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Abstract: The protein-folding problem has been extensively studied during the last fifty years. The understanding of the 

dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more 

effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been 

developed by different researchers in order to foresee the three-dimensional arrangement of atoms of proteins from their 

sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel 

algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this 

revision work the past and last tendencies regarding protein folding simulations from both perspectives;hardware and 

software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as 

which hardware platforms have been used for running this kind of Soft Computing techniques. 
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1. INTRODUCTION 

1.1. Protein folding problem 

A noteworthy interrelation exists at the molecular level 

between the structure of a protein and its biological function, 

and in biochemistry we can find a diversity of such 

functionalities. It is well known that the mechanism by 

which a protein exerts its biological function is directly 

related to its native three-dimensional structure, which is 

precisely codified on its sequence of aminoacids[1]. 

 Being able to solve this problem is of outstanding 
importance since having access to the information related to 
the structure of these biomolecules, allows for being able to 
explain how bioactive compounds can modulate their 
biological activity and therefore paves the way to the drug 
discovery process.  

 In addition, one can find many more sequences than 
structural information, mainly due to the last advances in 
high-throughput sequencing and personalized medicine 
efforts [1-2]. Thus, a noticeable interest exists in the 
development of methodologies that, exploiting only 
information extracted from sequences, can predict in detail 
the structure of proteins. 

 

1.2. The simulation problem 

 Finding accurate solutions of the PSP problem is very 
challenging, and researchers have developed many different 
approaches in order to solve it by means of computer 
simulation. These simulation methods receive as input a 

protein sequence and outputtheir predictions for the protein 
structures. 

 Existing computer simulation methods for the PSP 
problem can be classified depending on: 

 a) the degree of details used in the protein model that 
undergoes the computer simulation:there are detailed all-
atom models that try to accurately represent and describe 
bonded and non-bonded interactions present in the folded 
protein structure. From the other side, coarse grain models 
can also be considered. In the last decades, the first 
theoretical hypotheses concerning protein folding, such as 
those stated by Dill et al.[2] were proposed. Main underlying 
ideas indicated that forces implied in the protein folding 
process were related with the intercommunication between 
their aminoacids. But recently, a theory that states that non-
bonded interactions significantly contribute to the dynamics 
of this mechanism, is being accepted, and researchers are 
showing interest to the use of very simple models of 
proteinsand other biological macromolecules. In this context, 
the study of these coarse grain models through computer 
simulation techniques can yield interesting results when their 
predictions are contrasted with empirical measurements. 

 b) the scoring function used for the estimation of the 
interactions between the elements of the protein 
model:thismathematical function will mainly depend on the 
type of protein model used, and for a given model, it might 
contain different sets of parameters that describe the relative 
intensity of the interactions between the different elements of 
the protein model. Its derivation or construction depends 
usually on physical theories or statistical analyses performed 
on previously available protein structures. 
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 c) the algorithm used for the global optimization problem 
of the scoring function: once a given protein model and 
scoring function have been chosen, a optimization methodis 
selected for working on the global optimization problem. It 
concerns the search of the most optimal value of the scoring 
function, since we assume that this value will correspond to 
the native protein fold [1]. Here it is possible to use methods 
that take into account the dynamics of the system, such as 
Molecular Dynamics [3], or stochastic methods that try to 
solve the optimization problem not taking into account the 
dynamics of the system [4]. The former is more realistic, but 
at the same time it is more computationally demanding, 
whereas the latter is much faster, but by using it we lose 
information about the evolution of the system. 

 Once we have chosen a model, scoring function and 
optimization algorithm, we can still consider what is the 
fastest way to carry out the required simulations depending 
on the available hardware architectures. 

 

1.3. Combination of models, algorithms and HPC. 

 The choice of model and its associated algorithm is 
mainly motivated by the required objectives, but it is also 
constrained by the computer hardware characteristics 
attainable in the relevant time frame. One of the most widely 
studied models of protein folding is the hydrophobic-
hydrophilic (HP) model introduced by Dill  [2]. In the 
description of the HP model, the different amino acids that 
form the macromolecular chain can be seen as a discretized 
conformation in a three-dimensional grid or lattice. Here, 
one of the most relevant underlying assumptions is that 
hydrophobic forces contribute considerably to the folding 
process, and the protein chain is modeled as an array of 
hydrophobic or hydrophilic chains (H or P for nonpolar and 
polar, respectively). Then, the most optimal protein 
conformation is the one that augments that number of 
nonpolar residues that are contiguous. In this case the folding 
process can be described as a minimization of the free-
energy of the system, and it can be considered as NP-hard 
problems [5]. This implies that such problems can not be 
efficiently processed by a computer (for insights we refer the 
reader to [6,7]). 

 Models and their associated algorithms should not be 
selected in isolation though. They must be evaluated in the 
context of the computer hardware environment they are 
going to run on. Algorithms that are designed to leverage 
maximum performance on a particular hardware architecture 
could become less effective on a different hardware. 
Therefore, the selection must be made carefully, and may 
change over time [8]. This issue even grows exponentially 
nowadays as we are witnessing the consolidation of 
heterogeneous systems (i.e., systems that use more than one 
kind of processors), mainly motivated for the exacerbated 
power consumption in current microprocessors, and trying to 
follow the wake of Moore’s law. Such heterogeneity is found 
at different levels from laptops to large-scale computers like 
supercomputers, clouds, etc, and also where it emerges 
naturally is in the low-power devices market such as 
smartphones, tablet and so on. [9].  This emergent landscape 
of computation in the high performance computing market 
offers new opportunities in the simulation of protein 

structure prediction. However, the recent 2014 United States 
Department of the Energy (DoE) report on top ten exascale 
research challenges [8] shows as one of the main challenges 
for next years the design of Exascale algorithms. It will 
require redesigning, or even reinventing the algorithms used 
in current scientific and engineering codes, and potentially 
reformulating the science problems to leverage billion-way 
parallel architectures.  

 In this sense, Soft Computing techniques are designed to 
deal with the difficulties which arise in real problems by 
including several factors like several levels of imprecision 
into the calculation and taking this into account to even 
change the granularity of the problem or somehow relaxing 
the goal of optimization at some point[10]. The source of 
inspiration of Soft Computing is based on the natural 
processes, trying to formalize such processes to solve a 
particular task. Techniques within this field include neural 
networks, genetic algorithms (GA), evolutionary algorithms, 
etc., having many of them a common ingredient in their 
definition: parallelism as the way of speeding-up simulations 
and providing practical implementations for a feasible search 
of a single, unified and parameterized solution. 

 This review article shows the last tendencies on the 
prediction of protein structure by computer simulation and 
our perspectives for the forthcoming years. We focus on both 
the Soft Computing techniques that have been applied to 
coarse-grain protein models, such as the HP-model since it is 
one of the most widely used coarse-grain models in the 
literature, and also the underlying hardware and 
programming models that have been used to execute those 
algorithms.  The paper is structured as follows: Section 2 
briefly introduces the reader into the main concepts 
underlying this review. Section 3 shows the Soft Computing 
techniques applied to protein folding methods before 
discussingin Section 4 about new trends in novel algorithms 
and architectures related to this problem. The paper finishes 
with some conclusions on the current state of the art for this 
topic.   

 

2. BACKGROUND 

2.1. Benchmarks in protein structure prediction. 

 In order to test the accuracy and convenience of PSP 
methods it is necessary to have control data (benchmarks) so 
that we can check whether our predictions are reliable or not.  
If our particular PSP model, scoring function and algorithm 
can reproduce the structure of proteins for which 
experimental structural data is available, we can continue 
forward and start to make predictions for sequences for 
which structures are still unknown. It is therefore of 
outstanding importance to test our PSP methods against all 
possible available benchmarks. 

 The field of PSP benchmarks can be usually divided into 
experimental and synthetic ones. When working with 
detailed atomic models, we will be able to compare them 
with structural data from online public databases such as 
Protein Data Bank (PDB) [11]. In order to test the accuracy 
of protein structure prediction methods, the current “gold 
standard” rule is to compare the predicted structure with the 
experimental one, and calculate the RMSD (Root Mean 
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Structure Deviation) between them. This is only possible 
when protein structures have been obtained by experimental 
methods such as X-ray crystallography, nuclear magnetic 
resonance, or cryo electron microscopy, and deposited in 
public access databases such as PDB. 

 In the case of coarse grain models we have two options. 
The first one is to convert them to all-atom models and then 
compare with experimental structures from PDB, and the 
second one is (when the first possibility does not exist) to 
compare them with synthetic data obtained previously from 
other researchers who have performed an exhaustive search 
of the solution space of the problem.  

 

 Lastly, and independently of the detail of the method 
used, we might be also interested in benchmarking the 
computational speed of our PSP method, depending on its 
hardware implementation, programming language used, etc. 
This is also very relevant since the computational 
performance of the method, and the availability of 
computational resources the researchers have access to, will 
dictate the size of the systems we want to study. 

 

2.2. Soft Computing techniques 

 From the algorithmic point of view, traditional hard 
computing techniques are based on three main objectives: 
precision, certainty and rigor. These requirements make the 
computational cost of such algorithms very costly, 
particularly to deal with real problems where the input size 
grows exponentially. Actually, this is the departure point of 
Soft Computing that tries to overcome the main difficulties 
in real problems, with the thesis that precision and certainty 
are sometimes unapproachable, and thus it may include the 
tolerance for imprecision and uncertainty [12,13]. Therefore, 
Soft Computingcan be defined as the antithesis of what we 
have called Hard Computing. We refer the reader to [10,14] 
for a more detailed definition of Soft Computing. 

 Although several classification of Soft Computing 
techniques have been proposed in the literature [12,13], 
Figure 1 shows a consensus among all of them. Since the 
fuzzy boom at the beginning of 90’s, many methodologies 
based on these techniques have been proposed in the 
literature [15,16]. Although Soft Computingis a term 
introduced by Zadeh in 1994 [17], previous work was done 

by the definition of fuzzy sets [18]. Fuzzy sets are the 
pioneer paradigm in Soft Computing.They have been 
included in many other Soft Computingmethods to provide 
hybrid methods. Among these new methods we may 
highlight Neural Networks [19], Support Vector Machines 
[20], Fuzzy Logic [12], Metaheuristics [21] (including 
techniques such as Evolutionary Computation [22, 23] or 
Swarm Intelligence [24]), to name just a few. There are a 
large number of algorithms within the umbrella of Soft 
Computing. They are applied to different fields such as 
symbol and pattern representation to enrich knowledge 
representation, machine learning for flexible knowledge 
acquisition, and inference by flexible knowledge processing. 
Moreover, Soft Computingtechniques can be offered as a tool 
to interact with or they can be integrated in a larger 
framework where they provide unified and hybrid 
architectures.Soft Computing has been successfully applied 
to solve problems within the field of bioinformatics [25-27]. 
However, the large data sets generated from biological 
experiments and new high-throughput technologies make 
mandatory that modern Soft Computing approaches will be 
scalable across large-scale problems. In Section 3, we briefly 
introduce the Soft Computingtechniques that have been 
applied to the protein folding problem.With that in mind, this 
paper focuses on the functional approximation or 
randomized search part of Soft Computing(see Figure 1) as it 
is gaining popularity during the last few years. 

  

2.3 HPC platforms and programming models 

 In what follows, we reprise and update our vision of the 
High Performance Computing (HPC) arena, which was first 
given in [28]. HPC techniques and platforms are being 
applied for addressing many scientific challenges that would 
be otherwise very difficult to solve. The number of 
calculation required for this kind of scientific applications 
requires large computing resources. Just to mention an 
example, Anton is a supercomputer specially designed to 
simulate protein movements that could aid the drug design 
process [29].  

 However, we are witnessing a revolution in this areaas 
the Moore’s law that has driven the development of new 
microprocessors in the last years [30,31], which is based on 
the idea that the number of transistors in an microprocessor 
would be doubled every two years, is running up against the 
laws of physics [32,33]. While a new microprocessor 
technology come up into the market, the industry has taken 
the steady transition to heterogeneous computing systems 
[34], with heterogeneity representing systems where nodes 
combine traditional multicore architectures (CPUs) and 
accelerators (mostly represented by GPU computing 
movement [35]or Intel Xeon Phi cards [36]).Heterogeneity 
limits system growing as it cannot be performed in an 
incremental way anymore. In particular, concepts like energy 
consumption, programmability, scalability, data location, 
and reliability become challenges for tomorrow’s 
cyberinfrastructure [37]. This Section summarizes current 
trends in HPC platforms that are commonly used within the 
field of Bioinformatics. Of particular interest to us 
are,manycore architectures like Graphics Processing Units 
(GPUs), clusters of computers also known as 

Figure 1 - Classification of Soft Computing techniques 
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Supercomputers and cloud and distributed computing 
architectures.   

 

2.3.1 GPU computing 

 Motivated by the computational demand of the 
videogame industry, Nvidia introduced in 2006 a graphics 
processing unit (GPU), codenamed CUDA (Compute 
Unified Device Architecture), which made available the 
computational power of those novel computing architectures 
to the scientific community. Nowadays, they have become a 
compelling alternative to the traditional architectures  as they 
deliver high rates of floating point performance and 
massively parallelism at a very low cost, and thus 
democratizing the high performance computing (HPC) arena 
[38, 39].This movement was termed “GPGPU” which stands 
for General-Purpose computation on Graphics Processing 
Units. The GPGPU has promoted the use of this novel and 
massively parallel architecture in a wide range of 
applications, particularly in Bioinformatics, where 
parallelism and arithmetic intensity are common 
denominators in almost every application (we refer the 
reader to GPU application catalog provided by Nvidia[40]). 

 Following this trend almost all microprocessor 
company(e.g. ATI/AMD, Intel, etc) have developed their 
own hardware alternatives designed specifically 
foraccelerating general purpose applications.Among them, 
we may highlight Tesla-based GPUs from Nvidia, 
Firestream is ATI/AMD alternative and finally the new Intel 
Xeon Phicoprocessor which is based on Many Integrated 
Core (MIC) architecture. Along with these hardware 
components, those companies have also provided new 
programming models to easily leverage the horsepower of 
these emergent technologies.The first programming model 
for GPGPU was CUDA [35] (Compute Unified Device 
Architecture) provided by Nvidia that is specifically 
developed for programming Nvidia’s GPUs. Nvidia has a 
wide scientific community behind CUDA, and it offers 
several educational and research communities to promote the 
development of scientific applications with CUDA on 
Nvidia's GPUs.  ATI/AMDfirst offered a programming 
model called Stream Computing which is not supported 
anymore and Intel relies on vectorization instructions based 
on X86programming. In 2008 the Khronos Group developed 
an open standard for parallel programming on cross-platform 
heterogeneous systems, called OpenCL[41]. OpenCL is an 
attempt to provide a standard programming language that 
allows multiplatform development on different devices like 
GPUs, accelerators, multicore systems, etc.  

 All of those novel programming models provide an easier 
way to leverage massively parallel architectures. However, 
programmers still have to deal with a new programming 
paradigm, which is rather different to the traditional 
sequential-basedarchitectures [42]. Moreover, those 
computing architectures are nowadays plugged into the 
motherboard through PCI Express bus. This fact provides 
heterogeneous computers that may have a traditional CPU 
and other computing devices like GPUs or accelerators. Each 
of these processors have their own memory spaces, different 
instruction set architectures and communication latencies.  
Therefore, programmability here is not an easy task.  

 Currently, the scientific community is looking for new 
programming models and tools that hide those inherently 
hardware particularities and provide an easier and faster way 
to develop application on this new landscape of computation. 
There are two different trends to provide such abstraction 
layer.  First, the execution of a given program efficiently on 
different devices from a single source code [43,44]. Second, 
the API development to extent traditional programming 
languages like OMPSs for OpenMP [45],or OpenACCAPI 
[46], which establishes several directives to specify loops 
and regions of code in standard programming language such 
as FORTRAN, C++, C. 

