Noname manuscript No.
(will be inserted by the editor)

Fast and Efficient Commits for Lazy-Lazy Hardware
Transactional Memory

Epifanio Gaona - José L. Abellan -
Manuel E. Acacio

Received: date / Accepted: date

Abstract Transactional Memory (TM) is a compelling alternative to sim-
plify multi-threaded programming that traditionally relies on error-prone lock-
based synchronization for implementing cooperative tasks. Lazy-Lazy hard-
ware TM is one of the most efficient schemes in today’s Hardware TM sys-
tems (HTMs). Nonetheless, the commit protocol in these systems has severe
impact on performance and energy. The SEQ in Scalable TCC implementa-
tion (STCC-SEQ) is the most popular and efficient commit protocol to date.
In this paper, we propose GCommit, a cost-effective hardware-based STCC-
SEQ protocol. GCommit employs a G-Arbiter microarchitecture for achieving
minimal-latency and high-efficient commits. We implement G-Arbiter with a
standard 45 nm cell library. For a target 16-core CMP, a G-Arbiter just repre-
sents 0.07% of the whole on-chip area, requiring marginal energy consumption.
Full-system simulations of the target system with the STAMP benchmarks
show that GCommit achieves average reductions of 15.7% and 13.7% in exe-
cution time and energy, respectively, when compared with STCC-SEQ.

Keywords Many-core CMPs - Hardware transactional memory (HTM) -
Lazy-Lazy HTM - Transaction commit

1 Introduction and Motivation

Manycore microprocessors have being designed to allow energy-efficient and
scalable computing. Most processor manufacturers have already released prod-
ucts that incorporate several execution cores on a single chip, and the trend
is reaching hundreds or even thousands of them in the near future [1]. Nowa-
days, these manycore chips are available in almost all market segments. For

E. Gaona and ML.E. Acacio
Universidad de Murcia, Spain. E-mail: {fanios.gr, meacacio}@ditec.um.es

J.L. Abellan
Catholic University of Murcia, Spain E-mail: jlabellan@ucam.edu

2 Epifanio Gaona et al.

example, Intel i7 and AMD FX series are desktop processors that come with
up to 8 dual-threaded processor cores. Intel Knights Landing [2] and Tilera
Tile-Gx8072 CPU [3] are examples of servers and embedded systems with 72
cores each.

Transactional Memory (TM) has arisen as a promising alternative to the
error-prone and complex lock-based synchronization. Transactions are no more
than blocks of code whose execution must satisfy the serializability and atom-
icity properties. Programmers simply declare the transaction boundaries leav-
ing the burden of how to guarantee such properties to the underlying TM
system. A TM system can be implemented in either software [4][5][6][7][8],
hardware [9][10][11][12], or as a combination of both [13]. The common denom-
inator in all implementations is that transactions are speculatively executed
which hides the main pathologies associated with locking techniques, such as
priority inversion, convoying and deadlocks, from programmers. As a conse-
quence, programmers are armed with an intuitive synchronization abstraction
that can greatly help simplify the development of multithreaded programs.

In Hardware Transactional Memory (HTM) systems, the hardware pro-
vides the illusion that each transaction is executed atomically and in isolation
while threads are executing in parallel. HTM systems usually work at the
word or cache line level. Conceptually, each transaction is associated with two
initially-empty read and write sets that are populated every time a trans-
actional load or store is issued. To comply with the serializability property,
both the old values and the transactional ones must coexist until the trans-
action is allowed to commit. A transaction can commit only after the HTM
system can assure that there are no other running transactions whose write
sets collide with its read or write sets. The commit process makes the read and
write sets of the winner transaction visible to the whole system. HTM systems
are usually classified attending to how they tackle with data version manage-
ment (VM) and conflict detection (CD). In this work we focus our attention
on the extensively used Lazy-Lazy systems [13] [14]. For example, the Sun’s
Rock [15] falls into this category. On lazily-versioned systems, updates are
aside, i.e. transactional stores are placed in a write buffer until the trans-
action acquires privileges to make its changes visible to the whole system. In
this way, transactional data are dumped into the memory hierarchy at commit
time. With lazy CD, dependency violations are also checked during the last
phase of any transaction, i.e. at commit time. Sequential (SEQ) commit proto-
col [16] used in Scalable Transactional Coherence and Consistency system [17]
(STCC-SEQ) is the most popular HTM Lazy-Lazy system to date.

In this work, we present an efficient hardware implementation of the STCC-
SEQ system called GCommit that reduces the duration of the commit phase
(more precisely the precommit component) implemented in STCC-SEQ to
boost performance and reduce energy consumption. GCommit leverages a ded-
icated on-chip network based on GLock architecture [18]. GLock was designed
as a hardware alternative to accelerate Lock/Unlock primitives in shared-
memory programming, especially when highly-contended Lock/Unlock scenar-
ios occur among many competing threads. The reason why we utilize GLock

Fast and Efficient Commits for Lazy-Lazy Hardware Transactional Memory 3

for improving STCC-SEQ system is that STCC-SEQ also requires to imple-
ment very fast exclusive access in highly-contended scenarios. Particularly,
when HTM transactions want to commit and require exclusive access to a
rank of addresses at precommit time in shared L2 cache banks. As we will
demonstrate, implementing this functionality using dedicated hardware brings
important benefits in terms of execution time as well as energy consumption
with respect to traditional implementations of commit protocols, that use the
general-purpose interconnection network to coordinate commit ordering.

We evaluate our proposal using a full-system simulated 16-core CMP with
9 STAMP transactional benchmarks. Our experimental results reveal that,
compared to STCC-SEQ, GCommit accelerates the precommit subphase about
68.5% on average, which results in average reductions of 15.7% and 13.7% in
terms of execution time and energy consumption, respectively. To prove that
GCommit can be fabricated in a real chip for improving STCC-SEQ system, we
implement GCommit through a mainstream industrial synthesis toolflow. We
corroborate that GCommit can meet the timing closure constraints needed to
yield the performance advantages obtained through the full-system simulation
platform. Furthermore, we obtain that GCommit just account for 0.07% on-
chip area of the whole target system.

A preliminary version of this work was presented in [19], where we basically
introduced our proposal and demonstrated through full-system simulation that
STCC-SEQ can be improved by a hardware-based solution. In this work, apart
of including more detailed explanations to help the reader understand how
GCommit actually operates, we highlight the following contributions:

— We introduce G-Arbiter, the low-level microarchitecture utilized by GCom-
mit to implement the precommit suphase of a STCC-SEQ system. To
clearly show how G-Arbiter operates, a walk-through example is illustrated
with four different situations of transactions attempting to commit.

— We demonstrate that GCommit can be integrated in a real chip. To achieve
this, GCommit is implemented through a mainstream industrial synthesis
toolflow with an STMicroelectronics 45 nm standard cell technology li-
brary. From this study, we validate the correct operation of GCommit and
we accurately account for on-chip hardware costs that GCommit entails.

