
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2013; 00:1–15
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Towards Energy Efficiency in Heterogeneous Processors: Findings
on Virtual Screening Methods

Ginés D. Guerrero1∗, Juan M. Cebrián2, Horacio Pérez-Sánchez3, José M. Garcı́a1
Manuel Ujaldón4 and José M. Cecilia3

1Dept. of Computer Architecture, University of Murcia, 30080, Murcia, Spain
2Dept. of Computer and Information Science, 7034, Trondheim, Norway

3Dept. of Computer Science, Catholic University of Murcia, 30107, Murcia, Spain
4Dept. of Computer Architecture, University of Malaga, 29071, Malaga, Spain

SUMMARY

The integration of the latest breakthroughs in computational modeling and High Performance Computing
(HPC) has leveraged advances in the fields of healthcarea and drug discovery, among others. By integrating
all these developments together, scientists are creating new exciting personal therapeutic strategies for living
longer that were unimaginable not that long ago. However, we are witnessing the biggest revolution in HPC
of the last decade. Several Graphics Processing Unit architectures have established their niche in the HPC
arena, but at the expense of an excessive power and heat. A solution for this important problem is based on
heterogeneity.
In this paper, we analyze power consumption on heterogeneous systems, benchmarking a bioinformatics
kernel within the framework of Virtual Screening (VS) methods. Cores and frequency are tuned to further
improve the performance or energy efficiency on those architectures. Our experimental results show that
targeted low-cost systems are the lowest power consumption platforms, although the most energy efficient
platform and the best suited for performance improvement is the Kepler GK110 GPU from Nvidia using
CUDA. Finally, the OpenCL version of VS shows a remarkable performance penalty compared to its CUDA
counterpart.
Copyright © 2013 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Energy Efficiency; Heterogenous Computing; Molecular Docking

1. INTRODUCTION

We are witnessing a steady transition from single to multi/many core processors with the Moore’s
law looming on the horizon. Although several improvements have continued to provide smaller
semiconductor devices, physical limitations of the silicon-based architectures are pushing this
movement towards parallelism [1]. At this rate, the increasing amount of transistors in the same
area due to technology scaling will exacerbate power dissipation problems. In the near future, it is
uncertain if all the transistors of the same chip will be available in a given cycle due to temperature
constraints [2].

The adoption of heterogeneous computational elements at the moment is mandatory for energy
efficiency, being the new approach to reduce the Energy per instruction (EP) consumption. These
architectures use several cores with different functionality, performance, and energy efficiency,
comprising latency-oriented cores for control-dominated tasks, throughput-oriented cores for data-
driven tasks, and low-power cores to meet low power constraints in low/mid-performance tasks.

∗Correspondence to: gines.guerrero@ditec.um.es

Copyright © 2013 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 GINÉS D. GUERRERO ET AL.

This way, the chip can exploit the characteristics of each task to efficiently run them from both
execution time and power consumption perspectives. The run-time system is still immature to
efficiently map processors and computations, and thus programmers play a fundamental role in
this emergent landscape of computation to extract maximum performance. It is not an easy task, as
they have to deal with different hardware components, instruction sets and programming models,
while keeping power consumption on a reasonable threshold.

However, the integration of these latest breakthroughs in high performance computing with those
obtained in other fields such as image processing and computational modeling enables remarkable
advances in the fields of healthcare, genome research, drug discovery, etc. For instance, Virtual
Screening (VS) methods can enormously help to discover new drugs [3] and energy materials [4].
The different approaches used in VS methods differ mainly in the way they model the interacting
molecules, but all screen databases of chemical compounds containing up to millions of ligands [5].
Larger databases increase the chances of generating hits or leads, but the computational time needed
for the calculations increases not only with the size of the database but also with the accuracy of
the chosen VS method. Fast docking methods with atomic resolution require a few minutes per
ligand [6], while more accurate molecular dynamics-based approaches still require hundreds or
thousands of hours per ligand [7]. Therefore, the limitations of VS predictions are directly related
to a lack of computational resources, a major bottleneck that prevents the application from detailed,
high-accuracy models to VS.

In this paper, we use a molecular docking kernel within drug discovery field to benchmark a wide
range of novel architectures manufactured by Intel, ARM, AMD/ATI and Nvidia, with an emphasis
on power, performance and energy. Major findings include the following:

1. We have implemented the electrostatic interactions kernel to fully leverage Chip
Multiprocessors with vectorization from different manufacturers. This implementation is
based on C/OpenMP to fully utilize the cores and SSE and NEON vector instructions.

2. A data-parallel scheme on GPUs is deployed using CUDA [8] and OpenCL [9] programming
models. Our design proposes a tiling technique to exploit data-locality via shared memory.
The OpenCL version, which was successfully ported to other platforms without requiring any
changes, obtains a poor performance compared to CUDA.

3. Different Nvidia GPUs are analyzed, all endowed with a Fermi GF100 but having different
bandwidth, memory size and, more importantly, number of multiprocessors. This allows us
to estimate the impact of power gating [10], a technique to reduce power consumption by
shutting off the flow of current to unused blocks of the circuit. As the targeted kernel is fully
scalable, the impact of power gating here is low.

4. We offer an in-depth analysis of the hardware particularities of each processor, by tuning the
number of cores and clock speeds to further improve performance and energy efficiency.

5. The hardware generations based on Nvidia Kepler GPUs and ARM dual-core Cortex A15 are
compared to reveal solid advantages of Kepler concerning energy efficiency and performance
enhancements.

6. Our results nominate low power GPUs and embedded processors as the lowest power
consumption platforms. Moreover, considering performance-oriented metrics like the Energy
Delay Product (EDP or ED2P), Nvidia high-end GPUs are better suited for computing the VS
kernels.

The rest of the paper is organized as follows. Section 2 briefly introduces basic concepts. Section 3
describes the implementation details of the targeted VS kernel in different platforms. Section 4
reports our evaluation methodology before showing the main experimental results in Section 5. We
summarize the related work in Section 6, and finally, Section 7 concludes the paper and shows
possible directions for future work.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

TOWARDS ENERGY EFFICIENCY IN HETEROGENEOUS PROCESSORS 3

2. PRELIMINARIES

2.1. Virtual Screening

Virtual Screening (VS) has played an important role in several areas such as catalysts and energy
materials [4] and drug discovery, in which experimental techniques are increasingly complemented
by numerical simulation [11]. Although VS methods have been investigated for many years and
several compounds could be identified that evolved into drugs, the impact of VS has not yet
fulfilled all expectations. Neither the docking methods nor the scoring functions used presently
are sufficiently accurate to reliably identify high-affinity ligands. To deal with a large number of
potential candidates (many databases comprise hundreds of thousands of ligands), VS methods
must be very fast and yet identify “the needles in the haystack”.