 

2.3.2 Supercomputers 

 High performance computer (also known as 
Supercomputers) are those computers that are developed to 
deal with great challenges within the industry and academia. 
Statistics on supercomputers are provided in the TOP500 list 
[34], where information about the number of systems 
installed, the performance of each system or their location 
among others is provided to manufactures and (potential) 
users. Supercomputers within TOP500 are highly involved in 
Bioinformatics research. For instanceTianhe-II and Titan, 
two top supercomputers in this list, are heavily involved in 
developing bioinformatics domain problems. Tianhe-II is 
addressing the needs of genetic engineering and 
biopharmaceutical simulations.  Moreover, Titan is being 
used for molecular similarity to provide a description of 
membrane fusion. This is actually one of the main ways for 
molecules to enter or exit from living cells. Other leading 
examples are the supercomputer installed at the Leibniz 
Supercomputer Center in Monaco (SuperMUC) and the Piz 
Daint the CSCS/Swiss Bioinformatics Institute. The former 
supercomputer is commonly used for running bioinformatics 
applications like analysis of linkage disequilibrium in 
genotyping. The later has been successfully applied to run a 
challenge of evolutionary genomics based on calculating 
selection events in genes achieving several orders of 
acceleration. 

 Supercomputers are adopting the use of accelerators to 
speedup arithmetic intensive parts of the applications. 
Actually, five of the ten fastest supercomputers in Top 500 
list [34] include accelerators in their designs. Those 
accelerators are basically limited to Intel Xeon Phi and 
Nvidia GPUs architectures. However, these accelerators 
increase the overall power consumption of the system which 
is actually a big issue, particularly for large-scale datacenters 
where Total Cost of Ownership is mainly influenced by the 
power supply [47]. Indeed, the inclusion of these 
accelerators can increase the power consumption of a cluster 
node up to 30%.  

 However, the total cost of ownership is not the only 
concern to reduce overall power consumption in 
supercomputers. Actually, this is now becoming mandatory 
as the carbon footprint of those systems is actually very high, 
and the reduction of carbon emissions is one of the main 
challenges in the last 2015 United Nations Climate Change 
Conference where the International Trade Union 
Confederation has called for the goal to be "zero carbon, 
zero poverty".For instance, the power consumption of TI 
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supercomputers companies such as Google or Facebook, 
consumed about 0.5% of the overall power consumption in 
the world during 2005. If the cooling and power distribution 
were also taken into account then the power consumption 
increases up to 1% [48]. The high performance computing 
community is trying to develop supercomputers and 
infrastructures that reduce power consumption. Actually, the 
GREEN500 list [49]shows the 500 most power efficient 
supercomputers in the world. Indeed, we are envisioning a 
shift from the traditional metrics like FLOPS (FLoating point 
Operations Per Second) to FLOPS per watt. 

 Virtualization techniques are placed as the main way to 
reduce the overall power consumption in supercomputers, as 
they enable to have several virtual machines running at the 
same time in the same real hardware. Actually, datacenters 
are adopting this new trend for several applications.Of 
course, virtualization may have a performance impact. For 
instance, Amazon Elastic Cloud Computing EC2offers a 
virtual infrastructure of 26496 cores, 
achieving484,2TeraFLOPS for the High Performance 
Linpack benchmark, placing the cluster at position 101 in the 
November 2014 Top500 list but this is actually a tradeoff the 
scientific community has to deal with.  

 

2.3.3 Cloud and distributed computing 

 As previously explained, the TCO of having an in-
housesupercomputer is very high and it is not affordable for 
small institutions [50]. Cloud computing is ubiquitous and 
energy-efficient computer organization by its definition [51], 
in which virtualization is the main ingredient to obtain great 
energy reduction. In cloud computing platforms, services run 
remotely in a ubiquitous and distributed computing set of 
computers (a.k.a cloud) that may provide scalable and 
virtualized resources. In this way, heavy workloads can be 
migrated to other virtual nodes of the cloud, providing higher 
levels of hardware utilization [52]. Cloud providers offer 
their resources in a pay as you go fashion. Actually, it can be 
seen as an alternative to physical infrastructures but this is 
only useful for a specific amount of data and target execution 
time. 

 Cloud computing propose an on-demand scenario where 
users only pay for the computational time usersutilize for 
running their applications. There are several cloud 
computing models: infrastructure as a service (IaaS), 
platform as a service (PaaS), software as a service (SaaS), 
and Data as a service (DaaS). Among them, IaaS is the most 
commonly used model while the other may provide other 
level of abstraction [53]. In the cloud, developers may use 
several instances and thus they can create a parallel cluster 
on demand. Like real hardware scenarios, those clusters can 
be programmed using libraries such as the Message Passing 
Interface (MPI). Those instances can be also used in a 
batchprocessing mode, launching several instances of a 
program and so on. 

 Cloud computing platforms are very interesting for 
bioinformatics practitioners mainly for the flexibility and the 
cost-effectiveness. Truth be told, this actually depends on the 
workloads they expect to run on the cloud but, in general, 
small-medium bioinformatics laboratories, which may 

perform bioinformatics analysis are moving to this 
technology as they avoid cost and issues of having an in-
house computer infrastructure [54]. An alternative solution is 
represented by Hybrid Clouds that have both the scalability 
offered by cloud computing and the control and ad-hoc 
customizations supplied by in-house computers [55]. 

 Those distributed solutions are evolving in the era of Big 
Data to frameworks like Hadoopthat allows distributed 
access to files. These frameworks are well suited for 
distributed algorithms such as MapReduce [56]. MapReduce 
is a programming environment to manage large data sets 
with a parallel, distributed algorithm on a cluster. For 
example, the PSIPRED [57] protein analysis workbench 
leverages the Hadoop implementation of MapReduce to 
launch several services to perform the execution of 
prediction methods in a large-scale system. Moreover, 
MapReduce has been also applied to provide an enhanced 
framework where parallel genetic algorithms target the 
protein folding in distributed environment [58]. 

 Finally, some efforts have been done in the volunteer 
computing arena that is noteworthy to remark. Among them, 
we may highlight Folding@Home [59] which is a volunteer 
computing project that tries to solve the protein folding 
problem by means of collective human knowledge. 
Folding@Homehas been used in several medical 
researcheslike to cure Alzheimer's disease, Huntington's 
disease, and many forms of cancer, among other diseases.  
This project is pioneer in the use of many novel computing 
platforms such as Graphics Processing Units, CellBe 
processor, multi and many core systems through MPI and 
OpenMP language, as well as some smartphones for 
distributed computing and scientific research [60]. 

 Kondow and Berlich [61] runs particle swarm 
optimization (PSO) on cloud for the simulation of proteins 
three-dimensional structure. They simulate all-atom force 
field using ArFlock library, aimed at finding the folded state 
of two proteins of different sizes starting from completely 
extended conformations.  

 

2.3.4. Multiagent systems 

 Multiagent systems (MAS) can be also considered as a 
platform to tackle Bioinformatics problems such as protein 
folding. As defined in [62], they combine a flexible and 
high-level paradigm with a technology developed at the 
intersection between artificial intelligence and distributed 
computing. A typical MAS is composed of several 
autonomous entities –agents— that can communicate and 
interact among them in a competitive or cooperative manner. 
MAS are especially useful for simulation tasks, including the 
behavior of biological systems [63], where the different parts 
of the system have some individual features that distinguish 
it from the rest. 

 There are several works in the literature that have 
adopted MAS to address the protein folding problem. For 
example, a MAS using an independent energy model where 
every amino acid is identifying with an agent is presented in 
[64]. These amino-agents lay at the bottom level of the MAS 
architecture, their positions being coordinated by a set of 
cooperative agents in a higher level. Amino-agents 
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movements are based on Monte Carlo-like criterion and hill-
climbing strategy (to avoid local minimum). Coordination 
agents act as orchestra director suspending amino-agents 
movements when they are not improving a global strategy. 
These coordination agents offer the possibility of designing 
complex heuristics depending on external information and 
on the search history. Thus, external knowledge from 
databases can be injected to coordination agents to force 
amino-agents to make movements oriented to improve the 
energy results. Experimental tests performed in this MAS 
show that the proposed coordination level always introduces 
a better performance, but the energy function used is too 
coarse to provide good biological model.  

 Moreover, a MAS based on reinforcement learning for 
solving bidimensional protein folding is showed in [65]. In 
this case there are several basic agents trying to solve the 
problem using the Q-learning algorithm [66] based on their 
local knowledge and a reduced set of supervisor agents that 
synchronize and coordinate the basic agents according to the 
current best solution. Basic agents are distributed across 
multiple processes/machines and they use a blackboard to 
communicate with their supervisor agents. Authors claim 
that this distributed proposal greatly reduces the 
computational time employed in the training phase of the Q-
learning algorithm with respect to a non-distributed 
approach. However, it must be further investigated how to 
preserve the accuracy of the results using a MAS. Finally, in 
[67] a competitive approach among agents is taken to 
implement an architecture named Discovery Bus aimed at 
modeling molecular design workflows. This MAS follows 
the quantitative structure–property relationships (QSPR) 
model to predict the properties of novel proteins. 

 An excellent discussion of pros and cons when using 
MAS in protein folding is given in [68]. The main advantage 
of this approach resides in its flexibility: addition and 
removal of agents could be done at run-time and therefore it 
is possible to change the structure of the experiment (e.g., 
the protein’s structure). In practice, not only may the limit 
conditions and the simulation constraints be changed 
dynamically, but also elements from the structure could be 
added and removed during the simulation. This fact 
augments the potentialities of simulated experiments, 
enabling a virtual manipulation of the system simulating the 
protein folding, even when this is not possible in reality. This 
property extends in silico experiments to in virtuo 
experiments, i.e., not only enabling the change of values of 
the parameters characterizing simulations, but also the 
structure of the experiment during run-time in an easy 
manner thank to MAS features. As for the main disadvantage 
of the use of MAS in this topic, it has been criticized that 
simulations performed by means of multiagent systems are 
not totally validated against real data, diminishing their 
credibility.  Thus far, works in this area have focused on the 
reliability of MAS proposals from a qualitative point of 
view, showing that multiagent-based simulations are 
tantamount to other approaches. However, a quantitative 
validation must be performed to take MAS as a prominent 
alternative to protein folding. 

 

 

3. Implementation of protein folding methods. 

 This section summarizes main contributions on the field 
of Soft Computingapplied to the protein folding simulation. 
Particularly, we focus on the functional approximation or 
randomized search part of Soft Computing; i.e. Artificial 
Neural Networks and Metaheuristics, applied to the protein 
folding problem.  

 

3.1. Artificial Neural Networks and SVM. 

 Artificial Neural Networks (ANNs) have been widely 
used in the protein folding field. Specifically, the most 
relevant types of ANNs are the feedforward neural networks 
[69] and recurrent neural networks [70].  ANN can learn 
tasks without needing much prior knowledge, and moreover 
they are tolerant to errors and noisy data. While the most 
common use of ANNs in protein folding has been devoted to 
detect secondary structures [71-73], they have been also 
employed in other tasks such as predicting the 
posttranslational modifications [74-76]; to identify 
disordered regions [77]; to predict metal binding sites 
[78,79]; to assign sub-cellular localization [80-
82];classification of proteins into functional classes [83];  
reconstructing protein structures [84] and protein class 
prediction [73,85], among others. 

 Regarding the prediction task, classifying secondary 
structure is an easy job for a neural network, as for example 
to learn to distinguish between alpha-helices and beta-
strands models. This classification allows detecting the most 
three-dimensional structures as they are based on secondary 
ones. Although the alpha-helices and beta-strands is the main 
approach in the prediction task, there are some other papers 
that propose classifications among more than two classes 
[70,86,87]. Regarding the databases used by neural network, 
the most popular are the Protein Data Bank (PDB) [11] and 
the Structural Classification of Proteins dataset (SCOP) [88].   

 A major advance in the way in which the datasets are 
treated is to add sequences that are homogeneous to those 
that are being studying [89]. For example, given the same 
family of proteins, they share similar structural and 
functional features. For ANNs, this fact provides additional 
information in the inductive learning process that improves 
the task learning.  This method is known as Evolutionary 
Information, however to find these homogeneous sequences 
is not trivial. For this research line, it is very popular the PSI-
BLAST program [90]. 

 Support Vector Machine (SVM) can be focused on the 
same field of work than ANNs for protein folding 
[86,88,91], although SVM presents a much better 
performance for regression against classification in protein 
folding recognition [92]. Furthermore, they have been used 
to estimate the significance of the sequence-template 
alignments [93] and protein secondary structure prediction 
[94]. 

 It is worth mentioning that although neural networks 
have been widely used for protein folding, they have not 
been combined with high performance computing because 
the prediction of secondary structure do not imply a large 
computational complexity. However, new trends in neural 
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networks such as Deep Learning [95] have called for 
reconsidering high performance in the field of neural 
networks due to its computational complexity. In this sense, 
Deep Learning has been proposed to make use of graphical 
processing units (GPUs) and CUDA parallel computing. 
Hence, Deep Learning has been used for sequence-based 
residue–residue contact prediction [96] and later for protein 
secondary structure prediction [97]. These proposals have 
been implemented using CUDAMat [98], a Python library 
that provides methods of fast matrix calculations on CUDA-
enabled GPUs, providing high-level access to computing 
cores of graphics processing units. 

 

3.2 Metaheuristics. 

 There are different approaches to classify metaheuristic 
algorithms in the literature. A good review of metaheuristic 
classification can be found in[99], depicted here inFigure 2. 
This classification takes into account five different features 
of such algorithms, namely their origins;the number of 
solutions used at the same time; the way the objective 
function is used; the neighborhood structure; and the use 
they make of the search history. 

 Depending on their origins, a new trend in designing 
metaheuristics concerns nature-inspired methods. These 
methods take as a source of inspiration biological or physical 
principles. Nature-inspired methods are very attractive for 
practitioners in high performance computing, as they are 
inherently parallel in definition (e.g.they may be inspired by 
a “swarm”-like schema that uses several agents to optimize a 
function). Ants, bees and fireflies are only some examples of 
populations that inspired algorithms based on their social 
behavior. Those algorithms rely on swarm to deal with 
complex problems [100,101]. Despite of this trend, in the 
last part of this sectionare introduced the most important 
non-nature inspired algorithms applied to the PSP problem, 
such as local search methods. 

 Regarding the number of solutions used at the same time, 
we can find algorithms working with a single solution or 
trajectory (e.g.,Tabu Search) or with the evolution of a set of 
solutions (e.g., Genetic algorithms). On the other hand, some 
metaheuristics define static objective functions that do not 
change during the algorithm execution (e.g., Genetic 
algorithms), whereas others may be modified during the 
search trying to escape from local minima (e.g., Guided 
Local Search). 

 Metaheuristics may be also classified depending on their 
neighborhood structure. The one-neighborhood structure 
does not change the fitness landscape topology during the 
execution, while in the various neighborhood search it is 
possible to expand the search among different fitness 
landscapes. Finally, the use of memory in the metaheuristic 
is another discriminative feature, separating into algorithms 
that take into account previous states to perform the next 
action orthose that use a Markov process to decide the next 
action only based upon the current state. 

 In this paper we have adopteda classification of 
metaheuristics based on origins as it is one of the most used 
and easy to understand. 

 

 Next sections review the main metaheuristics employed 
in protein folding. 

 

3.2.1.Nature-inspired metaheuristics 

Ant Colony Optimization 

 One nature-based method that is proving to be 
increasingly popular is ant colony optimization (ACO) 
[102,103].This algorithm is based on foraging behavior 
observed in colonies of real ants, and it has been applied to a 
wide variety of combinatorial problems [104, 105], including 
vehicle routing [106], feature selection [107] and protein 
function prediction [108]. The method generally uses 
simulated “ants” (i.e., mobile agents), which first construct 
tours or paths on a network structure (corresponding to 
solutions to a problem), and then deposit “pheromone” (i.e., 
signaling chemicals) according to the quality of the solution 
generated. The algorithm takes advantage of emergent 
properties of the multi-agent system, in that positive 
feedback (facilitated by pheromone deposition) quickly 
drives the population to high-quality solutions. 