— We include more details of the transactional benchmarks under study in
order to shed light on the experimental results obtained when evaluating
our GCommit proposal.

The rest of the paper is organized as follows. Section 2 presents our pro-
posal, describing in depth the hardware components and operation of GCom-
mit. In Section 3, we detail the simulation environment and the workloads
used to evaluate GCommit. Results in terms of execution time, energy con-
sumption and network traffic are analyzed in Section 4. Section 5 discusses
related work. Finally, conclusions are given in Section 6.

4 Epifanio Gaona et al.

2 GCommit for Efficient Commits in Lazy-Lazy HTM Systems

Our GCommit proposal is an efficient and low cost hardware implementation of
the STCC-SEQ protocol that significantly accelerates the precommit subphase
of commits in Lazy-Lazy TM systems. To help understand how our mecha-
nism works, we first describe the baseline STCC-SEQ system. Afterwards, we
detail G-Arbiter, the microarchitecture GCommit relies on to ensure exclusive
access to a rank of addresses at precommit time (as L2 cache banks do in
STCC-SEQ). Once we detail the G-Arbiter microarchitecture, we describe
our GCommit protocol and give an example of use. We compare our GCom-
mit architecture against the baseline STCC-SEQ system our proposal is based
on. To do so, we show the size of the structures needed by them in order
to demonstrate the superior scalability of our proposal. In the last part, we
explain the implementation of our GCommit architecture presented in [19],
that leverages a state-of-the-art G-lines technology, utilizing a cost-effective
mainstream industrial synthesis toolflow with an STMicroelectronics 45 nm
standard cell technology library.

2.1 STCC with Sequential Commit (STCC-SEQ)

In Lazy-Lazy systems, transactions are allowed to run as if they were alone in
the system. Only when a transaction reaches its end and before it is allowed
to propagate their results, conflicts are checked. This stage is known as the
commit phase. Sequential Commit (SEQ) is nowadays the most popular com-
mit algorithm for Lazy-Lazy HTM systems. Instead of employing a centralized
arbiter to enforce commit ordering, SEQ makes use of the L2 directory banks
to manage an implicit order between transactions with clashing read and write
sets. To do so it tries to book every directory (L2 cache bank) in its read and
write sets. A directory belongs to those sets if at least one transactional ad-
dress belongs to the corresponding L2 cache bank. The process is explained
below:

1) A committing transaction sends a request message to each directory in its
read and write sets in ascending order. This prevents deadlock conditions.
In the case of two different transactions competing to commit, only the
first that achieves to book the first conflicting directory will continue with
the process. The other transaction will have to wait till the completion of
the first one.

2) Once a transaction has booked a particular directory, an “Occupied” bit
is set and an ACK message is sent back. Other requests will be buffered.

3) The precommit phase finishes once a transaction has collected all the ACKs
from every directory bank in its read and write sets.

Fast and Efficient Commits for Lazy-Lazy Hardware Transactional Memory 5

R
S1 S2
m m
(a) G-Arbiter architecture. b) Logical view of a G-Arbiter.

Fig. 1 Implementation of a G-Arbiter in a 4-core CMP — Controllers: R=primary lock
manager; Sl~2=secondary lock managers; Cl~3=local controllers; Internal flags: fS1~2
and fO~3=buffers to hold controllers’ signals. Solid lines: global links for communication be-
tween controllers. Dashed lines: logical links for internal communication between controllers
through internal flags.

4) The transaction’s write set is sent to the reserved directory banks. Involved
memory lines will be marked as Owned and invalidations will be sent to
the other sharers of these lines to signal a conflict with this transaction.
When all the ACKs for these invalidations have been received, the direc-
tory bank clears its “Occupied” bit. If another transaction is waiting to
book the directory bank, then an ACK message is sent to it.

5) The transaction finishes with a release message that is sent to the directo-
ries in its read set.

The scheme above represents the basic approach where Read-After-Read
(RAR) situations are managed as a possible source of conflict. This happens
when two transactions share the same directory bank in their read sets. Al-
though in this case there is no conflict between the transactions (the directory
is only used for reads), SEQ only allows one of the transactions to book the di-
rectory, delaying the commit of the other. An advanced algorithm called SEQ
with Parallel Reader Optimization (SEQ-PRO) distinguishes between directo-
ries booked by read and write access, allowing several transactions to occupy
the same directory bank for read accesses. To do so, several Read “Occupied”
bits (and one Write “Occupied” bit) are required in every directory bank.

2.2 G-Arbiter Microarchitecture to Enforce Commit Ordering in GCommit

The design of a G-Arbiter for a 4-core CMP is shown in Figure 1(a). A
G-Arbiter is made up of two kind of components: controllers (R, Sz, and
Cz), and global links that are used by the controllers for data transmission
to implement the G-Arbiter communication protocol. The controllers can be
classified as follows: local controllers (Cx in Figure 1(b)), a primary lock man-
ager (R in Figure 1(b)) and secondary lock managers (Sz in Figure 1(b)).

6 Epifanio Gaona et al.

Each core z has a local controller (Cz) that sends and receives information
from its associated secondary lock manager Sz. Secondary lock managers are
located in the first core of each row of the CMP layout. The behavior of the
local controller of these cores is encapsulated in the secondary lock manager.
There is a single primary lock manager or root located at C0. The secondary
lock manager of this core is encapsulated in the primary lock manager. In both
cases, the communication is performed locally by means of a flag. Finally, while
secondary lock managers monitor signals from their remote Cz controllers or
their local controller (by means of a flag), the primary lock manager monitors
signals from the rest of remote secondary lock managers or its local secondary
lock manager. Figure 1(b) describes the above architecture in a three-level
tree structure form. The root is the primary lock manager. The secondary lock
managers are represented by the intermediate nodes. Finally the leaves are the
local controllers and cores. All elements are connected using global links (solid
lines) or by means of an internal flag (dashed lines). The flags (fr and fSz)
store the signals sent by the controllers to the corresponding lock managers
and by the secondary lock managers to the primary lock manager, respectively.

The synchronization protocol inside of a G-Arbiter is based on the exchange
of signals between the local controllers, the secondary lock manager and the
primary lock manager through global links. In particular, when a transaction
wants to access a G-Arbiter, its local controller notifies its secondary lock
manager of the request by means of a REQ signal. Next, the secondary lock
manager asks for the G-Arbiter by sending the REQ signal to the primary
lock manager. Similarly, when the G-Arbiter is acquired the ACK signals flow
in the opposite direction towards the corresponding local controller. To release
the G-Arbiter, REL signals perform the same travel than REQ ones but no
other confirmation is expected from the G-Arbiter or its components. Primary
and secondary lock managers guarantee fairness using a Round-Robin policy,
that is, if all transactions wanted to get the same G-Arbiter concurrently, they
would be granted access in a cyclic fashion. As we will detail in Section 2.3, in
absence of contention, a transaction will receive the ACK signal in four cycles
if the REQ signal must reach the primary lock manager and in two cycles if
the intermediate secondary lock manager does not send back the REL signal
to the primary one. Release process spends only one cycle.