In many VS applications, the predicted ligands turn out to have low affinity (false positives), while
high affinity ligands rank low in the database (false negatives). In contrast, established simulation
(not scoring) methods, such as free-energy perturbation theory, can determine relative changes
in the affinity when ligands are changed slightly (group substitutions). These techniques require
hundreds of CPU hours for each ligand, reaching thousands of CPU hours for each ligand when
simulation strategies are used to compute absolute binding affinities [12]. In comparison to these
techniques, VS methods must make significant approximations regarding the affinity calculation
and the sampling of possible receptor complex conformations. These approximations would be
justifiable, as long as the relative order of affinity is preserved at the high-affinity end of the database.

In most of the VS methods, the biological system is represented in terms of interacting particles.
For the calculation of the interaction energies, classical potentials are commonly used, separated
into bonded and non-bonded terms. In VS methods, and in many other molecular mechanics based
methodologies, the most intensive computations are spent on the calculation of the non-bonded
interactions kernel. For example in Molecular Dynamics, the calculation of these kernels takes up
to 80% of the total execution time [13]. Therefore, these kernels can be considered bottlenecks, and
it has been shown that their parallelization and optimization permits VS methods to deal with more
complex systems, simulate longer time scales or screen larger chemical compound databases [14].

The relevant non-bonded potentials used in VS calculations are the Coulomb or electrostatic
and the Lennard-Jones potentials, since they describe very accurately the most important short and
long-range interactions between atoms of the protein-ligand system. In this paper, we focus on the
electrostatic kernel (ES). This kernel is the baseline for several methodologies used in VS methods,
such as Molecular Dynamics and protein-protein docking.

2.2. Programming Models

Major hardware vendors are releasing heterogeneous architectures with features having a direct
impact on the application runtime performance. This performance is unleashed using programming
models like Compute Unified Device Architecture (CUDA) [8] and Open Computing Language
(OpenCL) [9]. Latency-oriented architectures such as Intel and AMD CPUs still relay on traditional
parallel programming models such as OpenMP [15] and MPI [16], including vectorization through
SSE and NEON Intrinsics, although OpenCL is also compatible for some of them. In this section,
we briefly introduce the emergent programming models like CUDA and OpenCL used to calculate
the electrostatic potential kernel on our massively parallel architectures.

2.3. CUDA Programming Model

Nvidia GPU platforms can be programmed using the Compute Unified Device Architecture (CUDA)
programming model, which makes the GPU to operate as a highly parallel computing device. Each
GPU device is a scalable processor array consisting of a set of SIMT (Single Instruction Multiple
Threads) multiprocessors (SM), each of them containing several stream processors (SPs). Different
memory spaces are available in each GPU on the system. The global memory (also called device
or video memory) is the only space accessible by all multiprocessors. This is the largest and the
slowest memory space and it is private to each GPU on the system. Moreover, each multiprocessor

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 GINÉS D. GUERRERO ET AL.

has its own private memory space, called shared memory, because this memory is stored among all
SPs in a SM. The shared memory is smaller and has lower latency than global memory.

The CUDA programming model is based on a hierarchy of abstraction layers: The thread is
the basic execution unit that is mapped to a single SP. A block is a batch of threads, which can
cooperate together because they are assigned to the same multiprocessor, and therefore they share
all the resources included in this multiprocessor, such as register file and shared memory. A grid is
composed of several blocks, which are equally distributed and scheduled among all multiprocessors.
Finally, threads included within a block are divided into batches of 32 threads called warps. The
warp is the scheduled unit, so the threads of the same block are scheduled in a given multiprocessor
warp by warp. The programmer declares the number of blocks, the number of threads per block
and their distribution to arrange parallelism given the program constraints (i.e., data and control
dependencies).

2.4. OpenCL

OpenCL is a framework for developing parallel algorithms on any hardware device which supports
it, either a CPU, APU or GPU. In short, OpenCL enables CUDA functionality through very similar
methods, but enabling the programmer to deal with non-Nvidia hardware. Optimizations for a device
from one manufacturer could not likely result in optimal performance on hardware from another
manufacturer, but that is a toll to pay in favor of portability.

OpenCL enforces a threading model almost identical to the CUDA model, using a different
naming scheme and adding a new identifier. At the highest level, the global workgroup groups every
thread that executes the kernel. Underneath, groups of threads referred to as workgroups receive a
unique identifier and each thread in every workgroup is given both a local ID to mark its location in
the workgroup, and a global ID to mark its position in the global workgroup.

Unfortunately, due to this threading model, there are strict limitations on how data is shared
between workgroups. In the context of GPUs, communicating information in local memory between
workgroups involves copying the data into global memory, and then having the other workgroups
copy that information into its own local memory. This type of forced access causes a large latency,
which may result in performance degradation for the application. Other devices have these same
memory types, though they may be emulated in the device’s global memory, which may reside in
system memory if the device has no global memory, such as with APUs.

3. KERNELS IMPLEMENTATION

In this section we describe our implementations of the virtual screening kernel that calculates
electrostatic potential. Starting from the sequential code, we are going to introduce: (i) an optimized
latency-oriented multicore implementation that enables vector operations and uses all cores in a
chip through OpenMP programming model, (ii) an optimized CUDA implementation previously
published in [17, 18], and finally, (iii) an OpenCL implementation designed specifically for this
paper for comparison purposes to unleash non-Nvidia architectures.

3.1. Sequential Baseline

In our study, we focus on the particular case of protein-ligand docking, and particularly, in the
calculation of the electrostatic potential kernel. Algorithm 1 shows the sequential baseline of this
kernel. Both receptor and ligand molecules are represented by rec and lig particles, which are
specified by their positions (x, y, z) and charges (qLigand and qReceptor). The number of atoms
is given by rec.length and lig.lenght for both receptor and ligand molecules, respectively. This
algorithm is computationally intensive, with a regular memory pattern which can take advantage of
data-locality. The number of floating-point operations depends on the molecules size, with some of
them potentially vectorized.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

TOWARDS ENERGY EFFICIENCY IN HETEROGENEOUS PROCESSORS 5

Algorithm 1 The sequential pseudocode for the calculation of the electrostatic potential.
1: Sum = 0
2: for i = 0; i ≤ rec.length; i++ do
3: for j = 0; j ≤ lig.length; j = j ++ do
4: dif = rec[i]− lig[j]
5: aux = rsqrt(dif2)
6: Sum+ = qReceptor[i] ∗ qLigand[j] ∗ aux
7: end for
8: end for
9: return Sum

3.2. OpenMP Implementation with Vectorization

NREC ATOMS

NLIG ATOMS

.... …..
Thread 0 Thread 1

Figure 1. OpenMP design for the calculation of the electrostatic interaction kernel with 2 threads.

