, Rani M, Dunker A, Obradovic Z.

Predicting protein disorder for N-, C-and internal

regions. Genome Inform 1999; 10: 30-40.

[78] Sodhi JS, Bryson K, McGuffin LJ, Ward JJ, Wernisch

L, Jones DT. Predicting metal-binding site residues in

low-resolution structural models. J Mol Biol 2004;

342(1): 307-20.

[79] Passerini A, Punta M, Ceroni A, Rost B, Frasconi P.

Identifying cysteines and histidines in

transitionmetalbinding sites using support vector

machines and neural networks. Proteins 2006; 65(2):

305-16.

[80] Nair R, Rost B. Better prediction of subcellular

localization by combining evolutionary and structural

information. Proteins 2003; 53(4): 917-30.

[81] Emanuelsson O, Nielsen H, Brunak S, von Heijne G.

Predicting subcellular localization of proteins based on

their N-terminal amino acid sequence. J Mol Biol 2000;

300(4): 1005-16.

[82] Reinhardt A, Hubbard T. Using neural networks for

prediction of the subcellular location of proteins.

Nucleic Acids Res 1998; 26(9): 2230-6.

[83] Jensen LJ, Gupta R, Blom N, et al. Prediction of human

protein function from post-translational modifications

and localization features. J Mol Biol 2002; 319(5):

1257-65.

[84] Mirabello C, Adelfio A, Pollastri G. Reconstructing

Protein Structures by Neural Network Pairwise

Interaction Fields and Iterative Decoy Set Construction.

Biomolecules 2014; 4(1): 160-80.

[85] Igel C, Gebert J, Wiebringhaus T. In: Protein fold class

prediction using neural networks with tailored early-

stopping. Proceedings of Neural Networks. IEEE

International Joint Conference 2004; pp 1693-7.

[86] Ding CH, Dubchak I. Multi-class protein fold

recognition using support vector machines and neural

networks. Bioinformatics 2001; 17(4): 349-58.

[87] Karchin R, Cline M, Mandel-Gutfreund Y, Karplus K.

Hidden Markov models that use predicted local

structure for fold recognition: alphabets of backbone

geometry. Proteins 2003; 51(4): 504-14.

[88] Andreeva A, Howorth D, Brenner SE, Hubbard TJ,

Chothia C, Murzin AG. SCOP database in 2004:

refinements integrate structure and sequence family

data. Nucleic Acids Res 2004; 32(1): 226-9.

[89] Rost B, Sander C. Prediction of protein secondary

structure at better than 70% accuracy. J Mol Biol 1993;

232(2): 584-99.

[90] Altschul SF, Madden TL, Schaffer AA, et al. Gapped

BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res 1997;

25(17): 3389-402.

[91] Khan MA, Jan Z, Ali H, Mirza AM. In: Performance of

Machine Learning Techniques in Protein Fold

Recognition Problem. Proceedings of Information

Science and Applications IEEE 2010; pp 1-6.

24Current Drug Targets, 2016 Llanes et al.

[92] Sangjo H, Byung-chul L, Seung TY, Chan-seok J,

Soyoung L, Dongsup K. Fold recognition by combining

profile–profile alignment and support vector machine.

Bioinformatics 2005; 21(11): 2667-73.

[93] Xu J. Fold recognition by predicted alignment

accuracy. IEEE ACM T Comput Bi 2005; 2(2): 157-65.

[94] Hua S, Sun Z. A novel method of protein secondary

structure prediction with high segment overlap

measure: support vector machine approach. J Mol Biol

2001; 308(2): 397-407.

[95] Schmidhuber J. Deep learning in neural networks: An

overview. Neural Networks 2015; 61: 85-117.

[96] Eickholt J, Cheng J. Predicting protein residue–residue

contacts using deep networks and boosting.

Bioinformatics 2012; 28(23): 3066-72.

[97] Spencer M, Eickholt J, Cheng J. A Deep Learning

Network Approach to ab initio Protein Secondary

Structure Prediction. IEEE ACM T Comput Bi 2014:

103-12.

[98] Mnih V. Cudamat: a CUDA-based matrix class for

python. Department of Computer Science, University

of Toronto, Tech Rep UTML TR, 4: 2009.

[99] Blum C, Roli A. Metaheuristics in combinatorial

optimization: Overview and conceptual

comparison. ACM Comput Surv 2003; 35(3): 268-308.