Note that, as compared to a GLock, G-Arbiter extends its functionality to
manage release petitions (unlock) even if the ACK signal that grants access
to the lock has not been sent yet. In particular, this behavior is found when a
transaction is aborted just after requesting access to a GLock, and the corre-
sponding ACK has not been received. In this case, and as part of the abort,
the transaction desists from its request to commit by explicitly sending the
release signal to the lock manager.

Fast and Efficient Commits for Lazy-Lazy Hardware Transactional Memory 7

2.3 GCommit Protocol

GCommit makes use of one or more G-Arbiters to enforce commit ordering
between transactions with clashing read and write sets during the precommit
subphase. The use of a few global links (only 6 single-bit links in Figure 1
for a 4-core CMP system) to design such a signalization protocol is feasible
because there is no need to transport large amounts of information. In addition,
this approach yields a twofold benefit: improved performance and reduced
energy consumption. The former is mainly due to the low latency of G-Arbiter
communication protocol. The latter stems from the elimination of the traffic
induced by the precommit subphase that makes use of the general-purpose
interconnection network.

Each G-Arbiter is conceptually a lock associated with a range of memory
addresses that prevents simultaneous accesses over them at commit time. The
policy to assign memory block addresses to G-Arbiters and the granularity of
the assignment are arbitrary because GCommit does not impose any particu-
lar restriction on them. In our study, we either have a single G-Arbiter or 16
G-Arbiters (one per L2 cache bank). In the former case, the assignment is di-
rect. In the latter case, each L2 cache bank is assigned to a different G-Arbiter
in order to maximize the probability of having parallel commits. Note that
in our results, consecutive chunks of 128 KB are mapped across all L2 cache
banks with a Round-Robin policy. In this sense, when a transaction reaches
the precommit subphase, it has to acquire all the G-Arbiters in charge of the
addresses of its read and write sets. To keep track of the required G-Arbiters,
each transaction makes use of a hardware bit-vector structure called G-Arbiter
vector. In this way, each core would need a G-Arbiter vector per thread in a
SMT configuration. A transaction sets position i of its G-Arbiter vector if
it accesses any data mapped to that G-Arbiter. When a transaction reaches
the precommit subphase, it must ask for permission to commit to all the G-
Arbiters in its G-Arbiter vector. This process is performed sequentially in
ascending order to avoid deadlock situations. To do so, the transaction sends
a request (REQ) signal to acquire the first G-Arbiter. After receiving an ac-
knowledgement (ACK) signal, the transaction proceeds with the next one.
Once a transaction has acquired all the G-Arbiters, it cannot be aborted and
dumps the contents of the write buffer into the memory hierarchy (commit
subphase). Next, the committing transaction sends a release (REL) signal to
all the previously acquired G-Arbiters. The G-Arbiter vector is reset at the
end of a commit (or an abort). It is worth noting that during the commit phase
there is a likelihood of aborting other transactions. This conflict may happen
when a committing transaction updates the memory hierarchy. If any updated
memory block is in the read or write set of any other ongoing transaction, that
transaction must abort (like in any other Lazy-Lazy system). Besides, if that
transaction had already acquired one or more G-Arbiters, it would have to
send a release (REL) signal to each of those G-Arbiters.

To have a clear understanding of how our GCommit protocol works, Fig-
ure 2 shows an example where four transactions try to commit at the same

8 Epifanio Gaona et al.

G-arbiter0 G-arbiter1

G-arbiter0 G-arbiter1
R, R, Ga0 Gal Ga2 G-a3

Add |A
L2 bank |0
G-alo

C
1

B[C|D|E|F
0[1]2|3|3
0[0f1]1]1

Ga0 Gal Ga2 Ga3 |

TO T T2 T3 :

RD RE iRc HE’Q |

RA \wWB

WD WE WA ;

we 1
(a) Step 1. (b) Step 2.

G-arbiter0 G-arbiter1

G-a0 G-al Ga2 Gas3
(1]

G-arbiter0 G-arbiter1

R TO T T2 T3
0 o
Ga0 Gal Ga2 Ga3l oo RD RC Ra
EREN [010] f=0lg wo WA e
S1 82
] (1]
TO T we s
RD RE Vi
WD e v+4
we v+5
B e | —
w+2] =
B L
(c) Step 3. (d) Step 4.

Fig. 2 Example with four attempts to commit.

time. We assume one thread per core. Figure 2(a) shows the initial state of
the four transactions (T0-T3) with their G-Arbiter vectors above them —G-a z
stands for G-Arbiter vector of core z— On the right there are two G-Arbiters
(GO and G1). Finally, the table on the top of the Figure represents the map-
ping table that specifies the assignment of memory block addresses (letters
from A to F) to L2 cache banks and G-Arbiters. Note that, in the Figure, RX
means read address X, and WY means write address Y. Each G-Arbiter layout
corresponds to the design of Figure 1(b). While the root node represents the
registers fSz of the primary lock manager, the leaves are the fr registers of the
secondary lock managers. The left leaf node stores REQ signals from core 0
and core 1 (T0-T1), whilst the right leaf node does the same with core 2 and
core 3 (T2-T3).

Figure 2(b) shows two successful attempts to commit. Lower case letters
on the left of transactions execution bar represent the cycle in which a commu-
nication with a G-Arbiter has started. When T3 finishes its normal execution
(white bar), it enters the precommitting phase (gray bar). Before committing
T3 must acquire access to those G-Arbiters enabled in its G-Arbiter vector
(only GO). In cycle the p, the local controller of core 3 (C3) enables REQ
signal to the immediate secondary lock manager of GO (S2g) and writes its

Fast and Efficient Commits for Lazy-Lazy Hardware Transactional Memory 9

corresponding flag. Since S2¢ has not enough privileges to ensure access to T3,
the REQ signal travels to the primary lock manager (Rp). Two cycles later, Ry
has managed that petition and responds with an ACK to S2y which forwards
it to C3. As a result, T3 is allowed to commit (dark bar) with a total delay
of 4 cycles. In the cycle r, T1 launches the same process and gets the same
result with G1. At the end of this Figure, both transactions are committing
in parallel.

Next, Figure 2(c) shows an abort because of a previous commit. T2 tries
to acquire G-Arbiter 0 in the cycle s. As GO has previously granted access
to T3, T2 must wait for an ACK signal. While T2 is being serialized in its
precommitting phase, it observes a change in cache that crashes with its sets
(address A). The cache coherence protocol (CCP) sends an invalidation for
that block to T2, which must abort (cycle ¢ in Figure 2(c)). Finally T3 sends
a REL signal to GO at the end of the commit (cycle u).

To conclude, Figure 2(d) shows a successful serialized commit. At the end
of the normal execution TO tries to get access to GO and G1. This process
must be performed sequentially in ascending order. TO (its local controller)
sends first a REQ signal to GO (cycle v). GO is able to respond with an ACK
in 4 cycles. Next, T1 enables another REQ signal to G1 (cycle v+5). G1 has
previously been acquired by T1, so the ACK signal is sent only when G1
receives the REL signal from T1 in cycle w. Finally TO is allowed to commit
too.