 ACO algorithms have been extensively applied to the 
protein folding although most of them are based on the 
coarse-grain HP model. For instance, Shmygelska and Hoos 
[109] applied ACO to optimize the protein folding based on 
the HP model in both 2 and 3 dimensions. There are also 
other ACO-based implementations that have been applied to 
this problem in the literature. Song et al [110] provides a 
rapid transfer pheromone matrix method, a scheme to avoid 
deadlock folding problems, adynamic method of pheromone 
updating and also three different local search methods. This 
work uses the tortilla 3D benchmark [111] for the 
experimental evaluation.  
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 Thalheim et al [112] combine the ACO with a branch and 
bound algorithm to enhance the protein folding simulation. 
For the experimental evaluation, they use proteins that are 
based on the bibliography and some of them come from 
PDB. Hu et al. [113] develop four different mechanismsto 
improve ACO algorithm, concretelyincludinga path retrieval 
method, the path construction, some folding heuristics and 
the pheromone attraction. These new mechanisms provide 
interesting results for solving protein folding problems with 
the HP square lattice model. Other hybrid approaches can be 
found at Chen et al. [114], where an ACO with genetic ideas 
was developed. 

 Some parallelization strategies have been applied to ACO 
solving the protein folding. [115] uses MPI to implement the 
parallel version of ACO.And in [116,117] OpenMPis used.  
It is noteworthy to highlight that only these few versions of 
parallelism have been implemented to solve the protein 
folding problem with ACO. From the High Performance 
Computing point of view, these parallel implementations use 
hardware clusters to evaluate their results.In  [115]an IBM 
Blade center composed of 9 nodes, each node comprised of 2 
2.4 Ghz Intel processors with 1 Gbyte of shared RAM is 
used. In  [116]authors use a single PC to evaluate the 
sequential algorithm results, and an IBM pServer with eight 
1.6GHz Power(gr) CPUs and 6GB RAM to run the parallel 
ones, which it seems not too fair. In  [117], authors run the 
CASP8 benchmark on a multicore PC, specifically an IBM 
p550 server with an 8-core 64-bit 1.6-GHz PowerPC CPU, 
and the CASP9 benchmark is run on a cluster with 20 nodes 
of 16-core 1.6-GHz AMD CPU per node. 

 Although it has been demonstrated that this algorithm 
can take advantage of the GPU massively parallelism [118], 
to the best of our knowledge we could not find any work in 
this direction for the protein structure prediction using 
coarse-grain models.  

ArtificialBeeColony 

 Artificial bee colony (ABC) algorithm is an optimization 
algorithm based on the behavior of honeybee swarms [119]. 
It provides a population-based search procedure in which the 
communication between bees is emulated to discover the 
best places with high nectar amount. Contrary to ACO, 
where only the HP model was targeted, ABC has been 
applied to different protein models such as HP, HP-SC, AB 
or ECEPP/3. There are several implementations of ABC 
applied to the protein folding problem. Zhang and Wu [120] 
use the HP-2D model to simulate the protein 
folding.However, authors use four Fibonacci sequences 
simulating proteins to test the algorithm instead of using a 
well-known benchmark like PDB or CASP.Another example 
of this algorithm can be found in [121], where synthetic 
sequences are created using Fibonacci sequences. Authors 
obtain experimental results with some PDB structures, 
though. 

 There are also parallel implementations of ABC that 
could be found in the literature. For example, in Benítez et 
al. [122-124], a complete study of different algorithm 
implementations can be found. Firstly, authors start 
implementing two parallel approximations of ABC algorithm 
in [122]: a master-slave implementation and a hybrid-
hierarchical one, both of them implemented using ANSI C 

with MPI.They continue with the same two parallel 
approximations with genetic algorithm in [123],and finally 
authors conclude with the same parallel implementations of a 
hybrid algorithm merging an ABC with a Genetic algorithm 
(ABC-GA algorithm) in [124]. These authors remark that in 
future work they will consider the use of alternative 
computing technologies, such as reconfigurable computing 
and General-Purpose Graphics Processing Units, to 
accelerate processing. Nonetheless, no further papers in this 
sense have been found, at least applied to the protein folding 
problem with these algorithms. Finally, Bahamish et al. 
[125] develop a modified ABC that optimizes the Marriage 
in Honey Bee Optimization algorithm. 

 All the experimental environments in  [120], [121]and 
[125]are based on single or multicores PCs.Benítez et al. 
[12-124] run their implementations on a 124 processing 
cores cluster. 

 Other papers considered in this area are Wang et al [126], 
where the Chaotic Artificial Bee Colony (CABC) algorithm, 
which combines the ABC algorithm with the chaotic search 
algorithm, is applied to 3D protein structure prediction; Li et 
al [127], where a balance-evolution artificial bee colony 
(BE-ABC) is presented and an AB off-lattice model is 
adopted, testedby Fibonacci sequences and proteins from the 
PDB as well; and [128], whereanother version of ABC is 
presented. These papers do not include any kind of HPC 
environment, and all the experiments run on a single PC. 

Particle swarm optimization. 

 The third kind of algorithm that is shown in this section 
is Particle Swarm Optimization (PSO).PSO is a stochastic 
population-based optimization technique that is based on the 
social behavior of fish schooling or bird flocking. Applied to 
the protein folding problem, in [129] the authors implement 
PSO with an algorithm to avoid local minimums named levy 
flight. Like other algorithms, a parallel approach is 
performed by authors in [130] implemented using MPI, 
which is the most common way to parallelize the algorithms 
reviewed in this field. None of these papers, neither Chen et 
al. [129] nor Hernández et al.[130,131],give details about the 
environment for running the experiments on. Solely in [130] 
authors say that experiments are implemented in a “dual-
core PC and a Cluster”. 

 Other PSO algorithmscan be found in Liu et al.[132] and 
Mansour et al.[133]. The latterhave also developed a genetic 
algorithm for protein structure prediction. Both papers adopt 
the HP model with no HPC environments. 

Genetic Algorithms 

 Genetic algorithms have been very used to address a 
broad range of combinatorial optimization problems that are 
NP-complete [134,135]. Genetic algorithms start from an 
initial randomly generated population of individuals. Over 
this initial population different selection, recombination and 
mutation operators are applied in order to evolve toward 
better solutions. In each iteration (generation), a function 
evaluates each individual, namely fitness function. On the 
one hand, the selection operator removes those individuals 
with worse fitness from a probabilistic point of view.  On the 
other hand, the recombination and mutation operators 
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generate variations of the individuals in order to produce 
new individuals. [136]. 

 One of the first proposals of evolutionary algorithms to 
the PSP problem was presented by Unger and Moult [137]. 
In this work, a genetic algorithm is applied as an extension 
of a traditional Monte Carlo method to include information 
exchange between a set of parallel simulations. This method 
proves to find better solutions in the bidimensional HP 
lattice model than the traditional Monte Carlo methods. 
Some years later, an improved version of the basic GA [138] 
was presented using a new crossover operator and a new 
search strategy to avoid the homogenization of the 
population. Since then, several works following this idea has 
been proposed using different operators and strategies [139-
145]. 

 Genetic algorithms constitute a good alternative in 
several optimization problems. Nevertheless, one of the 
disadvantages of the genetic algorithm in optimization 
problems is the slow convergence. Concretely, in problems 
like PSP, they can suffer from excessively slow convergence 
rate due to the high number of needed calculations. 

 In order to avoid such problem, there is an opportunity in 
the hybridization of evolutionary algorithms with other 
heuristics, machine learning techniques, etc. The hybrid 
genetic algorithms can improve the performance of the basic 
algorithm and the quality of the solutions. For instance, the 
algorithms proposed in [146-148] combine a GA with tabu 
search algorithm, showing better results for the PSP than a 
genetic algorithm alone. Other works have proposed GA 
combined with other techniques, like backtracking [149], 
hill-climbing [150] and simulated annealing [151] or Particle 
Swarm Optimization [130]. 

 As a result, since the PSP problem presents a large and 
complex search space, algorithms that combine local search 
methods with GA show significant improvements. In this 
sense, the combination of GA and local search using 
domain-specific knowledge, i.e. memetic algorithms [152] 
can help to find better solutions. Memetic algorithms (MA) 
use the concept of meme. A meme can be defined as a unit 
of cultural evolution which is able to local refinements. 
Some works have explored this mechanism for the PSP, 
resulting in that MAs are robust for finding structures across 
a range of models and difficulty [153-159]. 

 The described proposals define the PSP as a single-
objective optimization problem. This approach gets good 
results when one of the objective should be optimized or 
when all the objectives are not in conflict among them. 
Nevertheless, if several objectives should be optimized, a 
better approach is to consider the objectives separately, i.e., 
as a multiobjective optimization problem (MOP). A common 
problem in MOPs is the fact that usually there is no solution 
able to optimize all objectives at the same time. Therefore, 
the idea of optimum should be redefined and it is searched a 
solution that satisfies all the objectives in an acceptable 
manner. Some of the best well-known multiobjective 
evolutionary algorithms (MOEAs) are PAES-II, NSGA-II 
and MOEA/D. [160]. 

 In this sense, some works propose the formulation of the 
PSP problem as an MOP to be solved by an MOEA. For 

example, [160] considers the PSP problem as the problem of 
minimizing free Potential Energy (PE) and minimizing 
Solvent Accessible Surface area (SAS). Authors solve this 
MOP using a modified version of the popular NSGA-II. In a 
similar way, the work of Day et al. [161] proposes a 
multiobjectivization for the HP model which scores better 
results in most of the cases than using a single-objective. 
Another example of this approach is the work of Brasil et al. 
[162,163]. In this work a new MOEA based on tables, called 
MEAMT, is presented. MEAMT is able to use four 
objectives based on tables to solve the PSP problem.  In 
MEAMT, each table stores a subset of solutions with the 
best found solutions according to one of the objectives. More 
recently, several works have been proposed following this 
line of research. Some examples can be found in [164-167]. 

 A great deal of the GA’s popularity lies in its parallel 
nature and the inherent efficiency of parallel processing. 
MOEAs are a clear example of this parallelization, since 
their different objectives can be processed in parallel in an 
easy way. Despite the parallelization of MOEAs has been 
studied in several real-world problems, less work has been 
done in the parallel multiobjective approaches to PSP. 

 One of the works in this field has been developed by 
Calvo et al. [168-171]. They propose different parallel 
MOEAs approaches to the PSP problem reducing the 
complexity of the problem by the minimization of the set of 
variables involved in the process. Authors use 14 processors 
to execute parallel algorithms. They show that, although the 
quality of the solutions is not significantly improved, the 
process requires less time and presents a better parallel 
efficiency. 

 Tantar et al. [172] also propose a solution for the PSP 
using multiobjective parallel hybrid GAs (Hill Climbing 
local search [173] and simulated annealing [174] combined 
with GA) using computational grid. They use the ParadisEO-
CMW framework, which combine the PAradisEO 
framework and the Condor-MW middleware. ParadisEO 
[175] is an open source framework dedicated to distributed 
and parallel models and the design of a broad range of 
metaheuristics. The Condor3 system [176] provides 
mechanisms that support High Throughput Computing 
(HTC). The underlying support the experiments was 
GRID5000 (2500 processors, 2.5TB of cumulated memory 
and 100 TB of non-volatile storage capacity). The tests were 
addressed using the tryptophan-cage (Protein Data Bank ID 
1L2Y) and α-cyclodextrin proteins. Their studies show that, 
although the multiobjective GA increases the complexity, it 
provides more accurate solutions.  

 A different approximation for the PSP is proposed by 
Benítez et al. [177]. They present a parallel GA using the 
3DHP-Side Chain model. In their approach the parallelism is 
reached by the division of the load into several processors 
(slaves) that are coordinated by a master processor. While 
the slaves have to compute the individual’s fitness function, 
the master is in charge of the initialization the population and 
performing the rest of the GA operators. Since there is not 
dataset for the used model, the proposal was tested with a 
benchmark of synthetic sequences. Authors show that, 
although the results obtained are not the optimal, they are the 
best results found for the 3DHP-SC model. Finally, authors 
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show that parallel processing accelerates significantly the 
process, but they propose other hardware-based approaches 
in order to get a better performing. 

 Unfortunately, this technique can suffer from a 
bottleneck in the master processor. In order to avoid this 
problem, in [178] it is proposed a mesh NoC-based multicore 
architecture in which the single-master multi-slave design is 
partitioned in small islands where an island has slaves and a 
master processor. In order to avoid GA falling in local 
minimal within each island, authors define a GA which is 
able to migrate between the islands. The experiments are 
performed using 9 proteins from a benchmark of synthetic 
sequences for the lattice protein model. Results show an 
overall 310X speedup gain compared to the design of the 
single-master /slave. 

 Others works have proposed modified GAs in order to 
parallelize the problem. For example, Narayanan et al. [58] 
propose a simple GA in which the mutation and selection 
strategies are parallelized using the MapReduce [179] 
architecture. Authors pursue to obtain the optimal 
conformation of a protein using the two dimensional square 
HP model. The proposal is validated against benchmarks of 
synthetic sequences, showing that the convergence of the 
algorithm to the optimal is faster than the obtained with 
traditional techniques. 

 Another modified version of an evolutive algorithm 
inspired by the biological immune systems, namely the 
clonal selection algorithm (CSA), is presented in [180] for 
PSP on AB Off-Lattice model. Experiments are performed 
using sequences of Fibonacci for simulating the AB model. 
The interesting aspect of this work is that the algorithm is 
parallelized using the CUDA platform and GPUs. In fact, 
authors show that the speed can be improved effectively, but 
they do not measure the quality of obtained solutions. There 
are also other hybrid GAs with bioinspired algorithms like 
Scalabrin et al. [181], but no more discussion is necessary 
because this paper has been also considered in the 
bioinspired algorithms section. 

 To summarize, although more works should be done in 
this direction, in the last years the parallelization of MOEAs 
is getting more attention and several works are including it 
as their future works [182,183]. 

Other nature-inspired algorithms 

 Other bioinspired algorithms also worth mentioning are 
gathered in this section.Firstly, a Firefly Algorithm (FA) 
[184] has been tested in the protein folding problem. Firefly 
Algorithm is a new algorithm that is based on the flashing 
behaviors of firefly swarms. The main purpose of the flash 
of fireflies is to attract other fireflies. The FA’s assumptions 
consist in three basic rules: (1) sex of fireflies does not mind 
at all as all fireflies are unisex. Each firefly flashes in order 
to attract other fireflies regardless their sex; (2) the intensity 
of the flash is mainly due to attract a prey and to share food; 
(3) the more a firefly shines, the more attractive it is to 
others. Therefore, each firefly firstly moves toward a 
neighbor whom glow is brighter. In this paper, two 
dimension HP lattice model is tested in a single PC, a P4 
IBM with 3.1 GHz processor and 2 GB of RAM. 

 Only one approach to GP-GPU implementation has been 
found for bioinspired algorithms. Scalabrin et al. [181] (same 
authors of [122-124])have implemented a new algorithm 
named Population-Based Harmony Search, (PBHS). The 
Harmony Search is inspired by the improvisation process of 
a musician searching for the best harmony. The solution is 
represented by a harmony and the method of improvisation 
guides the balance between deep search and wide 
exploration. The results of this paper show that the 
implementation in CPU could be better when few data are 
used, but the GP-GPU is clearly better when data grow. The 
hardware experimental environment in this paper is an Intel 
processor (Core2-Quad at 2.8 GHz) and a NVIDIA GeForce 
GTX280. 

 Another bioinspired algorithm is the one developed by 
Cai et al. [185], where authors proposea new algorithm 
inspired by the plant growth process called Artificial Plant 
Optimization Algorithm (APOA). Photosynthesis operator, 
phototropism operator and apical dominance operator are 
designed in this paper.Another version of this algorithm can 
be found in [186], where authors implement the gravitropism 
mechanism that is neglected in the standard version. In this 
paper, authors employ this phenomenon to enhance the 
performance. To test the efficiency, they apply this new 
variant to solve protein structure prediction problem, 
including short sequences, Fibonacci sequences and real 
protein sequences, showing effective simulation results. The 
authors of these papers also present another bioinspired 
algorithm in [187] called Social Emotional Optimization 
Algorithm (SEOA). It is a new swarm intelligent 
methodology by simulating the human social behaviors. In 
this algorithm, each individual represents one virtual person 
in the searching space, all of them trying to promote to a 
high society position by collaboration and competition. In 
this paper, it is applied to predict the structure of toy model 
proteins. To test the performance, short sequence, Fibonacci 
sequence and real protein sequences are selected to compare. 
Simulation results show that this approach is valid. Authors 
do not use HPC environments in any of these papers 
commented in this paragraph. 