The OpenMP API supports multi-platform shared-memory parallel programming in C/C++.
OpenMP is portable, scalable model for developing parallel applications on different multicore
platforms. OpenMP is based on a fork-join model, starting with an initial thread that soon forks a
team of threads. The OpenMP design for the electrostatic kernel, showed in Algorithm 1, divides the
computation among different threads as showed in Figure 1. Each thread performs the computation
associated with its own part of the receptor data (nrec atoms). Thus, each thread computes the
energy interactions between its own private nrec atoms and all atoms from the ligand (nlig atoms).
These two set of atoms are stored within the same memory space without requiring data duplication.

An additional performance gain can be obtained by taking advantage of the vector instructions to
enhance the energy calculation. Algorithm 2 shows the vectorized kernel, where each nrec atom is
placed in a 128-bit vector (copy1to4 function), and each element of nlig is copied four times into
another 128-bit vector (copy4To4 function). The energy calculation can then be vectorized on each
processor to compute values in groups of four elements at a time.

3.3. CUDA Implementation

Our departure point is the CUDA implementation of electrostatic potential kernel previously
introduced in [18]. Figure 2 illustrates the idea behind this design. Each atom from the receptor
molecule is represented by a single thread. Then, every CUDA thread goes through all the atoms of
the ligand molecule.

CUDA enables a double layer of parallelism: First, among all multiprocessors of the GPU via
concurrent CUDA blocks, which are independent batches exploiting data-parallelism; second,
among all threads within each block via the block size, which can cooperate through shared memory
and synchronize through atomic operations. We maximize parallelism on these two layers by having:

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 GINÉS D. GUERRERO ET AL.

Algorithm 2 Vectorization for the calculation of the electrostatic potential.
1: vec Sum = copy1To4(0)
2: for i = 0; i ≤ rec.length; i++ do
3: vec Receptor = copy1To4(rec[i])
4: vec qReceptor = copy1To4(qReceptor[i])
5: for j = 0; j ≤ lig.length/4; j = j + 4 do
6: vec Ligand = copy4To4(lig[j], lig[j + 1], lig[j + 2], lig[j + 3])
7: vec qLigand = copy4To4(qLigand[j], qLigand[j + 1], qLigand[j + 2], qLigand[j + 3]
8: vec dif = vec Receptor − vec Ligand
9: vec aux = rsqrt(vec dif2)

10: vec Sum+ = vec qReceptor ∗ vec qLigand ∗ vec aux
11: end for
12: end for
13: return vec Sum[0] + vec Sum[1] + vec Sum[2] + vec Sum[3]

NREC/X ATOMS

NLIG ATOMS

....

......
Thread 2 Thread i Thread n

......

Thread Block

Thread 0

......

….. ….. …..

Figure 2. CUDA design for X thread blocks (for X = 1) with n threads layout.

1. As many thread blocks as the number of nrec atoms divided by the number of threads within
a block. This number is a set up parameter for our application.

2. As many threads as nrec atoms. This way, each thread computes the energy calculations with
the entire ligand data.

Algorithm 3 The host-side of the CUDA implementation.
1: CopyDataFromCPUtoGPU(rec)
2: CopyDataFromCPUtoGPU(lig)
3: numBlocks := nrec/numThreads
4: Kernel(numBlocks, numThreads)
5: CopyDataFromGPUtoCPU(result)

Algorithm 3 shows the host side of the CUDA implementation. Here, the receptor and ligand
information is copied to the GPU global memory before electrostatic interactions are computed by
the kernel. Finally, results are copied back to the host DRAM memory. The number of threads is a
parameter of our implementation matching the number of launched blocks.

Kernels 1 and 2 show two different CUDA implementations of the electrostatic kernel. The former
reflects the idea of accessing solely to device memory (see Figure 2). We also enable a tiling
technique in our kernel 2 to take advantage of data locality similarly to other memory intensive
applications [19]. Tile groups atoms of the ligand molecule, and thus threads can cooperate in order
to move that information from global to shared memory.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

TOWARDS ENERGY EFFICIENCY IN HETEROGENEOUS PROCESSORS 7

CUDA kernel implementations

Kernel 1. Basic implementation

1: for all Blocks do
2: for i = 0 to nlig do
3: calculus(myAtomRec, lig[i])
4: end for
5: end for

Kernel 2. Tile implementation

1: for all Blocks do
2: numIt = nlig/numThreads
3: for i = 0 to numIt do
4: copyBlockDataToSharedMemory(lig)
5: calculusBlock(myAtomRec, ligBlock)
6: end for
7: end for

3.4. OpenCL Implementation

OpenCL foundations are based on the CUDA threading model, but with a different naming scheme
and a new identifier. Thus, we use source to source translation to migrate our CUDA based-kernels
for the targeted VS methods to OpenCL programs. This requires a depth knowledge of these two
APIs, being more complicated than a mere instruction mapping. Moreover, OpenCL is still on an
early stage of development (v. 1.2), which does not provide the rich functionality offered by CUDA
on its 4.2 version and library-based programming model.

Design of OpenCL kernels is similar to that of CUDA ones, but some differences arise at
implementation level, namely for device set up, context creation and data copying. This way,
mapping the kernel onto the device processing elements may differ in the programming effort
required to code and debug a parallel application.

Among some other limitations to prevent a smooth transition from CUDA to OpenCL, OpenCL
lacks support for C++ device code and uses cl mem type on the host for abstracting pointers to
device memory. CUDA handles device memory in host and device code through direct pointers (e.g.
float *). This allows applications to reserve space in device memory for structs that have pointers
to device memory nested within them. As cl mems are translated to pointers only when passed in
as kernel arguments, there is no such way to nest device pointers, which generates a collection of
warnings at compilation level [20].

4. BENCHMARKING ENVIRONMENT

In this section we introduce the hardware-software environment, the input data sets, and the way we
deal with those power measurements later shown in section 5.

4.1. Hardware Systems

Our experiments have been conducted in four different configurations aimed to Nvidia, Intel,
AMD/ATI and ARM based machines (see Table I for detailed specifications). The first targeted
system is a high-performance platform composed by an Intel Xeon processor and a Nvidia Geforce
7300GT GPU (namely GPU 0 in Table I), which is tailored for graphics, and therefore, it is always
connected in the system during the evaluation.