2.4 GCommit vs STCC-SEQ

Table 1 shows the size of the structures needed to implement STCC-SEQ,
their parallel reader optimization (STCC-SEQPRO [16]) and our proposal,
GCommit. In order to avoid overflows in the buffers of the L2 directory banks,
STCC-SEQ needs at least one entry per thread (T is the number of threads).
STCC-SEQPRO doubles that resources since it needs two buffers per directory
bank (L2DB) —one for readers and one for writers—. Moreover, to keep track
of the arrival order, each buffer must store a unique ID per thread, whose
size is equal to logsT bits. On the other hand, the equivalent mechanisms in
GCommit are the flags implemented inside of the lock managers. Instead of
using buffers, GCommit employs sets of flags. Each flag is one bit and each
G-Arbiter needs T + logoT flags (T flags for the secondary lock managers
and logoT flags for the primary one). Moreover, GCommit does not need as
much G-Arbiters (GA) as L2DB (# buffers in table 1) to perform better than
STCC-SEQ (see Section 4). The total size (in bits) of the structures required
by each one of the configurations considered in this work can be calculated by
multiplying the values in the corresponding row of Table 1.

In the previous paragraph, we demonstrate that GCommit achieves better
scalability than both STCC-SEQ and STCC-SEQPRO systems in terms of
the structures required to keep track of the transactions willing to commit.
However, another important consideration is whether the hardware hierarchi-

10 Epifanio Gaona et al.
System # buffer sets | # entries per bits of
buffer set each entry
STCC-SEQ #L2DB T log2T
STCC-SEQPRO #L2DB x 2 T logoT
GCommit #GA T + log2T 1

Table 1 Size of the structures needed in STCC-SEQ, STCC-SEQPRO and GCommit.

cal infrastructure that implements GCommit (i.e., the G-Arbiter architecture
illustrated in Figure 1(a)) can also be scaled well with the number of processor
cores. As explained in Section 2.2, our G-Arbiter is a slight modification of the
GLock mechanism proposed in [18]. It is based on the same scalable hierarchi-
cal infrastructure as follows. First, using the same 2-level hierarchy presented
in Figure 1(a) for larger manycore systems requires complexer and/or slower
lock managers due to having higher radixes to interconnect more local con-
trollers. This scheme can scale well to up to 32 processor cores [18]. Second,
to further improve scalability of the G-Arbiter for higher core counts, as ex-
plained in [18], another strategy to avoid augmenting the controllers radixes
so that they can always run at the same frequency is to increase the number of
levels in the hierarchy. This strategy would affect the latency of the G-Arbiter
operation, which would be increased. This extra latency, however, will not
be excessive (one extra clock cycle when going up/down through every extra
level) and will not hurt performance in a significant way.

2.5 G-Arbiter Manufactured using an Industrial Synthesis Toolflow

In [19], we introduce our GCommit protocol utilizing a state-of-the-art full-
custom technology, namely G-lines. We demonstrated that our proposal re-
ported minimal area overhead, energy consumption and very fast operation.
Nevertheless, this implementation is not cost-effective as it is not within reach
of a standard cell design methodology. For that reason, in this section we study
the hardware costs of our proposal in the context of a mainstream industrial
synthesis toolflow with an STMicroelectronics 45 nm standard cell technology
library. This technology will be referred to as Standard technology.

When using Standard technology, since traditional Resistance-Capacitance
(RC) wires are very critical to performance degradation, we have implemented
each G-Arbiter’s controller by separating the delay that signals take along the
wires, from the effective computation that the controllers require to generate
their output signals. Notice that, for small many-core CMPs, the critical path
that limits the maximum operating speed in our G-Arbiter infrastructure is
defined by the most complex controller (i.e. the lock manager that samples
signals from the local controllers), but as the wire length increases for larger
CMPs, the wires could represent such critical path. Consequently, separating
wire delays from controllers delays become essential in order to achieve max-
imum clock speeds. In this way, by using this technology, we cannot directly
assume the synchronization latencies achieved by using G-lines, and a higher

Fast and Efficient Commits for Lazy-Lazy Hardware Transactional Memory 11

Fig. 3 Floorplan of the G-Arbiter’s controllers in a 4-core CMP designed with Cadence
SoC Encounter tool.

number of cycles will be required for the gather and release phases. In ad-
dition, to minimize the length of wires, we have situated the lock managers
(both primary and secondary ones) in the central column/row of the 2D-mesh
topology, rather than the first column and first row as depicted in Figure 1(a).
Note that, in case of G-lines technology this optimization would not be nec-
essary since every G-line is specially designed to implement one-cycle latency,
one-bit transmissions across one dimension of the chip.

For a realistic characterization of this implementation, placement-aware
logic synthesis is performed through Synopsys Physical Compiler. Moreover,
the final place-and-route step is performed with Cadence SoC Encounter [20]
which also involves clock tree synthesis. In addition, we assume a single clock
domain with a unique clock tree for the whole CMP layout. It is worth noting
that our mechanism has been synthesized by defining non-routable obstruc-
tions. In this work, we assume that this area is equal to 550x550um? (each
core). Additionally, fences are defined to limit the area where the cells of each
G-Arbiter’s controller can be placed. Such obstructions and fences also ensure
minimum-length routing for the links in order to reduce their impact on perfor-
mance and area overhead as the wire length increases. The resulting floorplan
is shown in Figure 3 that shows the controllers of a G-Arbiter in the context
of a 4-core CMP system (see Figure 1(a) for a logical view of this scheme). As
we can see in the figure, it is worth nothing the very small area required by
the controllers as compared to the area assumed per core.

12 Epifanio Gaona et al.

Technology | Freq (MHz) | Latency (cycles) | Area (um?) | Power (mW)
Standard 1000 9 (worst), 5 (best) 3,618 Negligible
G-lines 2500 4 (worst), 2 (best) Negligible 14

Table 2 Raw statistics using G-lines technology and a Standard technology for a single
G-Arbiter in a 16-core CMP layout.

Table 2 shows the main raw performance statistics obtained from this Stan-
dard-based G-Arbiter implementation and with original G-lines characteris-
tics. We illustrate the maximum operating speed, the latencies of the syn-
chronizations and also the area overhead that our proposal entails. It is worth
noting that the area devoted to a G-Arbiter is equal to 3,618um? that corre-
sponds to a negligible 0.07% of the total area employed for the simulated 16-
core CMP layout (remember that we assumed that each core is 550x550um?
in size). This marginal overhead also will lead to a negligible impact on power
consumption. Moreover, worse latencies and frequency are shown in case of
the Standard technology in comparison to the G-lines technology. While these
new performance parameters were incorporated into the simulation environ-
ment presented in Section 3, we observed that the performance results when
using Standard technology are virtually the same than those reported by the
implementation using the G-line technology. This means that our GCommit
protocol does not depend on the full-custom G-lines technology to achieve
superior efficiency against the baseline STCC-SEQ system.