[100] Das S, Abraham A, Konar A. In: Swarm

intelligence algorithms in bioinformatics. Proceedings

of Computational Intelligence in Bioinformatics.

Springer Berlin Heidelberg 2008; pp 113-47.

[101] Bergholt MS, Zheng W, Lin K, et al. In vivo

diagnosis of gastric cancer using Raman endoscopy and

ant colony optimization techniques. Int J Cancer 2011;

128(11): 2673-80.

[102] Dorigo M, Birattari M, Stutzle T. Ant colony

optimization. IEEE Comput Intell Mag 2006; 1(4): 28-

39.

[103] Blum C. Ant colony optimization: Introduction and

recent trends. Phys Life Rev 2005; 2(4): 353-73.

[104] Dorigo M, Maniezzo V, Colorni A. The ant system:

optimization by a colony of cooperation agents. IEEE

Trans Syst Man Cybern 1996; 29-41.

[105] Dorigo M, Caro G, Gambardella L. Ant algorithms

for discrete optimization. Artif Life 1999; 5(2): 137-72.

[106] Dorigo M, Stützle T. In: Handbook of

Metaheuristics; Springer US: 2003; pp 250-85.

[107] Sivagaminathan RK, Ramakrishnan S. A hybrid

approach for feature subset selection using neural

networks and ant colony optimization. Expert Syst

Appl 2007; 33(1): 49-60.

[108] Nemati S, Basiri ME, Ghasem-Aghaee N, Aghdam

MH. A novel ACO–GA hybrid algorithm for feature

selection in protein function prediction. Expert Syst

Appl 2009; 36(10): 12086-94.

[109] Shmygelska A, Hoos HH. An ant colony

optimisation algorithm for the 2D and 3D hydrophobic

polar protein folding problem. BMC bioinformatics

2005; 6(1): 30.

[110] Song J, Cheng J, Zheng T. In: Protein 3D HP model

folding simulation based on ACO. Proceedings of

Intelligent Systems Design and Applications. IEEE

2006; pp 410-5.

[111] Tortilla HP benchmark. Available at:

http://www.cs.sandia.gov/tech_reports/compbio/tortilla

-hp-benchmarks.html [accessed Jun 15, 2015]

[112] Thalheim T, Merkle D, Middendorf M. Protein

folding in the HP-model solved with a hybrid

population based ACO algorithm. Int J Comp Sci 2008;

35(3): 291-300.

[113] Hu XM, Zhang J, Li Y. In: Flexible protein folding

by ant colony optimization. Proceedings of

Computational Intelligence in Biomedicine and

Bioinformatics. Berlin: Springer 2008; pp 317-36.

[114] Chen C, Tian YX, Zou XY, Cai PX, Mo JY. A

hybrid ant colony optimization for the prediction of

protein secondary structure. Chinese Chem Lett 2005;

16(11): 1551-4.

[115] Chu D, Zomaya A. In: Parallel Ant Colony

Optimization for 3D Protein Structure Prediction using

the HP Lattice Model. Nedjah N, de MacedoMourelle

L, Alba E. Springer Berlin Heidelberg 2006; pp 177-

198.

[116] Guo H, Lu Q, Wu J, Huang X, Qian P. In: Solving

2D HP Protein Folding Problem by Parallel Ant

Colonies. Proceedings of 2nd International Conference

Biomedical Engineering and Informatics. Tianjin:

IEEE. 2009; pp 1 - 5.

[117] Lv Q, Wu H, Wu J, Huang X, Luo X, Qian P. A

parallel ant colonies approach to de novo prediction of

protein backbone in CASP8/9. Sci China Inform Sci

2013; 56(10): 1-13.

[118] Cecilia JM, García JM, Nisbet A, Amos M, Ujaldón

M. Enhancing data parallelism for ant colony

optimization on GPUs. J Parallel Distr Com 2013;

73(1): 42-51.

[119] Karaboga D, Basturk B. On the performance of

artificial bee colony (ABC) algorithm. Appl Soft

Comput 2008; 8(1): 687-97.

[120] Zhang Y, Wu L. Artificial bee colony for two

dimensional protein folding. AEES 2012; 1(1): 19-23.