 Several hybrid approximations have been implemented, 
as for example in Benitez et al. [122], discussed above. 
Other papers with this point of view areNemati et al. [108], 
showing an implementation that combines a hybrid genetic 
and ACO algorithm; and also in Lin and Su [188], where 
authors implement a hybrid genetic and PSO algorithm. 
Moreover, although several modifications in algorithms have 
been tested, no improvements in hardware environments are 
found, since in [108] authors run the algorithm in a 3.0 GHz 
CPU and 512 MB of RAM, and no specification was found 
about hardware in [188]. 

 To summarize, these papers give us the idea that several 
implementations of different algorithms have been tested 
during last years. Perhaps the more common algorithms at 
this point are ACO and ABC, although some other 
algorithms with different implementations have been found, 
for example hybrids algorithms. On the other hand, too little 
parallel implementations have been developed for these 
algorithms, and the exploitation of High Performance 
Architectures is reduced to the executions of parallel 
implementations based on MPI and OPENMP. Other types 
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of more intensive data parallelism, like GP-GPU 
implementations, are expected to be widely developed, but 
unfortunately, the implementation in[181] byScalabrin et al. 
has been the only one found in this direction. 

 It is worth mentioning other reviews on this area, such as 
[189,190], that show the same point of view of different 
algorithms applied to the protein folding problem, although 
none of them elaborate a review from the High Performance 
Computing view. 

 

3.2.2. Non-nature-inspired metaheuristics 

 Non-nature-inspired algorithms are mainly based on local 
search methods. They are a family of metaheuristic 
algorithms aimed at solving NP-hard optimization problems. 
Applied to protein folding, they try to obtain the minimum 
energy structure in polynomial time from a set of candidate 
solutions sampled from the search space. The main idea is to 
start from a folded protein deemed as a potential solution and 
then modify it (i.e., move to a neighbor solution in the search 
space) trying to obtain a slight improvement in the energy 
structure.  Local search methods possess the main advantage 
of rapid convergence to better quality solutions, if not 
optimal, when efficient neighborhood functions are 
employed. However, an optimal solution cannot be 
guaranteed since the candidate solutions are randomly 
selected and the optimal one could not be included nor 
reached from the selected ones. Another drawback to take 
into account is that these methods get locked in a local 
optimum very often and may revisit the same set of solutions 
repeatedly. 

 Among the local search methods for protein folding 
simulation, Tabu search[191] is the most frequently found in 
the literature. The basic feature of this method is the use of 
memory structures to save solutions already explored. Then, 
if a potential solution is explored again in a specific period 
of time, it is considered tabu (i.e., forbidden) and therefore it 
is not expanded in order to promote the exploration of new 
regions in the search space. Tabu search algorithms applied 
to protein folding are also based on this feature, and they 
differ in the moves definition and how to avoid local optima. 

 Apart from Tabu search, hill climbing[192] and 
simulated annealing (SA)[193,194] are other two local 
search algorithms applied to protein folding. Hill climbing 
consists in starting with a random solution and changing a 
single element of the protein structure iteratively and 
incrementally while each change produces a better solution, 
until no further improvements can be made.  On the other 
hand, simulated annealing uses a probabilistic heuristic to 
change from one random solution to another random solution 
with the aim of moving to a state of lower energy, but it still 
possible to change to a worse solution, i.e., a state of higher 
energy (and in this manner avoid local optima). The 
probability to move from a state s to a state’s depends on the 
energy of each state and on a global dynamic variable called 
temperature (T), which is initiated to a high value. As usual, 
if s’ is considered better than s, then the movement is 
performed. However, if s’ is considered worse than s, it is 
still possible to make that movement depending on T. For 
higher values of T, the probability of making this “worse” 

movement is higher. As T decreases through iterations, this 
probability also decreases, simulating the annealing process 
in metal. In this manner, it is possible during the initial phase 
of the process to move towards less promising solutions so 
as to avoid local optima, but at the end of the process --when 
T has values next to 0-- the probability of selecting worse 
solutions is almost inexistent. It is worth mentioning that 
both algorithms are normally used in combination with 
genetic or stochastic algorithms, as an alternative to improve 
the efficiency in the latter. 

 In the next paragraphs we review some of the most 
relevant works on protein folding for each local search 
algorithm. 

Tabu Search. 

 [195] describes a generic tabu search plus a set of new 
moves for named “pull moves”, that modifies the basic Tabu 
search by moving one aminoacid a small distance and then 
pull the chain along, stopping as soon as possible. These 
moves are complete (all existing configurations can be 
reached from the initial one), reversible and local (displace 
as few vertices as possible). As a result, authors propose 
small adjustments to a given configuration in order to 
improve the effectiveness of Tabu search in protein folding 
for HP-2D models. [196] also addresses HP-2D models. 
Moves are defined as changes of single angles of consecutive 
positions in the vector representing the protein, whereas the 
tabu list consists of forbidden angle moves to avoid reverse 
moves in a specific number of iterations. Authors claim to 
find optimal conformations for all short sequences from 5 to 
12 aminoacids. 

 [197] explores on HP energy models on 3D FCC lattices. 
The Tabu method is composed of a function to initialize the 
model in a randomized, structured manner; a fitness function 
to guide the search; and efficient data structures to avoid 
cycles.. Authors obtain the first foldings in the well-known 
“Harvard instances”[198], 10 different proteins on the cubic 
lattice. This work has been revisited in [199], where the tabu 
algorithm is combined with constraint programming. Results 
show to be promising and reliable for proteins consisting in 
less than 100 aminoacids. Eventually, all the previous results 
on HP energy models on 3D FCC lattices have been 
outperformed by the work in[200]. This paper defines a 
hydrophobic-core centric local search algorithm named SS-
Tabu. Movements are defined as a coil spinning around a 
dynamic hydrophobic-core center (HCC) by means of a 
diagonal move to build the cores. In order to avoid local 
minima, two different techniques named random-walk 
(based on the pull moves defined in[195] and relay-restart 
are defined. Another appealing approach on 3D HP lattices  
is proposed in[201] where authors develop an hybrid search 
algorithm that combines an enhanced particle swarm 
algorithm with an enhanced tabu search algorithm. The 
former appends the operation of crossover (single-point and 
two-point crossover) whereas the latter adds the operation of 
mutation. The main idea resides in using the tabu search 
algorithm to “help” the swarm algorithm to avoid local 
minimum. This hybrid algorithm has been implemented by 
MATLAB R2009b under a Windows XP system and tested 
through Fibonacci sequences and some PDB real proteins. 
Results show that it is superior to other 3D HP algorithms up 
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to sequences no longer than 48 aminoacids. A different 
approach for obtaining minimum energy in oligopeptides is 
presented in[202]. Moves are based on the dihedral angles in 
the protein’s skeleton and the cost function is the empirical 
energy function ECEPP/3. It is aimed at working in angle 
space while keeping bond length and bond angle values 
constant. The algorithm is parallelized by executing several 
moves simultaneously. Hence, it is created a partitioning of 
the set of possible movements on p subsets of approximately 
the same size, and every partition is evaluated in p different 
processors. In this manner every processor finds its best 
move, and the best between these is eventually selected. The 
main drawback in this approach is the extensive 
communication requirement among processors. It has been 
tested using the Met-enkephalinpentapetide, showing a real 
speed-up compared to related techniques due to the 
parallelization process. As a result, Tabu search is 
considered valid for conformational searches of peptides 
when an optimal combination of tabu parameter values can 
be found. 

 Xiaolong et al. proposes a tabu algorithm whose main 
feature is the generation of the initial solution for 3D AB off-
lattice models [203]. Instead of using a random function, a 
better-informed method is defined by locating hydrophobic 
residues at the center of three-dimension space and locating 
hydrophilic residues surrounding hydrophobic ones. In[204] 
a similar heuristic for the initial solution is employed and a 
new one is defined for conformation updating in 2D AB off-
lattice models. The conformation updating heuristic consists 
in picking out hydrophilic monomers squeezed among 
hydrophobic monomers and placing them in certain spots in 
2D space to speed up the search for lower-energy states. 

Hill Climbing. 

 Regarding hill climbing works in the protein folding area, 
we have found that this technique is usually combined with 
genetic algorithms to improve the results of the latter. Thus, 
in [205] a hybrid of hill-climbing and ERS-GA (genetic 
algorithm with elite-based reproduction strategy), named 
HHGA, is proposed for protein structure prediction on the 
HP-2D triangular lattice. Two hill climbing strategies are 
proposed: In the first one, the algorithm selects its neighbour 
residues from the current solution. These residues are 
generated as in mutation operations, i.e., randomly changing 
its direction. In the second one, the neighbour residues are 
generated following a method similar to the crossover 
operation. Hence, five neighbours are generated by changing 
the direction of the second segment after the crossover point, 
where rotation angles are 60°, 120°, 180°, 240° and 300°, 
respectively. If any of the five folding directions leads to a 
superior fitness to the original direction, this neighbour will 
replace the current solution. A benchmark composed of eight 
HP-2D protein sequences up to 64 aminoacids is evaluated 
and compared to simple genetic algorithms [206] and tabu 
search [207], demonstrating that HHGA produces a similar 
outcome to the those algorithms, but at the cost of 
incrementing the running time. Another work adopting hill 
climbing along with a genetic algorithm can be found in 
[208], which relies on hill-climbing recombination and 

mutation to support the search process of the evolutive 
algorithm for HP proteins. Here, the crossover operation is 
dynamically performed, allowing offspring to be added in 
the population during the same generation in an 
asynchronous manner. In this model, the proposed mutation 
operator is problem-specific and it is applied in a steepest-
ascent hill-climbing manner. Moreover, to avoid local 
optima, redundant individuals may be replaced with new 
genetic material thanks to an explicit diversification stage 
which is carried out periodically during the population 
evolution. Standard S1-S8 HP proteins are employed as a 
benchmark and they are evaluated by the hybrid model 
presented in the paper and compared to other three simpler 
models, namely a simple evolutionary algorithm, an 
evolutionary algorithm with diversification stage and an 
evolutionary algorithm with hill climbing but without 
diversification. Results show that using hill climbing to 
support evolutive algorithm is clearly beneficial with respect 
to other models neglecting its use and it could compete with 
other algorithms such as memetics. Another hybrid GA-hill 
climbing algorithm, this time to fold proteins from 
knowledge of the primary sequence and predictions of its 
secondary structure, can be found in[209]. Dihedral angles 
are used to represent the protein’s structure augmented with 
a four-helix bundle to improve the folding simulation 
conditions. According to the obtained results, the inclusion 
of a hill climbing algorithm to execute local searches in the 
GA outperforms 20% and 50% the execution of the pure, 
original GA in [210]. In conclusion, it can be stated that hill 
climbing algorithms are not practical by their own in protein 
folding, but they are rather combined with genetic 
algorithms to improve the latter. 

Simulated annealing. 

 Like hill climbing, SA is mainly adopted for improving 
other global search algorithms. For example, [211] 
introduces a protein folding simulation procedure on FCC 
lattice that employs a constraint satisfaction problem (CSP) 
solver to generate neighbourhood states for a simulated 
annealing-based local search method. This proposal has been 
evaluated using three basic proteins for tuning (namely, 
4RXN, 1ENH, 4PTI) and then several proteins selected from 
PDB, with length varying from 54 to 74 aminoacids. Results 
show that the hybrid approach outperforms CSP alone both 
in accuracy and efficiency, and outperforms local search 
alone in accuracy but not in time.  

 Another approach consisting in a combination of 
Bayesian and SA functions is described in [212]. It uses 
Bayesian scoring functions to assemble native-like structures 
from fragments of unrelated protein structure with similar 
local sequences. The simulated annealing contributes to 
generate native-like structures for small helical proteins in a 
rapid manner.  Finally, it is worth mentioning the approach 
in[213] based on a pure SA algorithm in 3D HP protein 
folding simulations aimed at experimentally determining 
upper bounds for the maximum depth of local minima of the 
underlying energy and for the stopping criterion. Tests on the 
well-known ten benchmarks 
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given by [214] show that the maximum escape height from 
local minima can be upper bounded by n^(⅔) whereas the 
stopping criterion complies with the number of Markov 
chain transitions that lead to minimum conformations. 

Further tests must be carried out on real foldings of short 
protein sequences to validate these results, which could serve 
as appropriate starting conformations for folding simulations 
of real protein sequences and realistic energy functions. 

  

Figure 3 - Number of publications in protein folding, protein structure prediction or HP model 

Figure 4 - Number of publications for Neural Networks and Metaheuristics techniques applied to protein folding 
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4. TRENDS IN DESIGNING NOVEL ALGORITHMS 
AND ARCHITECTURES 

 This section provides quantitative information about the 
main contributions in the field of Metaheuristics applied to 
PSP, mainly based on coarse-grain models. Moreover, we 
show what kind of hardware architectures have been used to 
run these novel algorithms on.  Our deep search literature 
review follows a methodology that is firstly described to let 
the reader reproduce the experiments.     

 

4.1. Experimental methodology  

For this experimental study, we have used the Web of 

Knowledge (WOK, formerly known as ISI Web of 

Knowledge) [215]. WOK belongs to Thomson Reuters 

Corporation and it is an academic citation indexing and 

search service to provide bibliographic content and tools to 

access, analyze and manage multiple research information. 

 

A particular interest to us is the WOK advanced search 

tool. This tool offers a very powerful search tool to look for 

different research articles using formal rules based on field 

tags, Boolean operators, parentheses, and query sets to create 

your own query. Booleans operators include AND, OR, 

NOR, SAME and NEAR.  The following field tags are the 

most interesting for our searches purposes:  

 TS = Topic. Searches the Topic fields in all 

databases in your institution subscription. Topic 

fields include Titles, Abstracts, Keywords and 

Indexing fields such as Systematics, Taxonomic 

Terms and Descriptors.  

 SU = Research Area. Searches the Research Areas 

field within a Full Record.  

 GP=Group Author. Searches the Group Author(s) 

and Book Group Author(s) fields within of a record. 

 AU=Author. Searches for author names of journal 

articles and books in the Author(s) field and the 

Corporate Author(s) field. 

 The most interesting filed tag for our data mining 
purpose is TS as we are looking for articles related to protein 
folding, different Metaheurtistics techniques and particular 
hardware implementations. For instance, the following 
pattern searches for articles in which either “Protein folding” 
or “Protein Structure Prediction” or “HP model” are included 
in the article’s Title, Abstract or Keywords.  

                       
                                  
               

 However, the information obtained from this tool may 
have some inaccuracies as we are dealing with unstructured 
data. For instance, the terms “Neural Networks” and “Protein 

Folding” may be included in chemistry research articles 
about the brain, which clearly is not our scope. Therefore, 
after searching for some keywords we dida carefully review 
on ambiguous papers and checked whether they were related 
to the topics we are really looking for. Moreover, the WOK 
does not have very up-to-date information. Some recent 
papers are not included in their databases, and therefore, the 
quantitative information of the last couple of years may be 
incomplete. This issue mayaffect our conclusions regarding 
to the hardware trends as hardware platforms have evolved 
very rapidly in the last five years. As a result, we have also 
included articles from other databases such as Google 
Scholar, arXiv, CiteSeer(X), DBLP and  IEEEXplore, to 
name just a few. 

 

4.2. Trends in Soft Computing for the protein folding 

 In the first place, Figure 3shows the number of 
publications within the field of protein folding, protein 
structure prediction or coarse-grain HP model available in 
the WOK. The rule to perform this search is the following: 

                      
                                
              

 From Figure 3 we can state that the Protein Structure 
Prediction is a very active field of research that began in 
eighties and it is still an object of continuous research with 
approximately 2.500 published papers per year. 