3 Evaluation Environment
3.1 System Settings

We use a full-system execution-driven simulation based on the Wisconsin
GEMS toolset [21], in conjunction with Wind River Simics [22]. We rely on
the detailed timing model for the memory subsystem provided by GEMS’s
Ruby module, with the Simics in-order processor model. Simics provides func-
tional correctness for the SPARC ISA and boots an unmodified Solaris 10.
We simulate a tiled CMP system configured as described in Table 3. More
precisely, we assume a 16-core configuration with private L1 1&D caches and
a shared, multibanked L2 cache consisting of 16 banks of 512KB each. The
L1 caches maintain inclusion with the shared L2 cache. The private L1 data
caches are kept coherent through an on-chip directory (at L2 cache banks),
which maintains bit-vectors of sharers (which are included in the tags’ part of
the L2 cache banks) and implements the MESI protocol. All tiles are connected
through a router-based 2D-mesh network. In this 4x4 2D-network, each router
has between 5 and 7 ports, with an average of 6 ports per router.

To compute energy consumption in the on-chip memory hierarchy we con-
sider both the caches and the interconnection network. The amount of energy
consumed by the interconnection network has been measured based on Orion
2.0 [23]. In particular, we have extended the network simulator provided by

Fast and Efficient Commits for Lazy-Lazy Hardware Transactional Memory 13

MESI Directory-based CMP
Cores [16, single issue, in order, non-memory IPC=1
Memory and Directory settings
L1 Cache 1&D Private, 32 KB, split, 2 way, 1-cycle latency
L2 Cache Shared, 8 MB, unified 4 way, 12-cycle latency
L2 Directory Bit Vector, 6-cycle latency
Memory 4 GB, 300-cycle latency
Network settings
Topology 2D mesh
Link latency 2 cycles
Link bandwidth 16 Bytes/cycle

Table 3 System Parameters.

Parameter Value
in_port 6
tech_point 45
vdd 1.0
transistor type NVT
flit_width 128 (bits)

Table 4 Parameters of Orion 2.0.

GEMS with the consumption model included in Orion. Table 4 shows the val-
ues of some of the parameters assumed for the interconnection network. For
those not listed in the table, we use the default values given in Orion. On the
other hand, the amount of energy spent in the memory structures (L1, L2) has
been measured based on the consumption model of CACTI 5.3 rev 174 [24]. In
the case of the L2 cache, we distinguish the accesses that return cache blocks
from those that only involve the tags’ part of the L2 cache (i.e. those that
would be performed by the directory controller to retrieve just the sharing
information for a particular memory block). Obviously, the latter entails less
energy.

The Ruby module contains an implementation of LogTM-SE, an Fager-
Eager system that uses signatures for transactional book-keeping. Further-
more, it provides support for a naive implementation of a Lazy-Lazy system.
We have extended the latter one in order to achieve an implementation of a
Lazy-Lazy system that mimics the behavior of Scalable-TCC with the sequen-
tial commit algorithm (STCC-SEQ) described in [16]. We have implemented
GCommit on top of STCC-SEQ. For that, all we had to change was the com-
mit protocol. In GCommit, all commits are performed in hardware using the
mechanism described in Section 2. The remaining aspects are identical in both
GCommit and STCC-SEQ. Finally, we have also evaluated the parallel reader
optimization for STCC-SEQ (STCC-SEQPRO [16]). This optimization allows
multiple transactions to simultaneously occupy a directory as long as none of
these transactions write to this directory. The counterpart is that it increases
complexity and area requirements.

14 Epifanio Gaona et al.

Benchmark Input
Genome -gh12 -s32 -n32768
Intruder -al0 -116 -n4096 -s1

Kmeans-high | -m40 -n40 -t0.05 -i random-n16384-d24-c16
Kmeans-low -m40 -n40 -t0.05 -i random-n16384-d24-c16

Labyrinth -i random-x32-y32-23-n96
Ssca2 -s13 -i1.0 -ul.0 -13 -p3
Vacation-high -n4 -q60 -u90 -r1048576 -t4096
Vacation-low -n2 -q90 -u98 -r1048576 -t4096
Yada -al0 -i ttimeul0000.2

Table 5 Workloads and inputs.

3.2 Workloads

For the evaluation, we use nine transactional benchmarks extracted from the
STAMP suite [25]. These applications allow to stress a TM system in several
ways. To show a wide range of cases, we evaluate the most relevant STAMP
applications using the recommended input size in each case (in general, what is
called the medium size). The application Bayes was excluded since it exhibits
unpredictable behavior and high variability in its execution times [26]. For
Kmeans and Vacation, both high and low contention configurations were used.
Results presented have been averaged over twenty runs for each application,
each with very minor randomization of some system parameters just sufficient
to excite different interleavings. Table 5 describes the benchmarks and the
values of the input parameters used in this work.

4 Experimental Results
4.1 Performance Comparison Analysis

For the nine transactional applications pointed out in Section 3, Figure 4 shows
the relative breakdown of the execution times that are obtained for STCC-
SEQ, GCommit and STCC-SEQPRO. In all cases, execution times have been
normalized with respect to those obtained with the STCC-SEQ. Moreover,
to have clear understanding of the results, Figure 4 splits each of the bars
into the following categories: Abort (time spent during aborts), Back-off (de-
lay time between an abort and the next re-execution), Barrier (time spent
in barriers), Commit (time needed to propagate the write sets to the mem-
ory hierarchy), Non_zact (time spent in non-transactional execution), Precom-
mitting (time taken to acquire privileges to commit—book the corresponding
directory modules/gain access to the G-Arbiter—), Stall (time waiting until an-
other transaction finishes its commit phase), Xact_useful (useful transactional
time), Xact_wasted (transactional time wasted because of aborts).

As it can be derived from Figure 4, GCommit shows noticeable improve-
ments in overall performance with respect to both STCC-SEQ (average re-
duction of 15.7% in execution time) and STCC-SEQPRO (average reduction

Fast and Efficient Commits for Lazy-Lazy Hardware Transactional Memory 15

GCOMMIT
M abort M commit [stall SEQ
[backoff (] non_xact M xact_useful SEQPRO
A barrier N precommitting Ml xact_wasted

i \
N N
N R\ 3
§ §§§ NN A\
\
z I ‘ ! ‘ ‘ T T
e \(\\‘\x\e‘ (\%xﬁ\g“ %“5,\0‘“ \“\“\(\\“ 65007' \"ad"’ Ne@ge
i V\‘(\e "
Applications

Fig. 4 Breakdown of the execution times.

of 11.3% in execution time). It is important to note that these improvements
come as a result of a significant reduction in the amount of time needed to com-
plete the precommitting phase (Precommitting category in the bars). Observe
also that GCommit consistently reduces the duration of the precommitting
phase in all the applications. The fact that in GCommit all the booking pro-
cess of the directory modules during the precommitting phase is done through
a fast protocol operating on dedicated wires brings down the duration of this
phase (68.5% on average compared with STCC-SEQ). On the contrary, in
STCC-SEQ and STCC-SEQPRO the precommitting phase is based on the
interchange of regular messages travelling on the general-purpose intercon-
nection network. Observe also that the distinction between reads and writes
carried out in STCC-SEQPRO results in small improvements over STCC-SEQ
(average reduction of only 5.1% in execution time), which are mainly a conse-
quence of the reductions in the duration of the precommitting phase observed
in just two of the nine applications (Kmeans-high and Ssca2).