Moreover, three different GPUs (namely GPUs 1, 2 and 3 in Table I) are connected separately
to this system through the PCI Express bus as accelerators; i.e. only one of them is connected to
the motherboard during the tests at a given time. We have used these GPUs because all shared the
Fermi GF100 architecture, with 3200 million transistors in 529mm2. However, they have different
bandwidth, memory size and, more importantly, number of active SMs. The Nvidia GTX465 is
endowed with 11 SMs while the Nvidia GTX480 has 15 active SMs and the Nvidia Tesla C2070
has 14 active SMs. This allows us to estimate the impact of power gating [10] on the analyzed
benchmarks. Additionally, we analyze the last generation of Nvidia GPUs; i.e. Tesla K20c that

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 GINÉS D. GUERRERO ET AL.

Table I. Hardware features on each of our implementation platforms.

Intel System
Processor: Intel Xeon E5620 @ 2.4 GHz
GPU 0: Nvidia 7300GT
Memory: 16GB DDR3 @ 1333 MHz
Maximum Power Draw: 80 W
Experimental Idle Power: 138 W

GPU 1: Nvidia GTX 465
GPU family: GF100
Manufacturing process: 40 nm.
Core Clock: 607 MHz
Memory Size: 1024 MB
Memory Clock: 2x 1603 MHz
Memory Bus Width: 256 bits
Memory Bandwidth: 102.6 GB/sec
Stream Processors: 352
Maximum Power Draw: 200 W
Experimental Idle Power: 24 W

GPU 2: Nvidia GTX 480
GPU family: GF100
Manufacturing process: 40 nm.
Core Clock: 700 MHz
Memory Size: 1536 MB
Memory Clock: 2x 1848 MHz
Memory Bus Width: 384 bits
Memory Bandwidth: 177.4 GB/sec
Stream Processors: 480
Maximum Power Draw: 250 W
Experimental Idle Power: 37 W

GPU 3: Nvidia Tesla C2070
GPU family: GF100
Process: 40 nm.
Core Clock: 573.5 MHz
Memory Size: 6143 MB
Memory Clock: 2x 1494 MHz
Memory Bus Width: 384 bits
Memory Bandwidth: 143.4 GB/sec
Stream Processors: 448
Maximum Power Draw: 247 W
Experimental Idle Power: 107 W

GPU 4: Nvidia Tesla K20c
GPU family: GK110
Manufacturing process: 28 nm.
Core Clock: 705 MHz
Memory Size: 5120 MB
Memory Clock: 2x 2600 MHz
Memory Bus Width: 320 bits
Memory Bandwidth: 208 GB/sec
Stream Processors: 2496
Maximum Power Draw: 225 W
Experimental Idle Power: 27 W

AMD System
Processors: 2x AMD Magny-Cours 6134

8 cores @ 2.3 GHz
Memory: 16 GB DDR3 @ 1333 MHz
Maximum Power Draw: 2x115 W
Experimental Idle Power: 132.1 W

GPU 5: ATI FirePro V8800
GPU family: RV870
Manufacturing process: 40 nm.
Memory Size: 2048 MB
Core Clock: 825 MHz
Memory Clock: 2x 1150 MHz
Memory Bus Width: 256 bits
Memory Bandwidth: 147.2 GB/sec
Stream Processors: 1600
Maximum Power Draw: 208 W
Experimental Idle Power: 24.5 W

Sandy Bridge System
Processor: Intel Core i5 2430M @ 2.4 GHz
Memory: 4GB DDR3 @ 1333 MHz
Max Power Draw: 35 W
Experimental Idle Power: 10.5 W

GPU 5: Nvidia GTX 540M
GPU family: GF108
Manufacturing process: 40 nm.
Core Clock: 672 MHz
Memory Size: 1024 MB
Memory Clock: 2x 900 MHz
Memory Bus Width: 128 bits
Memory Bandwidth: 28.8 GB/sec
Stream Processors: 96
Maximum Power Draw: 35 W
Experimental Idle Power: 14.5 W

Embedded Systems
Exynos 4 Quad

Processor: Samsung Exynos 4 “Quad” (or 4412)
Quad-core Cortex-A9 @ 1.6 GHz

Memory: 1GB LPDDR2 @ 400 MHz
Maximum Power Draw: 10 W
Experimental Idle Power: 3.2 W

Exynos 5 Dual
Processor: Samsung Exynos 5 “Dual” (or 5250)

Dual-core Cortex-A15 @ 1.7 GHz
Memory: 2GB LPDDR3 @ 800 MHz
Max Power Draw: 19 W
Experimental Idle Power: 6.5 W

unveils Titan, the world’s fastest supercomputer in mid 2013 [21], together with two of the top five
most energy-efficient supercomputers in the world [22].

The second system is also a high-performance platform based on a dual AMD Magny-Cours
processor plus the ATI FirePro V8800 graphics card (namely GPU 5 in Table I). The last three
platforms are low-cost and energy-efficient solutions, one of them based on an Intel Sandy Bridge
with an Nvidia GT540M, and the other two platforms based on an Exynos 4 Quad and an Exynos 5
Dual. In fact, the Mont-Blanc project [23] includes Exynos 5 Dual as the main processor to design
a low-power and high-performance supercomputer.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

TOWARDS ENERGY EFFICIENCY IN HETEROGENEOUS PROCESSORS 9

Table II. Software resources used for each hardware platform in our experimental study. “n.a.” means not
available.

Language Target hardware Software tools Vector instructions used

C/OpenMP

Intel Xeon gcc compiler 4.7.2 SSE
AMD Magny-Cours gcc compiler 4.7.2 SSE
Intel Sandy Bridge gcc compiler 4.7.2 SSE
Exynos 4/5 gcc compiler 4.7.2 NEON

OpenCL

Intel Xeon Intel SDK 2012
AMD Magny-Cours AMD APP SDK 2.6
Intel Sandy Bridge Intel SDK 2012 n.a.
Nvidia GPUs CUDA toolkit 5.0
ATI FirePro AMD APP SDK 2.6

CUDA

Intel Xeon n.a.
AMD Magny-Cours n.a.
Intel Sandy Bridge n.a. n.a.
Nvidia GPUs CUDA toolkit 5.0
ATI FirePro n.a.