[121] Li B, Li Y, Gong L. Protein secondary structure

optimization using an improved artificial bee colony

algorithm based on AB off-lattice model. Eng Appl

Artif Intel 2014; 27: 70-9.

http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html
http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html

HPC & Protein Folding Current Drug Targets, 201625

[122] Benítez CMV, Lopes HS. In: Parallel artificial bee

colony algorithm approaches for protein structure

prediction using the 3DHP-SC model. Proceedings of

Intelligent Distributed Computing IV. Springer Berlin

Heidelberg, 2010; pp 255-64.

[123] Benitez CMV, Lopes HS. In: Hierarchical Parallel

Genetic Algorithm applied to the three-dimensional HP

Side-chain Protein Folding Problem. Proceedings of

Intenrantional Conference on Systems Man and

Cybernetics. Istanbul: IEEE 2010; pp 2669-76.

[124] Benitez CMV, Parpinelli RS, Lopes HS.

Parallelism, hybridism and coevolution in a multi-level

ABC-GA approach for the protein structure prediction

problem. Concurr Comput 2012; 24(6): 635-46.

[125] Bahamish HAA, Abdullah R, Abu-Hashem MA. In:

A modified Marriage in Honey Bee Optimisation

(MBO) algorithm for protein structure prediction.

Proceedings of 2nd International Conference on

Computer Technology and Development. Cairo: IEEE

2010; pp 65-9.

[126] Wang Y, Guo GD, Chen LF. Chaotic Artificial Bee

Colony algorithm: A new approach to the problem of

minimization of energy of the 3D protein structure. Mol

Biol+ 2013; 47(6): 894-900.

[127] Li B, Chiong R, Lin M. A balance-evolution

artificial bee colony algorithm for protein structure

optimization based on a three-dimensional AB off-

lattice model. Comput Biol Chem 2015; 54: 1-12.

[128] Li Y, Zhou C, Zheng X. Artificial Bee Colony

Algorithm for the Protein Structure Prediction Based on

the Toy Model. Fundam Inform 2015; 136(3): 241-52.

[129] Chen X, Lv M, Zhao L, Zhang X. An Improved

Particle Swarm Optimization for Protein Folding

Prediction. IJIEEB 2011; 3(1): 1-8.

[130] Pérez-Hernández LG, Rodríguez-Vázquez K,

Garduño-Juárez R. In: Parallel particle swarm

optimization applied to the protein folding problem.

Proceedings of the 11th Annual conference on Genetic

and evolutionary computation. New York: ACM 2009;

pp 1791-2.

[131] Pérez-Hernández LG, Rodríguez-Vázquez K,

Gorduño-Juárez R. In: Estimation of 3D protein

structure by means of parallel particle swarm

optimization. Proceedings of Evolutionary

Computation. Barcelona: IEEE 2010; pp 1-8.

[132] Liu J, Wang L, He L, Shi F. In: Analysis of toy

model for protein folding based on particle swarm

optimization algorithm. Proceedings of First

International Conference. Changsha, China: Springer

Berlin Heidelberg 2005; pp 636-45.

[133] Mansour N, Kanj F, Khachfe H. Particle swarm

optimization approach for protein structure prediction

in the 3D HP model.

Interdiscip Sci 2012; 4(3): 190-200.

[134] Goldberg DE. Genetic algorithms in search,

optimization and machine learning. Addison-Wesley

1989.

[135] De Jong KA, Spears WM. In: Using genetic

algorithms to solve NP-complete problems.

Proceedings of International Conference on Genetic

Algorithms. California: Morgan Kaufmann Publishers,

1989; pp 124-32.

[136] Holland JH. Adaptation in natural and artificial

systems: An introductory analysis with applications to

biology, control, and artificial intelligence. Oxford,

England: U Michigan Press 1975.

[137] Unger R, Moult J. Genetic algorithms for protein

folding simulations. J Mol Biol 1993; 231(1): 75-81.

[138] König R, Dandekar T. Improving genetic

algorithms for protein folding simulations by

systematic crossover. BioSystems 1999; 50(1): 17-25.

[139] Patton AL, Punch III WF, Goodman ED. In: A

Standard GA Approach to Native Protein Conformation

Prediction. Proceedings of International Conference of

Genetic Algorithms; 1995. pp 574-81.

[140] Pedersen JT, Moult J. Protein folding simulations

with genetic algorithms and a detailed molecular

description. J Mol Biol 1997; 269(2): 240-59.