The discussion below highlights important observations and presents in-
sights gained from a detailed analysis of the interaction between the three
commit algorithms and the behavior of individual workloads.

Genome. This workload exhibits moderate to high degree of contention
from the very beginning of its execution. Readers-writers conflicts dominate at
the first phase of the application. The second phase is characterized by trans-
actions with moderate write-sets that access to predominantly non-contended
data. This phase dominates overall performance. We have found that the aver-
age number of directory banks that must be booked during the precommitting
phase is considerably high (between 10 and 16). Due to directory booking in
STCC-SEQ is performed in ascending order and a transaction is not allowed to
access the next bank until having received confirmation from the previous one,
the amount of time needed to complete the precommitting phase is significant.

16 Epifanio Gaona et al.

Additionally, the number of parallel commits keeps low and the distinction
between read and write accesses enabled by STCC-SEQPRO barely improves
execution time. On the contrary, in GCommit only one G-Arbiter must be
acquired during the precommitting phase. Moreover, in absence of contention,
few cycles (2 or 4) are enough to gain access to the G-Arbiter. The result is
that execution time in this application is dramatically reduced (40%) when
GCommit is considered.

Intruder. This workload shows high contention with three transactions.
Nevertheless, only transaction TID0 accumulates the major part of the aborts.
We have found that this transaction needs to book just two directory banks,
one for reading and the other one for writing, so there is no chance of parallel
commits between transactions TIDO running on different cores. Nevertheless,
parallel commits are still possible for the other two transactions (which have
different TIDs). We have observed that STCC-SEQPRO can take advantage
of this situation and can achieve up to 4 commits at the same time. Moreover,
when a commit is issued, half of the times there is already another commit
being performed on another core. STCC-SEQ does not reach that level of par-
allel commits. Unfortunately, transaction TID0O dominates execution time and
no meaningful benefits are obtained for STCC-SEQPRO. On the other hand,
GCommit accelerates commits in TIDO. Moreover, reducing precommitting
time for this transaction leads to much less contention, reducing the number
of aborts and improving overall performance (reduction of 20%) despite not
allowing parallel commits.

Kmeans (high/low). Despite the fact that this benchmark is mainly
non transactional, there are some differences in Kmeans-high. In this case,
there are three transactions but only TID0 and TID1 represent important
fractions of transactional execution time. TIDO has to access four banks (three
for reading, one for writing) whilst TID1 only needs one bank (for writing).
Both transactions can commit in parallel in case of STCC-SEQ and STCC-
SEQPRO. Nevertheless there is no possibility of parallel commits between
transactions with the same TID running on different cores. In case of TIDO
the bank booked for writing is always the same, the last one (number 15). This
benefits STCC-SEQPRO since transactions TIDO running on different cores
only fight for the last bank (transactions in STCC-SEQ need to fight for at least
three additional banks before being allowed to commit). Nevertheless, Kmeans
is a highly concurrent application, so the efficiency of GCommit exceeds its
lack of parallel commits when a single G-Arbiter is employed.

Labyrinth. Results for this workload depend significantly on the inter-
leaving of executing threads. Its most important transaction (TID1) presents
large write sets (more than 200 addresses) and a long execution time. An
abort is extremely costly. Due to the long execution time of TID1, there is not
much contention and a transaction that reaches the precommitting phase usu-
ally does not have to compete against others. Nevertheless when a transaction
commits, it is frequent that other transactions must be aborted. Transactional
execution phases (zact_useful and zact_wasted bars) dominate overall execu-
tion time, and the election of the commit algorithm is not as important.

Fast and Efficient Commits for Lazy-Lazy Hardware Transactional Memory 17

Ssca2. It has a large number of tiny transactions and transaction TID2
is which dominates execution time. This transaction has three read addresses
and two write ones in its sets. The read set is always mapped to the same
directory bank, so there is no chance of parallel commits with STCC-SEQ.
Nevertheless, Ssca2 spreads its write set between ten directory banks. Hence,
STCC-SEQPRO is able to achieve up to four parallel commits at the same
time and almost two thirds of the commits are in parallel. Even the fact that
GCommit does not allow parallel commits for one G-Arbiter, it outperforms
STCC-SEQ and STCC-SEQPRO. In this application commits are frequent
and the lower latency of the mechanism implemented in GCommit drastically
improves commit bandwidth.

Vacation (high/low). This benchmark does not exhibit real conflicts. Its
main transaction has a moderate write set (6.7 addresses) and a large read set
(96.5 addresses). The number of directory banks booked for writing and the
low level of contention eliminate any possibility of parallel commits. Only the
fast commits enabled by GCommit can make precommitting time disappear.

Yada. It has a large working set and exhibits high contention. The domi-
nant transaction (TID2) spreads its large write set (69.3 addresses) among all
L2 banks, hindering parallel commits. Many transactions in the precommitting
phase are aborted and hence, precommitting time in this application is much
less significant than the zact_wasted time.

4.1.1 Performance with 16 G-Arbiters

Until now we have assumed just one G-Arbiter, neglecting the positive ef-
fects that parallel commits could have on performance for GCommit. Next
we perform a brief analysis of GCommit with 16 G-Arbiters, one per direc-
tory bank!. This configuration mimics the ability of SCTCC-SEQ to book a
subset of the directory banks, and thus, enables parallel commits. The main
downside is that more than one G-Arbiter must be acquired, which increases
the duration of the precommitting phase. Figure 5 shows a comparison be-
tween the execution times that are obtained with one G-Arbiter (left bar for
each application) and those that are reached when 16 G-Arbiters are consid-
ered (right bar). Results are normalized to the first case. As it can be seen,
there are no noticeable performance differences between these two configu-
rations. When a single G-Arbiter is considered, GCommit can complete the
precommitting phase with extremely low latency, and thus, the number of
transactions blocked at precommitting is very small. This provokes that the
possibility of parallel commits is lower for GCommit than for STCC-SEQ. On
the other hand, because of the particularities described above, GCommit with
16 G-Arbiters only achieves parallel commits in Genome, Kmeans and Yada.
In these cases, we have observed that up to 2 parallel commits can be done
at the same time. In Genome and Yada, just 0.5% and 1.5% of the transac-
tions coincide with another one while committing. This percentage grows for

1 The latency for acquiring each arbiter is the same than in the case of a single G-Arbiter.

18 Epifanio Gaona et al.

R M abort barrier [Jnon_xact [stall M xact_wasted
§ 1.0 [backoff @ commit N precommiting ll xact_useful
o
% c1 cie
2 i N

ANWN

%Y

é [[|

g\oxﬂ 502{2, X@‘(\ - «\0«4 \"o&
N ° HO &
NS
Applications

Fig. 5 Breakdown of the execution times: 1 G-Arbiter (left bars) vs. 16 G-Arbiters (right

GCOMMIT
M abort M commit [stall SEQ
O backoff [non_xact M xact_useful SEQPRO
1.94 A barrier N precommitting M xact_wasted .

e X o0 N\ PR 2 O N o
e(\od\ N 0 &° @;‘\0\ vy o 0y \‘e@g
) W ((\e'b‘\ ‘6‘(@% \& A° e w
N NG
Applications

Fig. 6 Breakdown of the energy consumed.