4.2. Software Environment

Table II shows the main software tools used in our implementations. They are structured depending
on targeted hardware. The CUDA and OpenCL programming models are used to program manycore
architectures. More precisely, CUDA toolkit 5.0 leverages Nvidia architectures while different
OpenCL SDK versions from different vendors are used to program both Nvidia and ATI-AMD
architectures as it is the strength of the standard. We also use OpenCL on the multicore side for
those platforms that support the standard (the low-power Exynos 4 architecture does not, and the
Linux drivers for Exynos 5 are still under development). Multicores are also targeted through gcc
compiler 4.7.2 version and vectorization. The vectorization on Intel and AMD based platforms is
enabled by SSE extensions while the ARM-based processor uses NEON technology [24] which are
included in ARM cortex-A series processor.

4.3. Input Data Sets

The input data set for benchmarking our virtual screening kernels is a common scenario routinely
used in typical virtual screening calculations. An arbitrary system with number of atoms of the
receptor (nrec) equal to 65536 and number of atoms of the ligand (nlig) equal to 65536 atoms is
defined. It represents the electrostatic interaction between two average size biomolecules, situation
that arises in many protein-protein docking simulations used by VS methods.

4.4. Power Measurement

Power dissipation numbers are obtaining using the Watts up? .Net power meter [25]. This device
is connected between the power source and the power supply of the system, and provides power
dissipation information every second. Power information is logged by a different machine on the
same room. Room temperature is controlled and set to 26°C during the measurements to minimize
temperature impact on static power. We decided not to isolate power consumed by the GPU from
the rest of the system (CPU, Motherboard, Memory, etc), as the hardware used in our experiments
is required to execute the GPU kernels, so it is fair to account this hardware when optimizing
for energy efficiency (Energy and Energy Delay Square Product -ED2P- results). The real-time
measurement of individual GPU components using a software approach is new and only supported
by the Nvidia GPU K20. This is done by using NVML (Nvidia Management Library) [26], which
reports the GPU power usage at real-time.

We decided to tweak the kernels, making 2048 launches so that the base execution lasted around
2.5 minutes for the fastest platform, giving ample time for the GPU processor to warm up.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 GINÉS D. GUERRERO ET AL.

5. EXPERIMENTAL RESULTS

We now analyze the virtual screening kernel that calculates electrostatic potential in terms of power,
time, energy, energy delay square product on different multi-and-many core architectures, and using
different programming models as previously explained. The input data set described in Section 4.3
was used in all cases.

Platforms are grouped into two clusters: many-cores and multicores. The OpenCL and CUDA
kernels are used for benchmarking many-core architectures. The multicore architectures are
evaluated using the OpenCL kernel and the vectorized OpenMP kernel. All kernels are set up
with the best experimentally demonstrated configuration depending on the programming model and
underlying architecture.

In the multicore architectures, we vary the linux power-mode selector of AMD Magny-Cours
(MC) and Intel Sandy Bridge (SB), affecting the frequency of these microprocessors. Available
modes are powersave (LP), ondemand (OD) and performance. LP mode forces all processor
cores to work at minimal frequency, OD adapts frequency depending on the processor load, and
performance mode forces the processor to run at maximum frequency all the time. The evaluation
of the performance mode is omitted because the processor load is at maximum and thus OD mode
behaves similarly than performance mode.

5.1. Performance Evaluation

Table III. Execution time in seconds for the electrostatic kernel when measured on different platforms and
programing languages. “MC LP” stands for Magny-Cours on power save mode, “MC OD” for Magny-Cours
on demand mode, “SB LP” for Sandy Bridge on power save mode and finally “SB OD” stands for Sandy

Bridge on demand mode.

(a) Many Cores

CUDA (sec.) OpenCL (sec.)
GTX 465 280 369
GTX 480 188 249
Tesla C2070 238 309
Tesla K20 132 162
GTX 540M 1194 1558
FirePro V8800 - 469

(b) Multi Cores

C/OpenMP (sec.) OpenCL (sec.)
MC LP 4893 7325
MC OD 1712 2751
SB LP 25379 51522
SB OD 8758 14974
Exynos 4 25792 -
Exynos 5 32640 -

Table III shows the execution times for the ES kernel run on all architectures and programming
models. Missing columns report an unfeasible combination of language and architecture. The left
hand side of the Tables belong to Nvidia architectures and CUDA source codes. All GF100-based
GPUs (i.e. Tesla C2070, GTX 465 and GTX 480) obtain similar performance, with the last one
behaving slightly better due to its higher clock frequency and number of SMs within the GTX 480
card. The low power GPU GTX 540M obtains the highest execution times as expected, being even
higher than the ATI FirePro GPU, which is half-way between Nvidia desktop and mobile solutions.
Finally, the fastest targeted manycore platform is the newest Nvidia Tesla K20, obtaining up to 1.42x
speed-up factor compared to a GeForce GTX 480.

Performance of the analyzed multicore platforms is shown on the right-hand side of Table III.
The worst performance is obtained by the ARM low-power platforms Exynos 5 and 4, followed by
Intel Sandy Bridge (SB), and finally the AMD Magny-Cours (MC) processor. On one hand, Exynos
family are embedded processors designed for ultra-low power devices rather than performance.
Exynos 5 is newer than Exynos 4, but the latter is a quad-core which can better exploit the massively
parallelism of the electrostatic kernel. On the other hand, Magny-Cours defeats intel Sandy Bridge
by a wide margin. However, this is not a fair comparison as the targeted Sandy Bridge is a mobile
version while Magny-Cours is a server one. These couple of processors reach better performance
with the ondemand configuration when cores are running at higher clock rates.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

TOWARDS ENERGY EFFICIENCY IN HETEROGENEOUS PROCESSORS 11

Using OpenCL on multicore architectures is generally penalized by adding some extra overhead,
usually due to the immature compiler versions developed for these architectures. However, OpenCL
only creates and schedules a single but parallel task, which fully exploits all computational resources
and obtains better performance compared to the OpenMP program without vectorization.

5.2. Energy Evaluation

Table IV. Power consumption in Watts for the electrostatic kernel when measured on different combinations
of hardware and software support.

(a) Many Cores.

CUDA (Watts) OpenCL (Watts)
GTX 465 340 340
GTX 480 390 389
Tesla C2070 363 361
Tesla K20 252 251
GTX 540M 59 56
FirePro V8800 - 330

(b) Multi Cores.

C/OpenMP (Watts) OpenCL (Watts)
MC LP 234 233
MC OD 316 303
SB LP 11 14
SB OD 32 39
Exynos 4 8 -
Exynos 5 16 -

Table V. Total energy consumption in Joules/1000 (mJ) for the electrostatic kernel when measured on
different selections of hardware platforms and programming paradigms.