[141] Lopes HS, Scapin MP. In: An enhanced genetic

algorithm for protein structure prediction using the 2D

hydrophobic-polar model. Talbi EG, Liardet P, Collet

P, Lutton E, Schoenauer M. Artificial Evolution:

Springer Berlin Heidelberg 2006. pp 238-46.

[142] Hoque MT, Chetty M, Dooley LS. In: A new

guided genetic algorithm for 2D hydrophobic-

hydrophilic model to predict protein folding.

Proceedings of Evolutionary Computation. Edinburgh,

Scotland: IEEE 2005; pp 259-66.

[143] Song J, Cheng J, Zheng T, Mao J. In: A novel

genetic algorithm for HP model protein folding.

Proceedings of Sixth International Conference on

Parallel and Distributed Computing, Applications and

Technologies. IEEE 2005; pp. 935-37.

[144] Sun S. Reduced representation model of protein

structure prediction: statistical potential and genetic

algorithms. Protein Sci 1993; 2(5): 762-85.

[145] Dandekar T, Argos P. Folding the main chain of

small proteins with the genetic algorithm. J Mol Biol

1994; 236(6): 844-61.

[146] Zhang X, Wang T, Luo H, et al. In: 3D Protein

structure prediction with genetic tabu search algorithm.

Proceedings of The ISIBM International Joint

Conferences on Bioinformatics, Systems Biology and

Intelligent Computing (IJCBS). Shanghai, China: 2009;

[147] Jiang T, Cui Q, Shi G, Ma S. Protein folding

simulations of the hydrophobic–hydrophilic model by

combining tabu search with genetic algorithms. J Chem

Phys 2003; 119(8): 4592-6.

26Current Drug Targets, 2016 Llanes et al.

[148] Rashid MA, Hoque MT, Newton MH, Pham DN,

Sattar A. In: A New Genetic Algorithm for Simplified

Protein Structure Prediction. Proceedings of 25th

Australasian Joint Conference. Sydney, Australia:

Springer Berlin Heidelberg 2012; pp 107-19.

[149] Cotta C. In: Protein structure prediction using

evolutionary algorithms hybridized with backtracking.

Proceedings Artificial Neural Nets Problem Solving

Methods. Springer Berlin Heidelberg, 2003; pp 321-8.

[150] Chira C. Hill-Climbing search in evolutionary

models for protein folding simulations. Stud Univ

Babe\c s-Bolyai Inform 2010; 55: 29-40.

[151] Zhang X, Lin X, Wan C, Li T. In: Genetic-

annealing algorithm for 3D off-lattice protein folding

model. Proceedings of Emerging Technologies in

Knowledge Discovery and Data Mining. Springer

Berlin Heidelberg 2007; pp 186-93.

[152] Moscato P, Cotta C. In: A gentle introduction to

memetic algorithms. Glove F, Kochenberger GA.

Handbook of Metaheuristics: Springer US 2003. pp.

105-44.

[153] Islam MK, Chetty M. In: Novel memetic algorithm

for protein structure prediction. Proceedings of

Advances in Artificial Intelligence. Springer Berlin

Heidelberg 2009; pp 412-21.

[154] Krasnogor N, Blackburne BP, Burke EK, Hirst JD.

In: Multimeme Algorithms for Protein Structure

Prediction. Proceedings of 7th International Conference

of Parallel Problem Solving from Nature. Granada,

Spain: Springer Berlin Heidelberg 2002; pp 769-78.

[155] Smith JE. In: The co-evolution of memetic

algorithms for protein structure prediction. Hart WE,

Smith JE, Krasnogor N. Recent Advances in Memetic

Algorithms. Springer Berlin Heidelberg 2005. pp 105-

28.

[156] Bazzoli A, Tettamanzi AG. In: A memetic

algorithm for protein structure prediction in a 3D-lattice

HP model. Proceedings of Applications of Evolutionary

Computing. Springer Berlin Heidelberg 2004; pp 1-10.

[157] Islam MK, Chetty M. Clustered memetic algorithm

with local heuristics for ab initio protein structure

prediction. IEEE T Evolut Comput 2013; 17(4): 558-

76.

[158] Islam MK, Chetty M, Murshed M. In: Novel local

improvement techniques in clustered memetic

algorithm for protein structure prediction. Proceedings

of Evolutionary Computation. New Orleans, LA: IEEE

2011; pp 1003-11.