Kmeans-high and Kmeans-low (24% and 11%, respectively). Unfortunately,
precommitting time is insignificant in both cases. Therefore, it is more impor-
tant to ensure short precommitting time (as done with one G-arbiter) than
enabling parallel commits at the cost of increasing the time needed to acquire
every G-Arbiter.

4.2 Energy Consumption Analysis

In this section, we compare STCC-SEQ, STCC-SEQPRO and GCommit in
terms of the amount of dynamic energy consumed in each case. Figure 6 shows

Fast and Efficient Commits for Lazy-Lazy Hardware Transactional Memory 19

EGCOMMIT
5127 CSTCC-SEQ
& EASTCC-SEQPRO
& 7]
S amn7 Y 7w T W T
@ 0.9
= 0.8
2
5 0.7
= 0.6
o
g 05
2 0.4
o
S 0.5
T 0.2
S 0.1
Z
0— T T T T T T T T T T
e aet o ot T Ives s ot P 20
00 o & o0& ¢ & 0 o | &
o) o 28 oo 30 s
& e e bl

Fig. 7 Normalized network traffic.

the dynamic energy consumption for the three systems considered in this work.
As before, results have been normalized with respect to STCC-SEQ. Addition-
ally, we split the energy consumed in each case assuming the same categories
than in Section 4.1. To do so, we track the amount of energy consumed dur-
ing each one of the categories. For messages sent through the general-purpose
interconnection, we track data accesses in any cache structure as well as other
possible messages generated because of the first one, and accumulate all this
energy consumption into the corresponding execution phase of the transaction
that issued the original message.

As with execution time, our proposal significantly improves overall energy
consumption compared to STCC-SEQ and, as shown in Figure 6, average
reductions of 13.7% are obtained. The energy due to the duration of the pre-
committing phase is virtually eliminated with GCommit. Our proposal does
not issue any messages on the general-purpose interconnect, and the energy
consumed during the precommitting phase comes just from the much more ef-
ficient dedicated links and controllers that our mechanism involves. Addition-
ally, in both STCC-SEQ and SETCC-SEQPRO several directory banks must
be reserved and therefore much more work has to be done. As in Figure 6,
results have been normalized with respect to those obtained with STCC-SEQ.
As it can be seen, GCommit entails smaller traffic levels (contention) than the
other approaches (reductions of 10.6% on average).

On the other hand, the amount of energy spent during precommitting is
small in the case of STCC-SEQ and STCC-SEQPRO. The number of control
messages across the network during this arbitration period is moderate in both
protocols, so part of the improvements in energy consumption come from the
reduction in the number of aborts that GCommit entails. This is why the
amount of energy due to backoff is reduced in GCommit.

20 Epifanio Gaona et al.

4.3 Network traffic Analysis

Figure 7 shows the levels of traffic in the interconnection network (measured
as flit per cycle) for the three commits algorithms: GCOMMIT, SEQ and
SEQPRO. In general, as explained, GCommit does not generate any messages
on the general-purpose interconnection network during precommitting. This
keeps interconnection network less over-saturated during the smaller execution
time of the applications. Benchmarks with less traffic levels are those whose
precommitting phase acquires higher relevance: genome, intruder, kmeans and
ssca2. These traffic levels are supported in these benchmarks by the number
of aborts too, which are smaller with GCOMMIT.

5 Related Work

Research in Hardware Transactional Memory (HTM) has been very active
since the introduction of multicores in mainstream computing. The initial
proposal by Herlihy et al. [27] was revived in the previous decade with more
sophisticated designs like UTM [28], TCC [29], Bulk [11] or LogTM-SE [12].
HTM systems have been traditionally classified into two categories according
to the approaches to version management (VM) and conflict detection (CD)
that they implement: Fager-Fager (eager VM and eager CD) and Lazy-Lazy
(lazy VM and lazy CD). Although Lazy-Lazy HTMs have been identified as
being more efficient than eager designs [30], the necessity of en-masse publica-
tion of updates at a transaction commit raises issues of scalability and several
hybrid approaches like EazyHTM [9], ZEBRA [31] or FlexTM [32] have been
recently proposed. Differently from these previous works, our proposal builds
directly on the simpler Lazy-Lazy HTM model and deals with the heart of the
problem by deploying fast and efficient dedicated hardware to reduce commit
time.

TCC [29] has probably been the most seminal Lazy-Lazy system. The origi-
nal design which was based on a bus was later adapted to a more scalable archi-
tecture that uses directory-based coherence, giving rise to Scalable-TCC [17].
Subsequently, Pugsley et al. proposed STCC-SEQ and STCC-SEQPRO to
significantly reduce commit time in Scalable-TCC [16]. Both STCC-SEQ and
STCC-SEQPRO are free of deadlocks/livelocks, do not employ a centralized
agent and allow for parallel commits. In this work we study a hardware im-
plementation of an algorithm similar to STCC-SEQ and show that to improve
commit bandwidth it is more important to reduce commit transfer time (time
that goes since a transaction completes commit until another one gets permis-
sion to commit) than enabling parallel commits.

Regarding energy consumption in the context of TM, Klein et al. [33] per-
formed a study comparing STM and conventional lock-based systems, and
also proposed new mechanisms to improve energy efficiency of STM. For
HTM, Moreshet et al. [34] performed an early comparison in terms of energy
consumption and performance between the lock approach and TM consider-

Fast and Efficient Commits for Lazy-Lazy Hardware Transactional Memory 21

ing only the energy spent in the memory structures. In this previous work,
Moreshet proposed a naive static serialization mechanism to improve energy-
efficiency in which two conflicting transactions are re-issued in serialized mode,
preventing parallel speculation in other transactions. Subsequently, Sanyal et
al. [35] applied the well-known clock gating technique in the context of Hard-
ware Transactional Memory (HTM) to save energy. In particular they propose
a novel protocol which gates processors dynamically on each abort and un-
gates them depending on the number of aborts suffered and the state of the
conflicting transactions. Ferri et al. [36] present a simple and energy-efficient
TM design for embedded architectures, at the cost of performance. In the
context of Eager-Eager HTMs, Gaona et al. [37] try to save energy by serial-
izing transactions’ execution in scenarios of high contention without hurting
performance. In [38] the two well-known HTM systems (namely, Fager-Eager
LogTM-SE system [12] and Lazy-Lazy Scalable TCC system [17] [16]) are com-
pared in terms of energy consumption. On the other hand, in [39], Cristal et
al. show a case use of how efficient HTM support can help techniques aimed at
increasing energy efficiency in current multicores. In particular, it is proposed
to use HTM support for rolling back the effects of wrong executions caused
by the reduction of the supply voltage of cores. Reducing the supply voltage
improves energy efficiency but at the same time increases the likelihood for
wrong executions of programs.