(a) Many Cores.

CUDA (mJ) OpenCL (mJ)
GTX 465 95 125
GTX 480 73 97
Tesla C2070 86 111
Tesla K20 33 40
GTX 540M 70 87
FirePro V8800 - 154

(b) Multi Cores.

C/OpenMP (mJ) OpenCL (mJ)
MC LP 1147 1709
MC OD 542 834
SB LP 299 752
SB OD 282 583
Exynos 4 261 -
Exynos 5 522 -

Tables IV and V show the power consumption and the overall energy consumption during the
execution of the electrostatic kernel. Remember that the power measurements are “at the wall”
(they include the power consumption of the whole system). The total energy consumed is correlated
to the total execution time of the application, and thus, CUDA-based systems are the best suited for
low ratios of energy consumption as they are getting the best performance for the targeted virtual
screening kernels. The total energy consumed by a multicore-based system is generally higher than
using accelerators (GPUs). Greater performance over manycores is wide enough to amortize the
inclusion of an extra source of power dissipation.

The left-hand side of Table IV shows the power consumption when manycore architectures are
included in the system. The best power-efficient manycore architecture is the GeForce GTX 540M,
even though it is the slowest one (see Table III). The GTX 540M card is designed for low power,
optimizing energy in motherboard, hard disk, etc, which makes a difference overall. The Kepler
architecture proposed by Nvidia as a step forward in performance and power consumption fulfills
expectations as the Tesla K20 GPU reaches the best ratios in these two respects.

Among multicore architectures (right-hand side of the Table IV), the embedded architecture
Exynos 4 is the most power efficient high-end processor, but at the expense of a higher execution
time. The reported numbers of Exynos 5 related to power and energy can be somehow confusing as
they are higher than Exynos 4. This is because Exynos 5 is plugged into a motherboard where the
audio, video and MicroSC storage hardware introduce an extra overhead.

Table VI shows the Energy Delay Product (EDP) of the analyzed kernels. This metric gives
priority to performance over energy. When we use it to compare multicore and manycore
architectures the gap between them increases, particularly for highly parallel applications such as

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 GINÉS D. GUERRERO ET AL.

Table VI. EDP in Joules/1000 ∗ seconds for the electrostatic kernel when measured on .

(a) Many Cores

CUDA (EDP) OpenCL (EDP)
GTX 465 26691 46394
GTX 480 13808 24164
Tesla C2070 20580 34549
Tesla K20 4458 6647
GTX 540M 84385 136836
FirePro V8800 - 72720

(b) Multi Cores

C/OpenMP (EDP) OpenCL (EDP)
MC LP 5613472 12522958
MC OD 928955 2296587
SB LP 7600685 38756075
SB OD 2477878 8744719
Exynos 4 5321818 -
Exynos 5 17045913 -

the electrostatic kernel. This metric also shows that the energy efficiency in embedded and mobile
hardware is not enough to overcome the double weight of performance. In addition, Table VII shows
the Energy Delay Square Product (triple weight on performance), another metric widely used in
HPC environments, which points to high energy-efficient hardware as the worst option, overall for
highly parallel applications.

Table VII. ED2P in Joules/109 ∗ seconds for different pairs of Platform/Programing-Language for the
Electrostatic Kernel.

(a) Many Cores

CUDA (ED2P) OpenCL (ED2P)
GTX 465 7,47 17,11
GTX 480 2,59 6,01
Tesla C2070 4,89 10,67
Tesla K20 0,59 1,08
GTX 540M 100,75 213,19
FirePro V8800 - 34,12

(b) Multi Cores

C/OpenMP (ED2P) OpenCL (ED2P)
MC LP 27470 91741
MC OD 1590 6319
SB LP 192902 1996794
SB OD 21702 130944
Exynos 4 137260 -
Exynos 5 556378 -

5.3. Hardware Resource Optimization

This section compares advantages and drawbacks of increasing frequency versus number of
multiprocessors (SMs) when running our VS kernels on Nvidia high-end GPUs.

We use MSI Afterburner tool [27] to modify the working frequency of the SMs, as Nvidia decided
to remove the official support for frequency settings at a driver level. MSI Afterburner is only
available for Microsoft Windows, so we perform our analysis under Windows 7, using Nvidia’s
driver v285.62 for this test. We have simulated the increment and decrement of SMs for the GTX400
chipset by comparing the GTX465 and GTX480 as mentioned in Section 4.

Table VIII shows performance against the fastest GPU (GTX480 at default frequency). We can
see how, for the electrostatic kernel, increasing frequency benefits performance all the time, but
there is an equivalence between adding 4 additional SMs and increasing frequency by 100 MHz
(480 @ 400 MHz vs. 465 @ 500 MHz). This benefit from SMs is barely perceived when comparing
the 480 @ 500 MHz vs. C2070 @ 513 MHz, leading us to believe that we are close to the maximum
number of cores we can use, probably because of bandwidth limitations. This enables us to increase
efficiency by trading SMs by frequency.

Finally, Table VIII shows energy against the fastest GPU (GTX480 at default frequency). As we
saw in the previous section, the mobile GPU (540M) is the most energy efficient choice for the
electrostatic kernel, being able to surpass the GTX480 and C2070 when overclocked. These chips
not only reduce running costs but also cooling, cluster size and production costs, being an excellent
choice for high performance computing.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

TOWARDS ENERGY EFFICIENCY IN HETEROGENEOUS PROCESSORS 13

Table VIII. Electrostatic kernel analyzed in terms of time (in seconds) and power (in Joules/1000) for
different pairs of of GPU/Frequency.

Frequency (MHz) Time Power Consumption (Watts) Energy

465

400 413 157 65
450 373 166 61
500 338 179 60
550 308 189 58
600 280 202 56

480

400 315 189 59
450 285 199 56
500 258 209 53
550 235 219 51
600 219 227 49
650 201 241 48
700 188 252 47

C2070 513 264 217 57
573 238 225 53

540M

400 1990 31 61
500 1592 34 55
600 1342 37 50
670 1194 34 40

6. RELATED WORK

Multicore architectures exhibit some peculiarities when running parallel workloads, especially in
terms of power and performance. Threads must synchronize periodically (e.g., for communication
purposes), and any delay suffered in one of the threads may end up with a slow down of the whole
application. It is unclear wether future GPUs will implement per-core DVFS, as current generations
like Kepler from Nvidia have limitations on manually setting frequencies for the set of cores due to
the complexity of the clock trees [28].