[159] Smith JE. In: Protein structure prediction with co-

evolving memetic algorithms. Proceedings of the

congress on Evolutionary Computation. IEEE 2003; pp

2346-53.

[160] Coello CAC, Van Veldhuizen DA, Lamont GB.

Evolutionary algorithms for solving multi-objective

problems New York: Kluwer Academic 2007.

[161] Day RO, Zydallis JB, Lamont GB, Pachter R.

Solving the protein structure prediction problem

through a multiobjective genetic algorithm.

Nanotechnology 2002; 2: 32-5.

[162] Brasil CRS, Delbem ACB, da Silva FLB.

Multiobjective evolutionary algorithm with many tables

for purely ab initio protein structure prediction. J

Comput Chem 2013; 34(20): 1719-34.

[163] SoaresBrasil CR, BotazzoDelbem AC,

FerrazBonetti DR. In: Investigating relevant aspects of

MOEAs for protein structures prediction. Proceedings

of the 13th annual conference on Genetic and

evolutionary computation. Dubin, Ireland: ACM 2011;

pp 705-12.

[164] Cutello V, Narzisi G, Nicosia G. A multi-objective

evolutionary approach to the protein structure

prediction problem. J R Soc Interface 2006; 3(6): 139-

51.

[165] Garza-Fabre M, Rodriguez-Tello E, Toscano-Pulido

G. In: Multiobjectivizing the HP model for protein

structure prediction. Proceedings of 12th European

Conference Evolutionary Computation in

Combinatorial Optimization. Málaga, Spain: Springer

Berlin Heidelberg 2012; pp 182-93.

[166] Handl J, Lovell SC, Knowles J. In: Investigations

into the effect of multiobjectivization in protein

structure prediction. Proceedings of 10th International

Conference on Parallel Problem Solving from Nature.

Dortmund, Germany: Springer Berlin Heidelberg 2008;

pp 702-11.

[167] Garza-Fabre M, Toscano-Pulido G, Rodriguez-

Tello E. In: Locality-based multiobjectivization for the

HP model of protein structure prediction. Proceedings

of the 14th annual conference on Genetic and

evolutionary computation. New York: ACM 2012; pp

473-80.

[168] Calvo JC, Ortega J. In: Parallel protein structure

prediction by multiobjective optimization. Proceedings

of 17th Euromicro International Conference on Parallel,

Distributed and Network-based Processing. Weimar,

Germany: IEEE 2009; pp 268-75.

[169] Calvo JC, Ortega J, Anguita M, Urquiza JM,

Florido JP. In: Protein structure prediction by

evolutionary multi-objective optimization: search space

reduction by using rotamers. Proceedings of Bio-

Inspired Systems: Computational and Ambient

Intelligence. Springer Berlin Heidelberg 2009; pp 861-

8.

[170] Calvo JC, Ortega J, Anguita M. Comparison of

parallel multi-objective approaches to protein structure

prediction. J Supercomput 2011; 58(2): 253-60.

HPC & Protein Folding Current Drug Targets, 201627

[171] Calvo JC, Ortega J, Anguita M. PITAGORAS-PSP:

Including domain knowledge in a multi-objective

approach for protein structure prediction.

Neurocomputing 2011; 2675-82.

[172] Tantar A, Melab N, Talbi EG. In: A comparative

study of parallel metaheuristics for protein structure

prediction on the computational grid. Proceedings of

Parallel and Distributed Processing Symposium. Long

Beach, CA: IEEE 2007; pp 1-10.

[173] Tantar AA, Melab N, Talbi EG, Parent B, Horvath

D. A parallel hybrid genetic algorithm for protein

structure prediction on the computational grid. Future

Gener Comp Sy 2007; 23(3): 398-409.

[174] Tantar AA, Melab N, Talbi EG. A grid-based

genetic algorithm combined with an adaptive simulated

annealing for protein structure prediction. Soft Comput.

2008; 12(12): 1185-1198.

[175] Cahon S, Melab N, Talbi EG. ParadisEO: A

framework for the reusable design of parallel and

distributed metaheuristics. J Heuristics 2004; 10(3):

357-80.

[176] Thain D, Tannenbaum T, Livny M. Distributed

computing in practice: The Condor experience. Concurr

Comp-Pract E 2005; 17(2-4): 323-56.