 Next, Figure 4shows the number of publications related 
to the protein folding that use Soft Computing techniques. 
Here we have grouped Soft Computing techniques into two 
different categories: Neural Networks and Metaheuristics. 
According to this figure, Neural Networks have been the 
most active research topic from the nineties. However, 
Metaheuristics has recently attracted interest in the protein 
folding community. In the last few years the number of 
articles published in Metaheuristics is at the top of the Soft 
Computing techniques applied to the protein folding. Local 
Search techniques, however, are almost always combined 
with other global techniques such as genetic algorithms, 
swarm intelligence or ant colony optimization to provide 
hybrid Soft Computing techniques. They improve the 
optimization process of those global search techniques to 
avoid stalling in local optimum, as noted in Section 3.2.2.  
The following rule is only an example of how we have 
obtained the number of publications for Neural Networks:  

TS = ("protein folding" OR "protein structure prediction" 
OR "HP model") 

                                              

                                                 

or "extreme learning machine*" or "multilayer 
perceptron*") 
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 Figure 5shows the number of publications in WOK 

related to both:the protein folding and different kind of 

Metaheuristics that area classified depending on their 

origins.The keywords used to do this search include for the 

nature-inspired metaheuristics:Genetic algorithm, Ant 

Colony Optimization, Artificial Bee Colony, Particle Swarm 

Optimization, Firefly Algorithm, Population-Based Harmony 

Search, memetic algorithm, Artificial Plant Optimization 

Algorithm and Social Emotional Optimization Algorithm. 

For non-nature-inspired metaheuristics the keywords are hill 

climbing, simulated annealing and tabu search. Some issues 

come up with this search as these keywords may belong to 

the same algorithmic family. For instance, ACO and ABC 

are population based methods which is also another keyword 

in Figure 5. Therefore, the number of publications depends 

on what keywords have been included in the article. Finally, 

those Metaheuristics that we could not find any work related 

to protein folding have not been included in Figure 5. 

 Figure 5places Genetic Algorithms are widely used in 
this area as they are one of the pioneer in Metaheuristic 
research. Particle Swarm and Ant Colony Optimization 
techniques are at the second place of the techniques used for 
protein structure prediction. Some variations of these 
Metaheuristics like memetics, firefly or Artifical Bee Colony 
are also applied in the literature but their use is marginal. 

 Figure 5shows the number of publication for different 
kind of non-nature metaheuristics that are mainly local 
search techniques. As previously described, local search 
techniques are used along with other global techniques to 
provide hybrid search method that improve simulation’s 

quality and performance. The methods used in the protein 
folding arena are Tabu search, simulated annealing and hill 
climbing. The latter is widely used to improve the search 
provided by Metaheuristics. Although Tabu search is very 
close to hill climbing, the computational cost of tabu is 
higher than hill climbing, and thus it is not so convenient to 
integrate it in a hybrid method. Simulated Annealing is, 
however, a very powerful local search and it is actually the 
most studied in the literature. 

 

4.3. Trends in hardware architectures for Soft 
Computing techniques applied to the protein folding 

 A common computational feature shared by many Soft 

Computing methods is their inherent massive parallelism. 

Most of them are population-based, that is, a collection of 

agents “collaborate” to find an optimal (or at least a 

satisfactory) solution. Because of this inherently parallel 

nature, these methods are well-suited to leverage parallel, 

distributed or even GPU architectures.  Table 1summarizes 

the hardware platforms that have been used to improve the 

execution of different Soft Computing techniques.Neural 

Networks are basically executed on single core processors. 

Although there are some efforts in parallelizing neural 

networks applied to other problems, to the best of our 

knowledge there is only a work that cares about 

performancein this kind of algorithms applied to coarse-

grain protein folding.  Moreover, this algorithm is based on 

deep learning, which has many layers and thus the 

computational requirements increase drastically. Genetic 

Figure 5 Number of publications that use Metaheuristics according to their origin. 
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algorithms are, however, very tied to parallel architectures. 

They are based on a population of entities where the island-

model is very attractive to improve the solution.  

 

 In the parallel island-model of genetic programming, the 

population for a given run is divided into semi-isolated 

subpopulations. Each subpopulation is assigned to a separate 

processor or node of computing system and it proceeds 

independently to each other. Once each instance of the 

genetic algorithm finishes (or other interval), a relatively 

small percentage of the individuals in each subpopulation are 

probabilistically selected (based on fitness) for migration 

from each processor to various neighboring processors. This 

idea has been implemented on different platforms from 

clusters of computer nodes to grid computing environments. 

There are also other different parallel algorithms based on 

data approach that are better suited to GPUs. ACO, ABC and 

PSO also use the island model to leverage cluster computing 

architectures. Population Based Harmony Search has been 

implemented on GPUs as well. Finally, local search 

techniques have been also improve with some ways of 

parallelism in different architectures. Nonetheless, as 

previously mentioned, these methods are always combined 

to other methods, and therefore, they are also involved in 

other rows of the Table 1.   

 
4.4. Summary 

 This section briefly summarizes the strengths and 

weaknesses of the reviewed algorithms grouped into main 

categories we have used throughout the paper. First of all, 

Artificial Neural Networks (ANNs) have been successfully 

applied to the protein's secondary structure prediction. The 

ANN computational cost of learning, applied to this 

problem, is affordable for sequential architectures, and thus 

it does not require the use of high performance computing.  

 

 Moreover, the ANNs offer an abstraction layer that 

provides solutions without having deep-knowledge of the 

problem domain that is very appreciated for non-domain 

experts within this area. However, we have only found few 

works using ANN that target more complex protein 

structure. This actually limits the successful of these 

techniques. Indeed, new trends in neural networks, such as 

deep learning, are demonstrating very good results in other 

domain fields [216]. They demand the use of high 

performance computing. The search for the ANN optimal 

architecture; i.e. the number of neurons within the hidden 

layer or even the number of layers, can be a very time 

consuming process.   

 

 This paper divides Metaheuristics for their origins into 

two main groups; nature and non-nature-inspired. Nature-

inspired metaheuristics provide very good solutions in a 

reduced time-frame but they do not guarantee optimal 

solutions. Algorithms like ACO, ABC, PSO and so on, are 

based on swarm intelligence to solve problems. They are 

inherently parallel, and therefore, theoretically well-suited 

for parallelization on emergent architectures. This feature 

has been explored in few papers, but indeed, we still see 

many remaining work in this area.Moreover, genetic 

algorithms have the advantage that they could escape from 

suboptimal local maximum/minimum. They are population-

based and they use stochastic operators that allow searching 

in different regions, thus if the population finds a better 

fitness value can move away from the suboptimal solutions. 

Genetic algorithms are also inherently parallel as population-

based algorithms and therefore they are also well-suited for 

parallelization.  Nevertheless, genetic algorithms also have 

some disadvantages whenever they target problems like 

protein folding. Sometimes genetic algorithms may converge 

very slowly, especially near an optimum. Some hybrid 

approximations have been presented for the protein folding 

problem in order to solve such problem. In that sense, 

genetic algorithms could suffer of the opposite problem and 

they can converge prematurely to the suboptimal solutions if 

the operators are not efficient enough. Finally, another 

disadvantage inherently associated to genetic algorithms is 

finding the algorithm parameters; it is not straightforward at 

all and very problem-dependent. 

 

 Non-nature-inspired metaheuristics, which in this paper 

are basically focused onlocal search techniques, provide 

appealing solutions for 2D/3D HP models. They can be 

easily combined with other global algorithms such as 

Genetic Algorithms or ACO to improve their solutions. They 

can quickly converge to better quality solutions, even 

optimal, when efficient neighborhood functions are 

employed and they could serve as appropriate starting 

conformations for folding simulations of real protein 

sequences and realistic energy functions.However, local 

search algorithms by themselves cannot guarantee an 

optimal solution. The candidate solutions are randomly 

selected and the optimal one could not be included nor 

reached from the selected ones. Also they may get locked in 

a local optimum very often and may revisit the same set of 

solutions repeatedly. 
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SoftComputing 

Technique 

Algorithm Hardware 

Platform 

Data Set Model Ref 

Neural 

Networks 

Deep Learning CUDA D329, SVMCON_TEST 

and CASP9 

HP 2D [96,97] 

NNPIF (Neural 

Network Pairwise 

Interaction Fields) 

Single core PDB  HP 2D [84] 

MLP (Multilayer 

Perceptron) 

Single core PDB, SCOP  HP 2D [72,73] 

MLP + tailored 

early-stopping 

Single core PDB  HP 2D [85] 

MLP + 

Evolutionary 

information 

Single core PDB  HP 2D [71] 

SVM (Support 

Vector Machine) 

Single core SCOP  HP 2D [86,91,94] 

Genetic 

algorithms 

Multiobjective GA 14 processors  1CRN protein Atomic model 

based on the 

dihedrals angle 

base between the 

Cα  

[168-171] 

Hybrid 

Multiobjective GA 

(Simulated 

Annealing and Hill 

Climbing) 

ParadisEO-

CMW 

framework. 

GRID5000 

tryptophan-cage (Protein 

Data Bank ID 1L2Y) and 

α-cyclodextrin proteins 

Atomic model 

based on the 

dihedrals angle 

base between the 

Cα 

[173,174] 

Simple GA MapReduce 

architecture 

(cluster) 

Benchmarks of synthetic 

sequences 

HP model [179] 

Parallel GA (single-

master multi-slave) 

Master-slaves 

processors 

Benchmarks of synthetic 

sequences 

3DHP-Side Chain 

model 

[177] 

Parallel GA (multi-

master multi-slave) 

Mesh NoC-

based multicore 

architecture 

Benchmarks of synthetic 

sequences 

Lattice protein 

model 

[178] 

Clonal selection 

algorithm (CSA) 

GPUs and 

CUDA platform 

Fibonacci based 

sequences 

AB Off-Lattice 

model 

[180] 

ACO Parallel ACO Cluster http://www.cs.sandia.gov/

tech 

reports/compbio/tortilla-

hp-benchmarks.html 

HP 3D [115] 

Parallel ACO Single PC and 

Cluster 

- HP 2D [116] 

Parallel ACO - 

packBackbone 

CASP 8 

Multicore PC. 

CASP 9 run on 

a Cluster. 

CASP 8/9 HP 3D [117] 

ABC Parallel ABC. MPI Cluster 

Networked 

computers 

with 124 

processing cores 

Sequences from 

bibliography 

HP 3D Side-Chain [122] 

Modified ABC. 

IF-ABC 

Multicore PC 

(Matlab) 

Fibonacci based 

sequences. 

PDB sequences. 

AB [121] 

Modified ABC. 

MHBO 

Multicore PC 

Visual C++ 

Met-enkphaline Atomic model 

based on the 

dihedrals angle 

base between the 

[125] 



18Current Drug Targets, 2016 Llanes et al. 

Cα 

PSO Parallel PSO Multicore PC 

and a cluster 

Sequences from 

bibliography 

Atomic model 

based on the 

dihedrals angle 

base between the 

Cα 

[130] 

PBHS Population Based 

Harmony Search 

Multicore PC.  

NVIDIA 

GeForce 

GTX280. 

Benchmarks of synthetic 

sequences. 

AB 2D [181] 

Tabu Search Pull moves similar 

to de 

Gennesreptation 

model. 

HuGS 

middleware 

(Human-Guided 

Search) 

Sequences from 

bibliography 

HP-2D [195] 

Protein’s angles-

based moves 

Single core 

PC AMD Duron 

700Mhz Linux 

Sequences from 

bibliography 

HP-2D [196] 

Tabu search + 

Constraint 

programming 

A cluster of 

Dell 

Power Edge 

1950 4-core 

IntelE5430 

processor with 

2.66GHz and 

16Gb RAM (no 

parallelism) 

Sequences from 

bibliography 

HP 3D FCC lattice [199] 

Spiral Search Tabu - Sequences from 

bibliography 

CASP 8/9 

HP 3D FCC lattice [200] 

Particle Swarm 

Optimizer + Tabu 

Search 

MATLAB 

R2009b under a 

Windows XP 

system. 

Fibonacci based 

sequences PDB proteins: 

IBXL, IEDP, IAGT 

HP 3D FCC lattice [201] 

Empirical energy 

function ECEPP/3 

SGI Origin 

2000 computers 

parallelized (32 

processors) 

Distributed 

memory 

MPI for 

interprocessor 

communication 

Met-

enkephalinpentapetide 

Atomic model 

based on the 

dihedrals angle 

base between the 

Cα 

[202] 

Well-informed 

initial solution 

- Fibonacci based 

sequences (13, 21, 34) 

PDB (1BXL, 1EDP, 

1AGT) 

 

3D AB  off-lattice [203] 

Heuristic for 

conformation 

updating 

Intel Core2 

Duo, 2.66 GHz 

processor and 

2.0 GB of RAM 

Fibonacci based 

sequences (13, 21, 34,55) 

PDB (1AGT, 1AHO) 

2D AB  off-lattice [204] 

Hill Climbing Montecarlo + hill 

climbing 

Linda Tuple 

Spaces (Agents) 

Multithread C 

Two Opteron 

dual core CPU 

at 2 GHz 

Several proteins from 

PDB 

1. coarse grained 

structures based on 

previous 

bibliography 

2. Own model 

[64] 

Genetic algorithm + 

hill climbing 

Single core 

Intel i7-920 

Sequences from 

bibliography 

2D HP Triangular 

lattice 

[205] 
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machines 

Genetic algorithm + 

hill climbing 

- S1-S8 standard HP 

proteins 

2D HP [208] 

Genetic algorithm + 

hill climbing 

SGI Onyx2      

12 × R10000 

supercomputer 

Folding of the alpha 

carbon atoms of 100 

non-redundant test 

proteins 

Dihedral angles to 

augmented with a 

four-helix bundle 

[209] 

Simulated 

annealing 

Time-dependent 

cooling schedule 

Gentoo Linux 

on a 2.4 GHz 

Intel Pentium 

IV processor 

Sequences from 

bibliography 

 HP 3D [213] 

Table 1 Summary of the hardware platforms used to improve different Soft Computing techniques.  

 

CONCLUSIONS AND FUTURE WORK 

 The protein folding problem is a very well-known topic 
that has been widely studied during the last fifty years. 
Indeed, this review article showsthat the protein structure 
prediction problemis still a very active field of research 
nowadays, where many novel techniques and algorithms 
have been applied by means of computer simulation, mainly 
due to their high computational requirements. Our review 
focuses on both computational aspects:  

 1.-From the algorithmic point of view, we center on novel 
algorithms within the Soft Computing fieldthat have been 
applied mainly to the coarse-grain protein-folding problem, 
and focusing mostly on the HP-model.A particular interest to 
us are Neural Networks and Metaheuristics, as they are 
increasing in popularity during the last decade.The 
combination of these methods with local search techniques 
produces very powerful search strategies that providesome 
remarkable and interesting solutions to this problem. In this 
sense, and to the best of our knowledge, we have not found 
any work that design a hyper-heuristic or parametrized 
metaheuristic schema for the problem of the prediction of 
protein structure. These techniques provides a high-level of 
abstraction to look for the best metaheuristic to be applied to 
a concrete problem. Basically, metaheuristics search 
solutions within the problem domain and hyper-heuristics do 
the search within the search space of heuristics. Future 
designs should not only consider a metaheuristic, they 
should design a hyper-heuristic to provide a wide search 
within the space solution though. Besides, new trends in 
neural networks, such as deep learning, are gaining 
popularity, and we envision them as a good alternative for 
the protein structure prediction problem. However, fruitful 
works in this area should be designed taking care of 
computational requirements they intrinsically have by its 
definition, and thus they should designed on massively 
parallel architectures. 

 2.-From the hardware point of view, there are also some 
relevant contributions in the literature. Most of Soft 
Computing techniques are inspired bynature and they are 
massively parallel by their definition.Therefore they are well 
suited for implementation on parallel or even massively 
parallel architectures. After a deep literature review, we 
concludethat the gap between hardware and software in the 
simulation of protein folding is still very wide. There are 
some works that combine novel hardware and software 
techniques but they representjust an incipient research line. 