Energy efficiency in GPUs is high as long as the application keep using available resources, but
there are just few hardware mechanisms to tailor resources to application needs. Hong et al. [29]
propose a power and performance model which is used to select the number of optimal cores based
on the available memory bandwidth. In [30], Sheaffer et al. studied a thermal management for
GPUs, whereas Fu et al. [31] performed a complete experimental survey on GPU data.

More recently, Wang [32] et al. propose an instruction-level energy estimation methodology for
GPUs. Gebhart [33] et al. introduce a couple of techniques for reducing energy on massively-
threaded processors acting over the register file and thread scheduler, which are two of the key
functional units concerning storage and occupancy on a typical GPU nowadays.

In terms of benchmarking energy-efficiency in heterogeneous systems, Mistry [34] et al. present
Valar, a benchmark suite to study the dynamic behavior of heterogeneous systems through OpenCL
applications. Finally, Johnson [35] investigate the energy efficiency of accelerated HPC servers
using throughput oriented techniques. These works are more related to ours, which we consider a
superset given the range of architectures and software paradigms analyzed.

7. CONCLUSIONS

Applications with a real impact on the society, such as those for discovering new drugs, can take
advantage of the great advances in the field of high performance computing to overcome emerging
challenges. When physical limitations of silicon-based architectures are threatening the evolution of
processors, heterogeneous computing involving GPUs, CMPs or low-power processors come to the
rescue when no answer looms on the horizon.

We have analyzed this synergy between application and hardware, benchmarking flagship
processors from major vendors like Intel, ARM, AMD/ATI and Nvidia. We care about power,

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 GINÉS D. GUERRERO ET AL.

performance and energy using a molecular docking kernel (electrostatic interactions) coming from
a drug discovery process. Our work deploys three different implementations for this kernel:

1. A C/OpenMP version with vectorization to leverage the computational power of CMPs and
low-power platforms.

2. A data-parallel scheme on GPUs using CUDA to target Nvidia platforms, where we propose
a tiling technique to exploit data locality using shared memory.

3. An OpenCL version oriented to more general platforms and manufacturers.

After the performance evaluation, the best positioned architectures to run this kernel are clearly
GPUs. Low power GPUs such as 540M, and embedded processors based on ARM architectures,
like Exynos 4, are the most energy efficient platforms in our experiments. Surprisingly, even more
than traditional GPUs and CPUs despite their increase in execution time. However, whenever
performance is a priority over power, the old cliché of “the fastest the best” becomes valid for
EDP and ED2P metrics, making the Nvidia Tesla K20 the best suited counting all metrics. A step
forward in energy efficiency and/or performance for these architectures can be attained by handling
cores and their underlying frequency, where we have found greater opportunities to reduce power
in CPUs than in low power GPUs or embedded devices.

The OpenCL code gave us further opportunities to compare multiple platforms using exactly
the same code. OpenCL promises future JIT optimizations, but suffers performance penalties when
compared to more mature compilers like nvcc (Nvidia - CUDA). This difference widens when low
power devices and less resources are involved, reaching almost an order of magnitude in the case of
the 540M low-power GPU.

Virtual screening methods on GPUs are still at a relatively early stage of evolution, and we have
just tested a simple bioinformatics kernel. Other kernels within this emerging and fruitful area of
research remain to be explored to confirm our analysis here.

On the hardware side, we have seen great benefits and potential within the last generation of GPUs
in terms of performance and power consumption. The ratios compared to CPUs are expected to get
even better whenever the problem size keeps growing and GPU architectures evolve, particularly
considering the novel interest of governments in green computing as far as domestic markets are
concerned.

Finally, we envision our approach to be rewarded from increasingly heterogeneous platforms
endowed with specialized cores and eventually integrated within the same silicon die. They could
monitor performance and power consumption more closely, allowing energy efficiency plays a
decisive role, particularly when massive parallelism arises in HPC.

ACKNOWLEDGMENTS

This work has been jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y
Tecnologı́a de la Región de Murcia) under grant 15290/PI/2010, by the Spanish MINECO and the
European Commission FEDER funds under grants TIN2009-14475-C04 and TIN2012-31345, and
by the Catholic University of Murcia (UCAM) under grant PMAFI/26/12. We also thank Nvidia
for hardware donation under Professor Partnership 2008-2010, CUDA Teaching Center 2011-2013,
CUDA Research Center 2012-2013 and CUDA Fellow 2012-2013 Awards.

References

1. Asanovic K, Bodik R, Catanzaro BC, Gebis JJ, Husbands P, Keutzer K, Patterson DA, Plishker WL, Shalf J,
Williams SW, et al.. The landscape of parallel computing research: A view from berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of California, Berkeley Dec 2006.

2. Esmaeilzadeh H, Blem E, St Amant R, Sankaralingam K, Burger D. Dark silicon and the end of multicore scaling.
Proceedings of the 38th annual international symposium on Computer architecture, ISCA ’11, ACM: New York,
NY, USA, 2011; 365–376, doi:10.1145/2000064.2000108.

3. Jorgensen WL. The Many Roles of Computation in Drug Discovery. Science Mar 2004; 303(5665):1813–1818,
doi:10.1126/science.1096361.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

TOWARDS ENERGY EFFICIENCY IN HETEROGENEOUS PROCESSORS 15

4. Franco AA. Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods
and challenges. RSC Advances 2013; doi:10.1039/C3RA23502E.

5. Irwin JJ, Shoichet BK. ZINC A Free Database of Commercially Available Compounds for Virtual Screening. J.
Chem. Inf. Model. Dec 2004; 45(1):177–182, doi:10.1021/ci049714+.

6. Zhou Z, Felts AK, Friesner RA, Levy RM. Comparative Performance of Several Flexible Docking Programs and
Scoring Functions: Enrichment Studies for a Diverse Set of Pharmaceutically Relevant Targets. Journal of Chemical
Information and Modeling 2007; 47(4):1599–1608.

7. Wang J, Deng Y, Roux B. Absolute Binding Free Energy Calculations Using Molecular Dynamics Simulations with
Restraining Potentials. Biophys J Oct 2006; 91(8):2798–2814, doi:10.1529/biophysj.106.084301.

8. NVIDIA. NVIDIA CUDA C Programming Guide 5.0. 2012.
9. The open standard for parallel programming of heterogeneous systems. http://www.khronos.org/

opencl/ [23 February 2013].
10. Hu Z, Buyuktosunoglu A, Srinivasan V, Zyuban V, Jacobson H, Bose P. Microarchitectural techniques for power

gating of execution units. ISLPED ’04: Proceedings of the 2004 international symposium on Low power electronics
and design, ACM: New York, NY, USA, 2004; 32–37, doi:10.1145/1013235.1013249.