[177] Benítez CMV, Lopes HS. Protein structure

prediction with the 3D-HP side-chain model using a

master–slave parallel genetic algorithm. J Braz Comp

Soc 2010; 16(1): 69-78.

[178] Xue Y, Qian Z, Bogdan P, Ye F, Tsui CY. In:

Disease Diagnosis-on-a-Chip: Large Scale Networks-

on-Chip based Multicore Platform for Protein Folding

Analysis. Proceedings of 51st ACM/EDAC/IEEE

Design Automation Conference. San Francisco, CA:

IEEE 2014; pp 1-6.

[179] Dean J, Ghemawat S. MapReduce: simplified data

processing on large clusters. Commun ACM 2008; 107-

13.

[180] Zhu H, Xiao H, Gu J. In: Parallelism of Clonal

Selection for PSP on CUDA. Proceedings of 3rd

International Conference on Intelligent Networks and

Intelligent Systems Shenyang: IEEE 2010; pp 467-70.

[181] Scalabrin MH, Parpinelli RS, Benítez CM, Lopes

HS. Population–based harmony search using GPU

applied to protein structure prediction. gbs-ijcse 2014;

9(1): 106-18.

[182] Mansour N, Kanj F, Khachfe H. Enhanced genetic

algorithm for protein structure prediction based on the

HP model: intech 2011;

[183] Garcia-Martinez JM, Garzón EM, Cecilia JM,

Perez-Sanchez H, Ortigosa PM. An efficient approach

for solving the HP Protein Folding Problem based on

UEGO. J Math Chem 2015; 794-806.

[184] Zhang Y, Wu L, Wang S. Solving two-dimensional

HP model by firefly algorithm and simplified energy

function. Math Probl Eng 2013;

[185] Cai X, Wu X, Wang L, Kang Q, Wu Q.

Hydrophobic-polar model structure prediction with

binary-coded artificial plant optimization algorithm. J

Comput Theor Nanos 2013; 10(6): 1550-4.

[186] Cui Z, Liu X, Liu D, Zeng J, Shi Z. Using

Gravitropism Artificial Plant Optimization Algorithm

to Solve Toy Model of Protein Folding. J Comput

Theor Nanos 2013; 10(6): 1540-4.

[187] Cai X, Liu D, Wang L, Kang Q, Wu Q. Using

Social Emotional Optimization Algorithm to Solve Toy

Model of Protein Folding. J Comput Theor Nanos

2013; 10(6): 1545-9.

[188] Lin CJ, Su SC. Protein 3 D HP Model Folding

Simulation Using a Hybrid of Genetic Algorithm and

Particle Swarm Optimization. Int J Fuzzy Syst 2011;

13(2): 140-7.

[189] Zhao X. Advances on protein folding simulations

based on the lattice HP models with natural computing.

Appl Soft Comput 2008; 8(2): 1029-40.

[190] Karami Y, Khakzad H, Arab S, Fathy M, Shirazi H.

In: Protein structure prediction using bio-inspired

algorithm: A review. Proceedings of 16th CSI

International Symposium on Artificial Intelligence and

Signal Processing. Shiraz, Fars: IEEE 2012; pp 201-6.

[191] Glover F, Laguna M. Tabu search. In Du DZ,

Pardalos PM. Handbook of Combinatorial

Optimization. Springer US 1999. pp 2093-229.

[192] Russell S, Norvig P. A modern approach. Artificial

Intelligence: Prentice-Hall 1995.

[193] Kirkpatrick S, Gelatt JCD, Vecchi MP.

Optimization by simulated annealing. Science 1983;

220(4598): 671-80.

[194] Eglese RW. Simulated annealing: a tool for

operational research. Eur J Oper Res 1990; 46(3): 271-

81.

[195] Neal L, Mitzenmacher M, Whitesides S. In: A

complete and effective move set for simplified protein

folding. Proceedings of the seventh annual international

conference on Research in computational molecular

biology. New York: ACM 2003; pp 188-95.

[196] Błażewicz J, Łukasiak P, Miłostan M. Application

of tabu search strategy for finding low energy structure

of protein. Artif Intell Med 2005; 35(1): 135-45.

[197] Cebrián M, Dotú I, Van Hentenryck P, Clote P. In:

Protein structure prediction on the face centered cubic

lattice by local search. Proceedings of the Twenty-

Third AAAI Conference on Artificial Intelligence.

2008; pp 241-6.