We are witnessing a revolution in hardware platforms where 
massive and heterogeneous platforms are dominating the 
marketsuch as GPUs.There are many applications already 
working right on the scientific and engineering fields. 
Changing them to run with billion-way parallelism will 
require redesigning or even reinventing the algorithms used 
in them, and potentially reformulating the science problems.  

 The protein folding simulation is a multidisciplinary field 
of research where scientists from different areas work 
together in order to solve challenges of the next century. 
Although many success cases have been reported in this 
review, there are still many aspects on the scientific side that 
need improvement. Just to name a few, the focus of 
application of these techniques relies on the study of single 
systems such as isolated proteins, but an “out of the box” 
approach should be followed in order to exploit them in 
more complex systems such as the ones in study by systems 
biology, as the cell as a whole. Also, techniques reviewed in 
this paper for the PSP problem might be directly applied to 
other biological macromolecules such as disordered proteins, 
nucleic acids, polymers, and systems with relevant 
nanotechnological interest. However, solving the problem of 
the prediction of protein structure, it is not an easy task. The 
workflow in Bioinformatics to create efficient tools is a long 
pipeline where each stage may take several years. Once 
theoretical models have been defined by experts from 
fundamental research fields such as physics, biology and 
chemistry, computer scientists need to define algorithms to 
simulate such models in computers. Moreover, as we move 
to a sustainable world, there are also other important 
concerns to take into accountas performance and energy 
efficiency of such algorithms on particular hardware 
architectures.  Understanding how to bridging the gaps 
between hardware and software will be the key to solve 
mission-critical science problems at exascale. 

 From our point of view, future developments in this area 
should be aware of this landscape of computation.First of all, 
the physical limitations of silicon-based architectures are 
threatening the evolution of processors. Heterogeneous 
computing including GPUs, multiprocessors, or low-power 
processors come to the rescue when no answer looms on the 
horizon.Particularly, GPUs are showing great benefits in 
terms of performance and power consumption. The ratios 
compared with CPUs are expected toincrease even more as 
long as the problem size keeps growing and GPU 
microarchitectures take the next step forward. Moreover, the 
novel interest of governments in green computing makes 
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mandatory developsscientific power-aware applications that 
use all hardware resources at minimum power-budget.  

ACKNOWLEDGEMENTS 

 This work is jointly supported by the FundaciónSéneca 
(Agencia Regional de Ciencia y Tecnología, Región de 
Murcia) under grants 15290/PI/2010 and 18946/JLI/13, by 
the Spanish MEC and European Commission FEDER under 
grant with reference TEC2012-37945-C02-02 and TIN2012-
31345, by the Nils Coordinated Mobility under grant 012-
ABEL-CM-2014A, in part financed by the European 
Regional Development Fund (ERDF). We also thank 
NVIDIA for hardware donation within UCAM GPU 
educational and research centers.Finally, we thank 
anonymous reviewers for their constructive and valuable 
comments. 



 Current Drug Targets, 2016 21 

 XXX-XXX/14 $58.00+.00 © 2016 Bentham SciencePublishers 

REFERENCES 

[1] Dill KA, MacCallum JL. The protein-folding problem, 

50 years on. Science 2012; 338(6110): 1042-6. 

[2] Dill KA, Bromberg S, Yue K, et al. Principles of protein 

folding a perspective from simple exact models. Protein 

Sci 1995; 4(4): 561-602. 

[3] Shaw DE, Dror RO, Salmon JK, et al. In:Millisecond-

scale molecular dynamics simulations on Anton. 

Proceedings of the Conference on: High Performance 

Computing Networking, Storage and Analysis. Portland, 

IEEE 2009; pp 1-11. 

[4] Merlitz H, Wenzel W. Comparison of stochastic 

optimization methods for receptor–ligand docking. Chem 

Phys Lett 2002; 362(3): 271-7. 

[5] Baker D. A surprising simplicity to protein folding. 

Nature. 2000; 405(6782): 39-42. 

[6] Berger B, Leighton T. Protein folding in the 

hydrophobic-hydrophilic (HP) model is NP-complete. J 

Comput Biol 1998; 5(1): 27-40. 

[7] Fraenkel AS. Complexity of protein folding. Bull Math 

Biol 1993; 55(6): 1199-210. 

[8] U.S. Department of Energy. Report on Top Ten Exascale 

Research Challenges.2014. Available at: 

http://science.energy.gov/~/media/ascr/ascac/pdf/meeting

s/20140210/Top10reportFEB14.pdf 

[9] Asanovic K, Bodik R, Catanzaro BC, et al. The 

landscape of parallel computing research: A view from 

Berkeley. California; 2006. Report No.: UCB/EECS-

2006-183. 

[10] Li X, Ruan D, van der Wal AJ. Discussion on soft 

computing at FLINS'96. Int J Intell Syst 1998; 13(2-3): 

28-300. 

[11] Berman H, Westbrook J, Feng Z, et al. The protein data 

bank. Nucleic Acids Res 2000; 28(1): 235-42. 

[12] Zadeh LA. Soft computing and fuzzy logic. IEEE 

Software 1994; 11(6): 48-56. 

[13] Verdegay JL., Yager RR, Bonissone PP. On heuristics 

as a fundamental constituent of soft computing. Fuzzy 

Set Syst 2008; 159(7): 846-55. 

[14] Bonissone PP. Soft computing: the convergence of 

emerging reasoning technologies. Soft Comput 1997; 

1(1): 6-18. 

[15] Bonissone PP. In:Hybrid Soft Computing for 

Classification and Prediction Applications. Proceedings 

of the First International Conference on Computing in 

an Imperfect World. London: Springer-Verlag 2002; pp 

352-3. 

[16] Mitra S, Pal SK, Mitra P. Data mining in soft 

computing framework: a survey. IEEE T Neural 

Networ 2002; 13(1): 3-14. 

[17] Zadeh LA. Fuzzy logic, neural networks, and soft 

computing. Commun ACM 1994; 37(3): 77-84. 

[18] Zadeh LA. Fuzzy sets. Inform Control 1965; 8(3): 338-

53. 

[19] Haykin S, Network N. A comprehensive foundation. 

Neural Networks 2004; 2(2004). 

[20] Hearst MA, Dumais ST, Osman E, Platt J, Scholkopf B. 

Support vector machines. IEEE Intell Syst App 1998; 

13(4): 18-28. 

[21] Glover F, Kochenberger GA. Handbook of 

metaheuristics. Springer Science & Business Media 

2003. 

[22] Back T, Fogel DB, Michalewicz Z. Handbook of 

Evolutionary Computation Bristol, UK: IOP Publishing 

Ltd. 1997. 

[23] Davis L. Handbook of genetic algorithms, New York: 

Van Nostrand Reinhold 1991. 

[24] Kennedy J, Kennedy JF, Eberhart RC. Swarm 

intelligence, Morgan Kaufmann 2001. 

[25] Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM, 

García JM. High-throughput parallel blind virtual 

screening using BINDSURF. Bioinformatics. 2012; 13. 

[26] Jena RK, Aqel MM, Srivastava P, Mahanti PK. Soft 

computing methodologies in bioinformatics. Eur J Sci 

Res 2009; 26(2): 189-203. 

[27] Mitra S, Hayashi Y. Bioinformatics with soft 

computing. IEEE T Syst Man Cy C 2006; 36(5): 616-

35. 

[28] Peréz-Sánchez, H, Cecilia, J M, Merelli, I. In:The role 

of High Performance Computing in Bioinformatics. 

Proceedings of International Work-Conference on 

Bioinformatics and Biomedical Engineering. Granada, 

Spain: 2014; pp 494-506. 

[29] Shaw DE, Maragakis P, Lindorff-Larsen, K, et al. 

Atomic-level characterization of the structural 

dynamics of proteins. Science 2010; 330(6002): 341-6. 

[30] Schaller RR. Moore's law: past, present and future. 

IEEE Spectr 1997; 34(6): 52-9. 

[31] Schulz M. The end of the road for silicon? Nature 

1999; 399(6738): 729-30. 

[32] Pavlus J. The Search for a New Machine. Sci Am 2015; 

312(5): 58-63. 

[33] Huang A. Moore's Law is Dying (and that could be 

good). IEEE Spectr 2015; 52(4): 43-7. 



22Current Drug Targets, 2016 Llanes et al. 

[34] Top500 The List. Available at: http://www.top500.org/ 

[accesed June 24,2015]. 

[35] Kirk DB, Wen-mei WH. Programming massively 

parallel processors: a hands-on approach, MA, USA: 

Elsevier 2013. 

[36] Jeffers J, Reinders J. Intel Xeon Phi coprocessor high-

performance programming, MA, USA: Elsevier 2013. 

[37] Carretero J, García-Blas J, Singh DE, et al. 

In:Optimizations to enhance sustainability of MPI 

applications. Proceedings of the 21st European MPI 

Users' Group Meeting. Kyoto, Japan: ACM New York 

2014; pp 145. 

[38] Garland M, Le Grand S, Nickolls J, et al. Parallel 

computing experiences with CUDA. IEEE micro 2008; 

(4): 13-27. 

[39] Nickolls J, Buck I, Garland M, Skadron K. Scalable 

parallel programming with CUDA. ACM Queue 2008; 

6(2): 40-53. 

[40] nVIDIA. GPU Accelerated. Available at: 

http://www.nvidia.com/content/gpu-

applications/PDF/GPU-apps-catalog-mar2015.pdf 

[accessed May 30,2015]. 

[41] Tsuchiyama R, Nakamura T, Iizuka T, Asahara A, Miki 

S, Tagawa S. The OpenCL programming book. Fixstars 

Corporation 2010. 

[42] Garland M, Kirk DB. Understanding throughput-

oriented architectures. Commun ACM 2010; 58-66. 

[43] Kim HS, El Hajj I, Stratton J, Lumetta S, Hwu WM. 

In:Locality-centric thread scheduling for bulk-

synchronous programming models on CPU 

architectures. Proceedings of the 13th Annual 

IEEE/ACM International Symposium on Code 

Generation and Optimization. San Francisco, CA, 

USA:  IEEE Computer Society Washington 2015; pp 

257-68. 

[44] Chang LW, Dakkak A, Rodrigues CI, Hwu WM. In: 

Tangram: a High-level Language for Performance 

Portable Code Synthesis. Proceedings of 

Programmability Issues for Heterogeneous Multicores. 

Amsterdam, Netherlands, 2015. 

[45] The OpenMP API specification for parallel 

programming. Available at: http://openmp.org/wp/ 

[accessed May 30,2015]. 

[46] OpenACC, Directives for accelerators. Available at: 

http://www.openacc-standard.org/ [accessed May 30, 

2015]. 

[47] Fan X, Weber WD, Barroso LA. In: Power 

provisioning for a warehouse-sized computer. 

Proceedings of the 34th annual international 

symposium on Computer architecture. San Diego, CA, 

USA: ACM New York 2007; pp 13-23. 

[48] Koomey JG. Worldwide electricity used in data centers. 

Environ Res 2008; 3(3). 

[49] The Green 500 List. Available at: 

http://www.green500.org/ [accessed June 24, 2015]. 

[50] Guerrero GD, Wallace RM, Vázquez  Poletti JL,  et al. 

A performance/cost model for a CUDA drug discovery 

application on physical and public cloud 

infrastructures. Concurrency-Pract Ex 2014; 26(10): 

1787-98. 

[51] Hewwit C. ORGs for Scalable, Robust, Privacy-

Friendly Client Cloud Computing/Carl Hewitt. IEEE 

Internet Comput 2008; 12(5): 96-9. 

[52] Berl A, Gelenbe E, Di Girolamo M, et al. Energy-

efficient cloud computing. Comput J 2010; 53(7): 

1045-51. 

[53] Armbrust M, Fox A, Griffith R, et al. A view of cloud 

computing. Commun ACM 2010; 53(4): 50-8. 

[54] D'Agostino D, Clematis A, Quarati A, et al. Cloud 

infrastructures for in silico drug discovery: economic 

and practical aspects. Biomed Res Int 2013; 19. 

[55] D'Agostino D, Galizia A, Clematis A, Mangini M, 

Porro I, Quarati A. A QoS-aware broker for hybrid 

clouds. Computing 2013; 95(1): 89-109. 

[56] Shvachko K, Kuang H, Radia S, Chansler R. In: The 

Hadoop distributed file system. Proceedings of the  26th 

Symposium on Mass Storage Systems and 

Technologies (MSST). Incline Village, NV: IEEE 

2013; pp 89-109. 

[57] Buchan DW, Minneci F, Nugent TC, Bryson K, Jones 

DT. Scalable web services for the PSIPRED Protein 

Analysis Workbench. Nucleic Acids Res 2013; 41(1): 

349-57. 

[58] Narayanan AH, Krishnakumar U, Judy MV. In: An 

Enhanced MapReduce Framework for Solving Protein 

Folding Problem Using a Parallel Genetic Algorithm. 

Proceedings of the 48th Annual Convention of 

Computer Society of India. Springer International 

Publishing 2014; pp 241-50. 

[59] Beberg AL, Ensign DL, Jayachandran G, Khaliq S, 

Pande VS. In: Folding@ home: Lessons from eight 

years of volunteer distributed computing. Proceedings 

of Parallel & Distributed Processing. Rome: IEEE 

2009; pp 1-8. 

[60] Folding@Home. Available at: 

http://folding.stanford.edu/home/the-science [accessed 

June 15, 2015]. 

[61] Kondov I, Berlich R. In: Protein structure prediction 

using particle swarm optimization and a distributed 

parallel approach. Proceedings of the 3rd workshop on 

Biologically inspired algorithms for distributed 

systems. Karlsruhe, Germany: ACM New York 2011; 

pp 35-42. 

[62] Wooldridge M. An Introduction to Multiagent Systems 

Chichester, UK: John Wiley and Sons 2002. 

http://www.top500.org/
http://www.nvidia.com/content/gpu-applications/PDF/GPU-apps-catalog-mar2015.pdf
http://www.nvidia.com/content/gpu-applications/PDF/GPU-apps-catalog-mar2015.pdf
http://openmp.org/wp/
http://www.openacc-standard.org/
http://www.green500.org/
http://folding.stanford.edu/home/the-science


HPC & Protein Folding Current Drug Targets, 201623 

[63] Cannata N, Corradini F, Merelli E, Omicini A, Ricci A. 

In: An agent-oriented conceptual framework for 

systems biology. Proceedings of Transactions on 

computational systems biology III. Berlin, Springer 

2005 pp. 105-22. 

[64] Bortolussi L, Dovier A, Fogolari F. Agent-based 

protein structure prediction. Multiagent and Grid 

Systems 2007; 3(2): 183-97. 

[65] Czibula G, Bocicor MI, Czibula IG. Solving the protein 

folding problem using a distributed q-learning 

approach. Int J Comput Inf Sci 2011;(5): 404-13. 

[66] Czibula G, Bocicor M, Czibula I. A reinforcement 

learning model for solving the folding problem. Int J 

Comput Appl T 2011; 2: 171–82. 

[67] Cartmell J, Enoch S, Krstajic D, Leahy DE. Automated 

QSPR through competitive workflow. J Comput Aid 

Mol Des 2005; 19(11): 821-33. 

[68] Amigoni F, Schiaffonati V. In: Multiagent-based 

simulation in biology. Proceeding of the Model-Based 

Reasoning in Science, Technology, and Medicine. 

Berlin, Springer 2007; pp 179-91. 

[69] Hornik K, Stinchcombe M, White H. Multilayer 

feedforward networks are universal approximators. 

Neural networks 1989; 2(5): 359-66. 

[70] Pollastri G, Przybylski D, Rost B, Baldi P. Improving 

the prediction of protein secondary structure in three 

and eight classes using recurrent neural networks and 

profiles. Proteins 2002; 47: 228–35. 

[71] Rost B, Sander C. Combining evolutionary information 

and neural networks to predict protein secondary 

structure. Proteins 1994; 19(1): 55-72. 