11. Schneider G. Virtual screening and fast automated docking methods. Drug Discovery Today Jan 2002; 7:64–70,
doi:10.1016/s1359-6446(02)00004-1.

12. Wang J, Deng Y, Roux B. Absolute Binding Free Energy Calculations Using Molecular Dynamics Simulations with
Restraining Potentials. Biophys J Oct 2006; 91(8):2798–2814, doi:10.1529/biophysj.106.084301.

13. Kuntz SK, Murphy RC, Niemier MT, Izaguirre JA, Kogge PM. Petaflop Computing for Protein Folding. In
Proceedings of the Tenth SIAM Conference on Parallel Processing for Scientific Computing, 2001; 12–14.

14. Pérez-Sánchez H, Wenzel W. Optimization Methods for Virtual Screening on Novel Computational Architectures.
Current computer-aided drug design Sep 2010; :44–52.

15. OpenMP Architecture Review Board: The OpenMP Specification. http://www.openmp.org/ [23 February
2013].

16. The Message Passing Interface (MPI) standard. http://www.mcs.anl.gov/research/projects/
mpi/ [23 February 2013].

17. Guerrero GD, Sánchez HEP, Wenzel W, Cecilia JM, Garcı́a JM. Effective parallelization of non-bonded interactions
kernel for virtual screening on gpus. PACBB, 2011; 63–69.

18. Guerrero GD, Sánchez HEP, Cecilia JM, Garcı́a JM. Parallelization of virtual screening in drug discovery on
massively parallel architectures. PDP, 2012; 588–595.

19. Garland M, Le Grand S, Nickolls J, Anderson J, Hardwick J, Morton S, Phillips E, Zhang Y, Volkov V. Parallel
Computing Experiences with CUDA. Micro, IEEE Jul 2008; 28(4):13–27, doi:10.1109/mm.2008.57.

20. Martinez G, Gardner MK, chun Feng W. Cu2cl: A cuda-to-opencl translator for multi- and many-core architectures.
International Conference on Parallel and Distributed Systems, 2011; 300–307.

21. Top 500 supercomputer sites. http://www.top500.org/ [23 February 2013].
22. Top Green500 List. http://www.green500.org/ [23 February 2013].
23. European Aproach Towards Energy Efficienct High Performance. http://http://www.

montblanc-project.eu/ [23 February 2013].
24. The ARM NEON technology. http://www.arm.com/products/processors/technologies/

neon.php [23 February 2013].
25. Wattup.net power meter. https://www.wattsupmeters.com [23 February 2013].
26. Nvidia Corporation. NVML API Reference. http://developer.download.Nvidia.com/assets/

cuda/files/CUDADownloads/NVML/nvml.pdf [23 February 2013].
27. MSI Afterburner overclocking tool. http://event.msi.com/vga/afterburner/index.htm [23

February 2013].
28. Clock manipulation on Fermi and newer GPUs. http://www.phoronix.com/scan.php?page=news_

item&px=OTgxNQ [23 February 2013].
29. Hong S, Kim H. An integrated gpu power and performance model. SIGARCH Comput. Archit. News Jun 2010;

38(3):280–289, doi:10.1145/1816038.1815998.
30. Sheaffer JW, Luebke D, Skadron K. A flexible simulation framework for graphics architectures. Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, HWWS ’04, ACM: New York, NY, USA,
2004; 85–94, doi:10.1145/1058129.1058142.

31. Fu R, Zhai A, chung Yew P, chung Hsu W. Reducing queuing stalls caused by data prefetching. In INTERACT-11,
2007.

32. Wang Y, Ranganathan N. An instruction-level energy estimation and optimization methodology for gpu.
Proceedings of the 2011 IEEE 11th International Conference on Computer and Information Technology, CIT ’11,
IEEE Computer Society: Washington, DC, USA, 2011; 621–628, doi:10.1109/CIT.2011.69.

33. Gebhart M, Johnson DR, Tarjan D, Keckler SW, Dally WJ, Lindholm E, Skadron K. Energy-efficient mechanisms
for managing thread context in throughput processors. SIGARCH Comput. Archit. News Jun 2011; 39(3):235–246,
doi:10.1145/2024723.2000093.

34. Mistry P, Ukidave Y, Schaa D, Kaeli D. Valar: a benchmark suite to study the dynamic behavior of heterogeneous
systems. Proceedings of the 6th Workshop on General Purpose Processor Using Graphics Processing Units,
GPGPU-6, ACM: New York, NY, USA, 2013; 54–65, doi:10.1145/2458523.2458529.

35. Johnsson L. Efficiency, energy efficiency and programming of accelerated hpc servers: Highlights of prace studies.
GPU Solutions to Multi-scale Problems in Science and Engineering, Yuen DA, Wang L, Chi X, Johnsson L,
Ge W, Shi Y (eds.). Lecture Notes in Earth System Sciences, Springer Berlin Heidelberg, 2013; 33–78, doi:
10.1007/978-3-642-16405-7 3.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.openmp.org/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.top500.org/
http://www.green500.org/
http://http://www.montblanc-project.eu/
http://http://www.montblanc-project.eu/
http://www.arm.com/products/processors/technologies/neon.php
http://www.arm.com/products/processors/technologies/neon.php
https://www.wattsupmeters.com
http://developer.download.Nvidia.com/assets/cuda/files/CUDADownloads/NVML/nvml.pdf
http://developer.download.Nvidia.com/assets/cuda/files/CUDADownloads/NVML/nvml.pdf
http://event.msi.com/vga/afterburner/index.htm
http://www.phoronix.com/scan.php?page= news_item&px=OTgxNQ
http://www.phoronix.com/scan.php?page= news_item&px=OTgxNQ

	1 Introduction
	2 Preliminaries
	2.1 Virtual Screening
	2.2 Programming Models
	2.3 CUDA Programming Model
	2.4 OpenCL

	3 Kernels Implementation
	3.1 Sequential Baseline
	3.2 OpenMP Implementation with Vectorization
	3.3 CUDA Implementation
	3.4 OpenCL Implementation

	4 Benchmarking Environment
	4.1 Hardware Systems
	4.2 Software Environment
	4.3 Input Data Sets
	4.4 Power Measurement

	5 Experimental Results
	5.1 Performance Evaluation
	5.2 Energy Evaluation
	5.3 Hardware Resource Optimization

	6 Related Work
	7 Conclusions