[198] Yue K, Fiebig K, Thomas P, Chan H, Shakhinovich

E, and Dill K. In: A test of lattice protein folding

28Current Drug Targets, 2016 Llanes et al.

algorithms. Proceedings of the National Academy of

Sciences. 1995. pp 325-9.

[199] Dotu I, Cebrián M, Van Hentenryck P, Clote P. On

lattice protein structure prediction revisited.

IEEE/ACM Tans Comput Biol Bioinf 2011; 8(6):

1620-32.

[200] Rashid MA, Newton MAH, Hoque MT, Shatabda

S, Pham D, Sattar A. Spiral search: a hydrophobic-core

directed local search for simplified PSP on 3D FCC

lattice. BMC Bioinformatics 2013; 14.

[201] Zhou C, Hou C, Zhang Q, Wei X. Enhanced hybrid

search algorithm for protein structure prediction using

the 3D-HP lattice model. J Mol Model 2013; 19(9):

3883-91.

[202] Morales LB, Garduño–Juárez R, Aguilar–Alvarado

JM, Riveros–Castro FJ. A parallel tabu search for

conformational energy optimization of oligopeptides. J

Comput Chem 2000; 21(2): 147-56.

[203] Xiaolong Z, Cheng W. In: An improved tabu search

algorithm for 3D protein folding problem. Proceedings

of 10th Pacific Rim International Conference on

Artificial Intelligence: Trends in Artificial Intelligence.

Hanoi, Vietnam: Springer Berlin Heidelberg 2008; pp

1104-9.

[204] Liu J, Sun Y, Li G, Song B, Huang W. Heuristic-

based tabu search algorithm for folding two-

dimensional AB off-lattice model proteins. Comp Biol

Chem 2013; 47: 142-8.

[205] Su SC, Lin CJ, Ting CK. An effective hybrid of hill

climbing and genetic algorithm for 2D triangular

protein structure prediction. Proteome Sci 2011; 9: 19.

[206] Hoque MT, Chetty M, Dooley LS. In: A hybrid

genetic algorithm for 2D FCC hydrophobic-hydrophilic

lattice model to predict protein folding. Proceedings of

19th Australian Joint Conference on Artificial

Intelligence. Hobart, Australia: Springer Berlin

Heidelberg 2006; pp 867-76.

[207] Böckenhauer HJ, Ullah AZMD, Kapsokalivas L,

Steinhöfel K. In: A local move set for protein folding in

triangular lattice models. Proceedings of 8th

International Workshop. Karlsruhe, Germany: Springer

Berlin Heidelberg 2008; pp 369-81.

[208] Chira C, Horvath D, Dumitrescu D. Hill-Climbing

search and diversification within an evolutionary

approach to protein structure prediction. BioData Min

2011; 4(1): 23.

[209] Cooper LR, Corne DW, Crabbe MJC. Use of a

novel Hill-climbing genetic algorithm in protein folding

simulations. Comp Biol Chem 2003; 27(6): 575-80.

[210] Dandekar T, Argos P. Identifying the tertiary fold

of small proteins with different topologies from

sequence and secondary structure using the genetic

algorithm and extended criteria specific for strand

regions. J Mol Biol 1996; 256(3): 645-60.

[211] Ullah AD, Steinhöfel K. In: A hybrid approach to

protein folding problem integrating constraint

programming with local search. Proceedings of the

Eighth Asia Pacific Bioinformatics Conference.

Bangalore, India: LaxmiParida and Gene Myers 2010;

[212] Simons KT, Kooperberg C, Huang E, Baker D.

Assembly of protein tertiary structures from fragments

with similar local sequences using simulated annealing

and Bayesian scoring functions. J Mol Biol 1997;

268(1): 209-25.

[213] Albrecht AAM, Skaliotis A, Steinhöfel K.

Stochastic protein folding simulation in the three-

dimensional HP-model. Comp Biol Chem 2008; 32(4):

248-55.

[214] Beutler TC, Dill KA. A fast conformational search

strategy for finding low energy structures of model

proteins. Protein Sci 1996; 5(10): 2037-43.

[215] Web of Knowledge. Available

at:www.webofknowledge.com [accessed Jun 25, 2015].

[216] Deng, L., Yu, D. Deep learning: methods and

applications. Fond T Sign Proc 2014; 7(3–4): 197-387.

http://www.webofknowledge.com/