[72] Chandonia JM, Karplus M. Neural networks for 

secondary structure and structural class predictions. 

Protein Sci 1995; 4(2): 275-85. 

[73] Chandonia JM, Karplus M. The importance of larger 

data sets for protein secondary structure prediction with 

neural networks. Protein Sci 1996; 5(4): 768-74. 

[74] Blom N, Hansen J, Blaas D, Brunak S. Cleavage site 

analysis in picornaviralpolyproteins: discovering 

cellular targets by neural networks. Protein Sci 1996; 

5(11): 2203-16. 

[75] Nielsen H, Engelbrecht J, Brunak S, von Heijne G. A 

neural network method for identification of prokaryotic 

and eukaryotic signal peptides and prediction of their 

cleavage sites. Int J Neural Syst 1997; 8: 581-99. 

[76] Nielsen H, Brunak S, von Heijne G. Machine learning 

approaches for the prediction of signal peptides and 

other protein sorting signals. Protein Eng 1999; 12(1): 

3-9. 

[77] Li X, Romero P, Rani M, Dunker A, Obradovic Z. 

Predicting protein disorder for N-, C-and internal 

regions. Genome Inform 1999; 10: 30-40. 

[78] Sodhi JS, Bryson K, McGuffin LJ, Ward JJ, Wernisch 

L, Jones DT. Predicting metal-binding site residues in 

low-resolution structural models. J Mol Biol 2004; 

342(1): 307-20. 

[79] Passerini A, Punta M, Ceroni A, Rost B, Frasconi P. 

Identifying cysteines and histidines in 

transitionmetalbinding sites using support vector 

machines and neural networks. Proteins 2006; 65(2): 

305-16. 

[80] Nair R, Rost B. Better prediction of subcellular 

localization by combining evolutionary and structural 

information. Proteins 2003; 53(4): 917-30. 

[81] Emanuelsson O, Nielsen H, Brunak S, von Heijne G. 

Predicting subcellular localization of proteins based on 

their N-terminal amino acid sequence. J Mol Biol 2000; 

300(4): 1005-16. 

[82] Reinhardt A, Hubbard T. Using neural networks for 

prediction of the subcellular location of proteins. 

Nucleic Acids Res 1998; 26(9): 2230-6. 

[83] Jensen LJ, Gupta R, Blom N, et al. Prediction of human 

protein function from post-translational modifications 

and localization features. J Mol Biol 2002; 319(5): 

1257-65. 

[84] Mirabello C, Adelfio A, Pollastri G. Reconstructing 

Protein Structures by Neural Network Pairwise 

Interaction Fields and Iterative Decoy Set Construction. 

Biomolecules 2014; 4(1): 160-80. 

[85] Igel C, Gebert J, Wiebringhaus T. In: Protein fold class 

prediction using neural networks with tailored early-

stopping. Proceedings of Neural Networks. IEEE 

International Joint Conference 2004; pp 1693-7. 

[86] Ding CH, Dubchak I. Multi-class protein fold 

recognition using support vector machines and neural 

networks. Bioinformatics 2001; 17(4): 349-58. 

[87] Karchin R, Cline M, Mandel-Gutfreund Y, Karplus K. 

Hidden Markov models that use predicted local 

structure for fold recognition: alphabets of backbone 

geometry. Proteins 2003; 51(4): 504-14. 

[88] Andreeva A, Howorth D, Brenner SE, Hubbard TJ, 

Chothia C, Murzin AG. SCOP database in 2004: 

refinements integrate structure and sequence family 

data. Nucleic Acids Res 2004; 32(1): 226-9. 

[89] Rost B, Sander C. Prediction of protein secondary 

structure at better than 70% accuracy. J Mol Biol 1993; 

232(2): 584-99. 

[90] Altschul SF, Madden TL, Schaffer AA,  et al. Gapped 

BLAST and PSI-BLAST: a new generation of protein 

database search programs. Nucleic Acids Res 1997; 

25(17): 3389-402. 

[91] Khan MA, Jan Z, Ali H, Mirza AM. In: Performance of 

Machine Learning Techniques in Protein Fold 

Recognition Problem. Proceedings of Information 

Science and Applications IEEE 2010; pp 1-6. 



24Current Drug Targets, 2016 Llanes et al. 

[92] Sangjo H, Byung-chul L, Seung TY, Chan-seok J, 

Soyoung L, Dongsup K. Fold recognition by combining 

profile–profile alignment and support vector machine. 

Bioinformatics 2005; 21(11): 2667-73. 

[93] Xu J. Fold recognition by predicted alignment 

accuracy. IEEE ACM T Comput Bi 2005; 2(2): 157-65. 

[94] Hua S, Sun Z. A novel method of protein secondary 

structure prediction with high segment overlap 

measure: support vector machine approach. J Mol Biol 

2001; 308(2): 397-407. 

[95] Schmidhuber J. Deep learning in neural networks: An 

overview. Neural Networks 2015; 61: 85-117. 

[96] Eickholt J, Cheng J. Predicting protein residue–residue 

contacts using deep networks and boosting. 

Bioinformatics 2012; 28(23): 3066-72. 

[97] Spencer M, Eickholt J, Cheng J. A Deep Learning 

Network Approach to ab initio Protein Secondary 

Structure Prediction. IEEE ACM T Comput Bi 2014: 

103-12. 

[98] Mnih V. Cudamat: a CUDA-based matrix class for 

python. Department of Computer Science, University 

of Toronto, Tech Rep UTML TR, 4: 2009. 

[99] Blum C, Roli A. Metaheuristics in combinatorial 

optimization: Overview and conceptual 

comparison. ACM Comput Surv 2003; 35(3):  268-308. 

[100] Das S, Abraham A, Konar A. In: Swarm 

intelligence algorithms in bioinformatics. Proceedings 

of Computational Intelligence in Bioinformatics. 

Springer Berlin Heidelberg  2008; pp 113-47. 

[101] Bergholt MS, Zheng W, Lin K,  et al. In vivo 

diagnosis of gastric cancer using Raman endoscopy and 

ant colony optimization techniques. Int J Cancer 2011; 

128(11): 2673-80. 

[102] Dorigo M, Birattari M, Stutzle T. Ant colony 

optimization. IEEE Comput Intell Mag 2006; 1(4): 28-

39. 

[103] Blum C. Ant colony optimization: Introduction and 

recent trends. Phys Life Rev 2005; 2(4): 353-73. 

[104] Dorigo M, Maniezzo V, Colorni A. The ant system: 

optimization by a colony of cooperation agents. IEEE 

Trans Syst Man Cybern 1996; 29-41. 

[105] Dorigo M, Caro G, Gambardella L. Ant algorithms 

for discrete optimization. Artif Life 1999; 5(2): 137-72. 

[106] Dorigo M, Stützle T. In: Handbook of 

Metaheuristics; Springer US: 2003; pp 250-85. 

[107] Sivagaminathan RK, Ramakrishnan S. A hybrid 

approach for feature subset selection using neural 

networks and ant colony optimization. Expert Syst 

Appl 2007; 33(1): 49-60. 

[108] Nemati S, Basiri ME, Ghasem-Aghaee N, Aghdam 

MH. A novel ACO–GA hybrid algorithm for feature 

selection in protein function prediction. Expert Syst 

Appl 2009; 36(10): 12086-94. 

[109] Shmygelska A, Hoos HH. An ant colony 

optimisation algorithm for the 2D and 3D hydrophobic 

polar protein folding problem. BMC bioinformatics 

2005; 6(1): 30. 

[110] Song J, Cheng J, Zheng T. In: Protein 3D HP model 

folding simulation based on ACO. Proceedings of 

Intelligent Systems Design and Applications. IEEE 

2006; pp 410-5. 

[111] Tortilla HP benchmark. Available at: 

http://www.cs.sandia.gov/tech_reports/compbio/tortilla

-hp-benchmarks.html [accessed Jun 15, 2015] 

[112] Thalheim T, Merkle D, Middendorf M. Protein 

folding in the HP-model solved with a hybrid 

population based ACO algorithm. Int J Comp Sci 2008; 

35(3): 291-300. 

[113] Hu XM, Zhang J, Li Y. In: Flexible protein folding 

by ant colony optimization. Proceedings of 

Computational Intelligence in Biomedicine and 

Bioinformatics. Berlin: Springer 2008; pp 317-36. 

[114] Chen C, Tian YX, Zou XY, Cai PX, Mo JY. A 

hybrid ant colony optimization for the prediction of 

protein secondary structure. Chinese Chem Lett 2005; 

16(11): 1551-4. 

[115] Chu D, Zomaya A. In: Parallel Ant Colony 

Optimization for 3D Protein Structure Prediction using 

the HP Lattice Model. Nedjah N, de MacedoMourelle 

L, Alba E. Springer Berlin Heidelberg 2006; pp 177-

198. 

[116] Guo H, Lu Q, Wu J, Huang X, Qian P. In: Solving 

2D HP Protein Folding Problem by Parallel Ant 

Colonies. Proceedings of 2nd International Conference 

Biomedical Engineering and Informatics. Tianjin: 

IEEE. 2009; pp 1 - 5. 

[117] Lv Q, Wu H, Wu J, Huang X, Luo X, Qian P. A 

parallel ant colonies approach to de novo prediction of 

protein backbone in CASP8/9. Sci China Inform Sci 

2013; 56(10): 1-13. 

[118] Cecilia JM, García JM, Nisbet A, Amos M, Ujaldón 

M. Enhancing data parallelism for ant colony 

optimization on GPUs. J Parallel Distr Com 2013; 

73(1): 42-51. 

[119] Karaboga D, Basturk B. On the performance of 

artificial bee colony (ABC) algorithm. Appl Soft 

Comput 2008; 8(1): 687-97. 

[120] Zhang Y, Wu L. Artificial bee colony for two 

dimensional protein folding. AEES 2012; 1(1): 19-23. 

[121] Li B, Li Y, Gong L. Protein secondary structure 

optimization using an improved artificial bee colony 

algorithm based on AB off-lattice model. Eng Appl 

Artif Intel 2014; 27: 70-9. 

http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html
http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html


HPC & Protein Folding Current Drug Targets, 201625 

[122] Benítez CMV, Lopes HS. In: Parallel artificial bee 

colony algorithm approaches for protein structure 

prediction using the 3DHP-SC model. Proceedings of 

Intelligent Distributed Computing IV. Springer Berlin 

Heidelberg, 2010; pp 255-64. 

[123] Benitez CMV, Lopes HS. In: Hierarchical Parallel 

Genetic Algorithm applied to the three-dimensional HP 

Side-chain Protein Folding Problem. Proceedings of 

Intenrantional Conference on Systems Man and 

Cybernetics. Istanbul: IEEE 2010; pp 2669-76. 

[124] Benitez CMV, Parpinelli RS, Lopes HS. 

Parallelism, hybridism and coevolution in a multi-level 

ABC-GA approach for the protein structure prediction 

problem. Concurr Comput 2012; 24(6): 635-46. 

[125] Bahamish HAA, Abdullah R, Abu-Hashem MA. In: 

A modified Marriage in Honey Bee Optimisation 

(MBO) algorithm for protein structure prediction. 

Proceedings of 2nd International Conference on  

Computer Technology and Development. Cairo: IEEE 

2010; pp 65-9. 

[126] Wang Y, Guo GD, Chen LF. Chaotic Artificial Bee 

Colony algorithm: A new approach to the problem of 

minimization of energy of the 3D protein structure. Mol 

Biol+ 2013; 47(6): 894-900. 

[127] Li B, Chiong R, Lin M. A balance-evolution 

artificial bee colony algorithm for protein structure 

optimization based on a three-dimensional AB off-

lattice model. Comput Biol Chem 2015; 54: 1-12. 

[128] Li Y, Zhou C, Zheng X. Artificial Bee Colony 

Algorithm for the Protein Structure Prediction Based on 

the Toy Model. Fundam Inform 2015; 136(3): 241-52. 

[129] Chen X, Lv M, Zhao L, Zhang X. An Improved 

Particle Swarm Optimization for Protein Folding 

Prediction. IJIEEB 2011; 3(1): 1-8. 

[130] Pérez-Hernández LG, Rodríguez-Vázquez K, 

Garduño-Juárez R. In: Parallel particle swarm 

optimization applied to the protein folding problem.  

Proceedings of the 11th Annual conference on Genetic 

and evolutionary computation. New York: ACM 2009; 

pp 1791-2. 

[131] Pérez-Hernández LG, Rodríguez-Vázquez K, 

Gorduño-Juárez R. In: Estimation of 3D protein 

structure by means of parallel particle swarm 

optimization. Proceedings of Evolutionary 

Computation. Barcelona: IEEE 2010; pp 1-8. 

[132] Liu J, Wang L, He L, Shi F. In: Analysis of toy 

model for protein folding based on particle swarm 

optimization algorithm. Proceedings of First 

International Conference. Changsha, China: Springer 

Berlin Heidelberg 2005; pp 636-45. 

[133] Mansour N, Kanj F, Khachfe H. Particle swarm 

optimization approach for protein structure prediction 

in the 3D HP model.  

Interdiscip Sci 2012; 4(3): 190-200. 

[134] Goldberg DE. Genetic algorithms in search, 

optimization and machine learning. Addison-Wesley 

1989. 

[135] De Jong KA, Spears WM. In: Using genetic 

algorithms to solve NP-complete problems. 

Proceedings of International Conference on Genetic 

Algorithms. California: Morgan Kaufmann Publishers, 

1989; pp 124-32. 

[136] Holland JH. Adaptation in natural and artificial 

systems: An introductory analysis with applications to 

biology, control, and artificial intelligence. Oxford, 

England: U Michigan Press 1975. 

[137] Unger R, Moult J. Genetic algorithms for protein 

folding simulations. J Mol Biol 1993; 231(1): 75-81. 

[138] König R, Dandekar T. Improving genetic 

algorithms for protein folding simulations by 

systematic crossover. BioSystems 1999; 50(1): 17-25. 

[139] Patton AL, Punch III WF, Goodman ED. In: A 

Standard GA Approach to Native Protein Conformation 

Prediction. Proceedings of International Conference of 

Genetic Algorithms; 1995. pp 574-81. 

[140] Pedersen JT, Moult J. Protein folding simulations 

with genetic algorithms and a detailed molecular 

description. J Mol Biol 1997; 269(2): 240-59. 

[141] Lopes HS, Scapin MP. In: An enhanced genetic 

algorithm for protein structure prediction using the 2D 

hydrophobic-polar model. Talbi EG, Liardet P, Collet 

P, Lutton E, Schoenauer M. Artificial Evolution: 

Springer Berlin Heidelberg 2006. pp 238-46. 

[142] Hoque MT, Chetty M, Dooley LS. In: A new 

guided genetic algorithm for 2D hydrophobic-

hydrophilic model to predict protein folding. 

Proceedings of Evolutionary Computation. Edinburgh, 

Scotland: IEEE 2005; pp 259-66. 

[143] Song J, Cheng J, Zheng T, Mao J. In: A novel 

genetic algorithm for HP model protein folding. 

Proceedings of Sixth International Conference on 

Parallel and Distributed Computing, Applications and 

Technologies. IEEE 2005; pp. 935-37. 

[144] Sun S. Reduced representation model of protein 

structure prediction: statistical potential and genetic 

algorithms. Protein Sci 1993; 2(5): 762-85. 

[145] Dandekar T, Argos P. Folding the main chain of 

small proteins with the genetic algorithm. J Mol Biol 

1994; 236(6): 844-61. 

[146] Zhang X, Wang T, Luo H, et al. In: 3D Protein 

structure prediction with genetic tabu search algorithm. 

Proceedings of The ISIBM International Joint 

Conferences on Bioinformatics, Systems Biology and 

Intelligent Computing (IJCBS). Shanghai, China: 2009; 

[147] Jiang T, Cui Q, Shi G, Ma S. Protein folding 

simulations of the hydrophobic–hydrophilic model by 

combining tabu search with genetic algorithms. J Chem 

Phys 2003; 119(8): 4592-6. 



26Current Drug Targets, 2016 Llanes et al. 

[148] Rashid MA, Hoque MT, Newton MH, Pham DN, 

Sattar A. In: A New Genetic Algorithm for Simplified 

Protein Structure Prediction. Proceedings of 25th 

Australasian Joint Conference. Sydney, Australia: 

Springer Berlin Heidelberg 2012; pp 107-19. 

[149] Cotta C. In: Protein structure prediction using 

evolutionary algorithms hybridized with backtracking. 

Proceedings Artificial Neural Nets Problem Solving 

Methods. Springer Berlin Heidelberg, 2003; pp 321-8. 

[150] Chira C. Hill-Climbing search in evolutionary 

models for protein folding simulations. Stud Univ 

Babe\c s-Bolyai Inform 2010; 55: 29-40. 

[151] Zhang X, Lin X, Wan C, Li T. In: Genetic-

annealing algorithm for 3D off-lattice protein folding 

model. Proceedings of Emerging Technologies in 

Knowledge Discovery and Data Mining. Springer 

Berlin Heidelberg 2007; pp 186-93. 

[152] Moscato P, Cotta C. In: A gentle introduction to 

memetic algorithms. Glove F, Kochenberger GA. 

Handbook of Metaheuristics: Springer US 2003. pp. 

105-44. 

[153] Islam MK, Chetty M. In: Novel memetic algorithm 

for protein structure prediction. Proceedings of  

Advances in Artificial Intelligence. Springer Berlin 

Heidelberg 2009; pp 412-21. 

[154] Krasnogor N, Blackburne BP, Burke EK, Hirst JD. 

In: Multimeme Algorithms for Protein Structure 

Prediction. Proceedings of 7th International Conference 

of Parallel Problem Solving from Nature. Granada, 

Spain: Springer Berlin Heidelberg 2002; pp 769-78. 

[155] Smith JE. In: The co-evolution of memetic 

algorithms for protein structure prediction. Hart WE, 

Smith JE, Krasnogor N. Recent Advances in Memetic 

Algorithms. Springer Berlin Heidelberg 2005. pp 105-

28. 

[156] Bazzoli A, Tettamanzi AG. In: A memetic 

algorithm for protein structure prediction in a 3D-lattice 

HP model. Proceedings of Applications of Evolutionary 

Computing. Springer Berlin Heidelberg 2004; pp 1-10. 

[157] Islam MK, Chetty M. Clustered memetic algorithm 

with local heuristics for ab initio protein structure 

prediction. IEEE T Evolut Comput 2013; 17(4): 558-

76. 

[158] Islam MK, Chetty M, Murshed M. In: Novel local 

improvement techniques in clustered memetic 

algorithm for protein structure prediction. Proceedings 

of Evolutionary Computation. New Orleans, LA: IEEE 

2011; pp 1003-11. 

[159] Smith JE. In: Protein structure prediction with co-

evolving memetic algorithms. Proceedings of   the 

congress on Evolutionary Computation. IEEE 2003; pp 

2346-53. 

[160] Coello CAC, Van Veldhuizen DA, Lamont GB. 

Evolutionary algorithms for solving multi-objective 

problems New York: Kluwer Academic 2007. 

[161] Day RO, Zydallis JB, Lamont GB, Pachter R. 

Solving the protein structure prediction problem 

through a multiobjective genetic algorithm. 

Nanotechnology 2002; 2: 32-5. 

[162] Brasil CRS, Delbem ACB, da Silva FLB. 

Multiobjective evolutionary algorithm with many tables 

for purely ab initio protein structure prediction. J 

Comput Chem 2013; 34(20): 1719-34. 

[163] SoaresBrasil CR, BotazzoDelbem AC, 

FerrazBonetti DR. In: Investigating relevant aspects of 

MOEAs for protein structures prediction. Proceedings 

of the 13th annual conference on Genetic and 

evolutionary computation. Dubin, Ireland: ACM 2011; 

pp 705-12. 

[164] Cutello V, Narzisi G, Nicosia G. A multi-objective 

evolutionary approach to the protein structure 

prediction problem. J R Soc Interface 2006; 3(6): 139-

51. 

[165] Garza-Fabre M, Rodriguez-Tello E, Toscano-Pulido 

G. In: Multiobjectivizing the HP model for protein 

structure prediction. Proceedings of 12th European 

Conference Evolutionary Computation in 

Combinatorial Optimization. Málaga, Spain: Springer 

Berlin Heidelberg 2012; pp 182-93. 

[166] Handl J, Lovell SC, Knowles J. In: Investigations 

into the effect of multiobjectivization in protein 

structure prediction. Proceedings of 10th International 

Conference on Parallel Problem Solving from Nature. 

Dortmund, Germany: Springer Berlin Heidelberg 2008; 

pp 702-11. 

[167] Garza-Fabre M, Toscano-Pulido G, Rodriguez-

Tello E. In: Locality-based multiobjectivization for the 

HP model of protein structure prediction. Proceedings 

of the 14th annual conference on Genetic and 

evolutionary computation. New York: ACM 2012; pp 

473-80. 

[168] Calvo JC, Ortega J. In: Parallel protein structure 

prediction by multiobjective optimization. Proceedings 

of 17th Euromicro International Conference on Parallel, 

Distributed and Network-based Processing. Weimar, 

Germany: IEEE 2009; pp 268-75. 

[169] Calvo JC, Ortega J, Anguita M, Urquiza JM, 

Florido JP. In: Protein structure prediction by 

evolutionary multi-objective optimization: search space 

reduction by using rotamers. Proceedings of Bio-

Inspired Systems: Computational and Ambient 

Intelligence. Springer Berlin Heidelberg 2009; pp 861-

8. 

[170] Calvo JC, Ortega J, Anguita M. Comparison of 

parallel multi-objective approaches to protein structure 

prediction. J Supercomput 2011; 58(2): 253-60. 



HPC & Protein Folding Current Drug Targets, 201627 

[171] Calvo JC, Ortega J, Anguita M. PITAGORAS-PSP: 

Including domain knowledge in a multi-objective 

approach for protein structure prediction. 

Neurocomputing 2011; 2675-82. 

[172] Tantar A, Melab N, Talbi EG. In: A comparative 

study of parallel metaheuristics for protein structure 

prediction on the computational grid. Proceedings of  

Parallel and Distributed Processing Symposium. Long 

Beach, CA: IEEE 2007; pp 1-10. 

[173] Tantar AA, Melab N, Talbi EG, Parent B, Horvath 

D. A parallel hybrid genetic algorithm for protein 

structure prediction on the computational grid. Future 

Gener Comp Sy 2007; 23(3): 398-409. 

[174] Tantar AA, Melab N, Talbi EG. A grid-based 

genetic algorithm combined with an adaptive simulated 

annealing for protein structure prediction. Soft Comput. 

2008; 12(12): 1185-1198. 

[175] Cahon S, Melab N, Talbi EG. ParadisEO: A 

framework for the reusable design of parallel and 

distributed metaheuristics. J Heuristics 2004; 10(3): 

357-80. 

[176] Thain D, Tannenbaum T, Livny M. Distributed 

computing in practice: The Condor experience. Concurr 

Comp-Pract E 2005; 17(2-4): 323-56. 

[177] Benítez CMV, Lopes HS. Protein structure 

prediction with the 3D-HP side-chain model using a 

master–slave parallel genetic algorithm. J Braz Comp 

Soc 2010; 16(1): 69-78. 

[178] Xue Y, Qian Z, Bogdan P, Ye F, Tsui CY. In: 

Disease Diagnosis-on-a-Chip: Large Scale Networks-

on-Chip based Multicore Platform for Protein Folding 

Analysis. Proceedings of 51st ACM/EDAC/IEEE 

Design Automation Conference. San Francisco, CA: 

IEEE 2014; pp 1-6. 

[179] Dean J, Ghemawat S. MapReduce: simplified data 

processing on large clusters. Commun ACM 2008; 107-

13. 

[180] Zhu H, Xiao H, Gu J. In: Parallelism of Clonal 

Selection for PSP on CUDA. Proceedings of 3rd 

International Conference on Intelligent Networks and 

Intelligent Systems Shenyang: IEEE 2010; pp 467-70. 

[181] Scalabrin MH, Parpinelli RS, Benítez CM, Lopes 

HS. Population–based harmony search using GPU 

applied to protein structure prediction. gbs-ijcse 2014; 

9(1): 106-18. 

[182] Mansour N, Kanj F, Khachfe H. Enhanced genetic 

algorithm for protein structure prediction based on the 

HP model: intech 2011; 

[183] Garcia-Martinez JM, Garzón EM, Cecilia JM, 

Perez-Sanchez H, Ortigosa PM. An efficient approach 

for solving the HP Protein Folding Problem based on 

UEGO. J Math Chem 2015; 794-806. 

[184] Zhang Y, Wu L, Wang S. Solving two-dimensional 

HP model by firefly algorithm and simplified energy 

function. Math Probl Eng 2013; 

[185] Cai X, Wu X, Wang L, Kang Q, Wu Q. 

Hydrophobic-polar model structure prediction with 

binary-coded artificial plant optimization algorithm. J 

Comput Theor Nanos 2013; 10(6): 1550-4. 

[186] Cui Z, Liu X, Liu D, Zeng J, Shi Z. Using 

Gravitropism Artificial Plant Optimization Algorithm 

to Solve Toy Model of Protein Folding. J Comput 

Theor Nanos 2013; 10(6): 1540-4. 

[187] Cai X, Liu D, Wang L, Kang Q, Wu Q. Using 

Social Emotional Optimization Algorithm to Solve Toy 

Model of Protein Folding. J Comput Theor Nanos 

2013; 10(6): 1545-9. 

[188] Lin CJ, Su SC. Protein 3 D HP Model Folding 

Simulation Using a Hybrid of Genetic Algorithm and 

Particle Swarm Optimization. Int J Fuzzy Syst 2011; 

13(2): 140-7. 

[189] Zhao X. Advances on protein folding simulations 

based on the lattice HP models with natural computing. 

Appl Soft Comput 2008; 8(2): 1029-40. 

[190] Karami Y, Khakzad H, Arab S, Fathy M, Shirazi H. 

In: Protein structure prediction using bio-inspired 

algorithm: A review. Proceedings of 16th CSI 

International Symposium on Artificial Intelligence and 

Signal Processing. Shiraz, Fars: IEEE 2012; pp 201-6. 

[191] Glover F, Laguna M. Tabu search. In Du DZ, 

Pardalos PM. Handbook of Combinatorial 

Optimization. Springer US 1999. pp 2093-229. 

[192] Russell S, Norvig P. A modern approach. Artificial 

Intelligence: Prentice-Hall 1995. 

[193] Kirkpatrick S, Gelatt JCD, Vecchi MP. 

Optimization by simulated annealing. Science 1983; 

220(4598): 671-80. 

[194] Eglese RW. Simulated annealing: a tool for 

operational research. Eur J Oper Res 1990; 46(3): 271-

81. 

[195] Neal L, Mitzenmacher M, Whitesides S. In: A 

complete and effective move set for simplified protein 

folding. Proceedings of the seventh annual international 

conference on Research in computational molecular 

biology. New York: ACM 2003; pp 188-95. 

[196] Błażewicz J, Łukasiak P, Miłostan M. Application 

of tabu search strategy for finding low energy structure 

of protein. Artif Intell Med 2005; 35(1): 135-45. 

[197] Cebrián M, Dotú I, Van Hentenryck P, Clote P. In: 

Protein structure prediction on the face centered cubic 

lattice by local search. Proceedings of the Twenty-

Third AAAI Conference on Artificial Intelligence. 

2008; pp 241-6. 

[198] Yue K, Fiebig K, Thomas P, Chan H, Shakhinovich 

E, and Dill K. In: A test of lattice protein folding 



28Current Drug Targets, 2016 Llanes et al. 

algorithms. Proceedings of the National Academy of 

Sciences. 1995. pp 325-9. 

[199] Dotu I, Cebrián M, Van Hentenryck P, Clote P. On 

lattice protein structure prediction revisited. 

IEEE/ACM Tans Comput Biol Bioinf 2011; 8(6): 

1620-32. 

[200] Rashid MA, Newton MAH, Hoque MT, Shatabda 

S, Pham D, Sattar A. Spiral search: a hydrophobic-core 

directed local search for simplified PSP on 3D FCC 

lattice. BMC Bioinformatics 2013; 14. 

[201] Zhou C, Hou C, Zhang Q, Wei X. Enhanced hybrid 

search algorithm for protein structure prediction using 

the 3D-HP lattice model. J Mol Model 2013; 19(9): 

3883-91. 

[202] Morales LB, Garduño–Juárez R, Aguilar–Alvarado 

JM, Riveros–Castro FJ. A parallel tabu search for 

conformational energy optimization of oligopeptides.  J 

Comput Chem 2000; 21(2): 147-56. 

[203] Xiaolong Z, Cheng W. In: An improved tabu search 

algorithm for 3D protein folding problem. Proceedings 

of 10th Pacific Rim International Conference on 

Artificial Intelligence: Trends in Artificial Intelligence. 

Hanoi, Vietnam: Springer Berlin Heidelberg 2008; pp 

1104-9. 

[204] Liu J, Sun Y, Li G, Song B, Huang W. Heuristic-

based tabu search algorithm for folding two-

dimensional AB off-lattice model proteins.  Comp Biol 

Chem 2013; 47: 142-8. 

[205] Su SC, Lin CJ, Ting CK. An effective hybrid of hill 

climbing and genetic algorithm for 2D triangular 

protein structure prediction. Proteome Sci 2011; 9: 19. 

[206] Hoque MT, Chetty M, Dooley LS. In: A hybrid 

genetic algorithm for 2D FCC hydrophobic-hydrophilic 

lattice model to predict protein folding. Proceedings of 

19th Australian Joint Conference on Artificial 

Intelligence. Hobart, Australia: Springer Berlin 

Heidelberg 2006; pp 867-76. 

[207] Böckenhauer HJ, Ullah AZMD, Kapsokalivas L, 

Steinhöfel K. In: A local move set for protein folding in 

triangular lattice models. Proceedings of 8th 

International Workshop. Karlsruhe, Germany: Springer 

Berlin Heidelberg 2008; pp 369-81. 

[208] Chira C, Horvath D, Dumitrescu D. Hill-Climbing 

search and diversification within an evolutionary 

approach to protein structure prediction. BioData Min 

2011; 4(1): 23. 

[209] Cooper LR, Corne DW, Crabbe MJC. Use of a 

novel Hill-climbing genetic algorithm in protein folding 

simulations.  Comp Biol Chem 2003; 27(6): 575-80. 

[210] Dandekar T, Argos P. Identifying the tertiary fold 

of small proteins with different topologies from 

sequence and secondary structure using the genetic 

algorithm and extended criteria specific for strand 

regions. J Mol Biol 1996; 256(3): 645-60. 

[211] Ullah AD, Steinhöfel K.  In: A hybrid approach to 

protein folding problem integrating constraint 

programming with local search. Proceedings of the 

Eighth Asia Pacific Bioinformatics Conference.  

Bangalore, India: LaxmiParida and Gene Myers 2010; 

[212] Simons KT, Kooperberg C, Huang E, Baker D. 

Assembly of protein tertiary structures from fragments 

with similar local sequences using simulated annealing 

and Bayesian scoring functions. J Mol Biol 1997; 

268(1): 209-25. 

[213] Albrecht AAM, Skaliotis A, Steinhöfel K. 

Stochastic protein folding simulation in the three-

dimensional HP-model. Comp Biol Chem 2008; 32(4): 

248-55. 

[214] Beutler TC, Dill KA. A fast conformational search 

strategy for finding low energy structures of model 

proteins. Protein Sci 1996; 5(10): 2037-43. 

[215] Web of Knowledge. Available 

at:www.webofknowledge.com [accessed Jun 25, 2015]. 

[216] Deng, L., Yu, D. Deep learning: methods and 

applications. Fond T Sign Proc 2014; 7(3–4): 197-387. 

 

http://www.webofknowledge.com/