Finally, GCommit is based on the use of Global lines (G-lines). A G-line
is basically a shared wire that broadcasts 1-bit messages (signals) across one
dimension of the chip in a single clock cycle. Practical uses of G-lines are
presented by Khrisna et al. [40] to enhance a flow control mechanism (EVC)
in terms of latency and power consumption in the context of networks-on-chip
(NoC), and by Abellan et al. to accelerate lock and barrier synchronization
and reduce power consumption in many-core CMPs [18][41].

6 Conclusions and Future Ways

In this work we have presented GCommit, a new hardware approach to com-
mit algorithms in Lazy-Lazy HTM systems. Instead of trying to achieve more
parallelism at commit time, our proposal focuses on reducing the duration
of the commit events. More specifically, our proposal dramatically accelerates
the precommit subphase of a commit, which ensures compliance with the se-
rializability and atomicity properties by enforcing commit ordering between
transactions with clashing read and write sets. GCommit is implemented using
dedicated global links and a set of controllers. The links are used by commit-
ting transactions to both ask for and receive authorization to commit. For that,
a dedicated lightweight on-chip global-link-based network is able to manage
commit requests and acknowledgements. The controllers are in charge of se-
lecting just one of the transactions aimed to commit. Compared to previously
proposed commit protocols that use the general-purpose interconnection net-
work to coordinate commit ordering, our proposal reduces the number of cycles

22 Epifanio Gaona et al.

of the precommitting phase to a minimum (less than 10 cycles). This results
into increased commit bandwidth.

We use full-system simulations of a 16-core CMP running several STAMP
applications to evaluate GCommit, and compare it with STCC-SEQ and STCC-
SEQPRO systems (the highest performance commit protocols proposed in the
literature). We find that GCommit accelerates the precommit subphase about
68.5% on average, which results in average reductions of 15.7% and 13.7%
in terms of execution time and energy consumption, respectively, compared
with STCC-SEQ. To quantify hardware costs of our proposal, we implement
GCommit using a cost-effective mainstream industrial synthesis toolflow. Our
study reveals that negligible requirements in terms of area are needed (0.07%
of the whole chip for the target 16-core CMP system) that leads to negligible
power requirements. We have also explored the simultaneous usage of differ-
ent GCommit architectures in the same CMP system, so that we can increase
parallelism when committing different transactions at a particular time. We
have found that, due to the particularities of transactional applications, it
is more important to ensure short precommitting time than enabling parallel
commits at the cost of increasing the duration of the process (e.g., using slower
G-Arbiter acquisition).

As part of our future work, we plan to study the possibility of extending
our proposal with the parallel reader optimization without increasing com-
mit latency and while keeping the design simple. Furthermore, this work has
demonstrated the important benefits that using a specialized NoC (in conjunc-
tion with the main NoC) can bring in the context of Lazy-Lazy HTMs. We are
considering also the possibility of applying the same approach for accelerating
critical aspects of Eager-Eager HTMs. Finally, we are also considering larger
multicore architectures (manycores).

Acknowledgements This work has been supported by the Spanish MINECO under grant
“TIN2012-38341-C04-03” and by Fundacién Séneca, Agencia Regional de Ciencia y Tec-
nologia de la Regién de Murcia under grant “19295/PI/14”. Epifanio Gaona Ramirez is
supported by fellowship 09503/FPI/08 from Fundacién Séneca, Agencia Regional de Cien-
cia y Tecnologia de la Regién de Murcia (I PCTRM).

References

1. S. Borkar, Thousand core chips: A technology perspective., in: DAC-44, 2007.

2. S. Anthony, Intel unveils 72-core x86 knights landing cpu for exascale supercomputing

(2013).

T. Corporation, Tile-gx8072 processor (2014).

D. Dice, O. Shalev, N. Shavit, Transactional locking II., in: DISC-20, 2006.

K. Fraser, T. L. Harris, Concurrent programming without locks., ACM TOCS 25 (2).

V. J. Marathe, W. N. Scherer-III, M. L. Scott, Adaptive software transactional memory.,

in: DISC-19, 2005.

7. M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer-I1I, Software transactional memory
for dynamic-sized data structures., in: PODC-22, 2003.

8. B. Saha, A. Adl-tabatabai, R. L. Hudson, C. C. Minh, B. Hertzberg, McRT-STM: A
high performance software transactional memory system for a multi-core runtime., in:
PPoPP-11, 2006.

I

Fast and Efficient Commits for Lazy-Lazy Hardware Transactional Memory 23

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

S. Tomic, C. Perfumo, C. E. Kulkarni, A. Armejach, A. Cristal, O. S. Unsal, T. Harris,
M. Valero, EazyHTM: Eager-lazy hardware transactional memory., in: MICRO-42, 2009.
R. Rajwar, M. Herlihy, K. K. Lai, Virtualizing transactional memory., in: ISCA-32,
2005.

L. Ceze, J. Tuck, J. Torrellas, C. Cascaval, Bulk disambiguation of speculative threads
in multiprocessors., in: ISCA-33, 2006.

L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift,
D. A. Wood, LogTM-SE: Decoupling hardware transactional memory from caches., in:
HPCA-13, 2007.

T. Harris, A. Cristal, O. S. Unsal, E. Ayguad, F. Gagliardi, B. Smith, M. Valero,
Transactional memory: An overview., IEEE Micro 27 (3) (2007) 8-29.

S. Sanyal, S. Roy, A. Cristal, O. S. Unsal, M. Valero, Dynamically filtering thread-local
variables in lazy-lazy hardware transactional memory, in: High Performance Computing
and Communications, 2009. HPCC’09. 11th IEEE International Conference on, IEEE,
2009, pp. 171-179.

D. Dice, Y. Lev, M. Moir, D. Nussbaum, Early experience with a commercial hardware
transactional memory implementation., in: ASPLOS-14, 2009.

S. H. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar, R. Balasubramonian, Scalable
and reliable communication for hardware transactional memory., in: PACT-17, 2008.
H. Chalfi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh, W. Baek, C. Kozyrakis,
K. Olukotun, A scalable, non-blocking approach to transactional memory., in: HPCA-
13, 2007.

J. L. Abellan, J. Fernandez, M. E. Acacio, Design of an efficient communication in-
frastructure for highly contended locks in many-core cmps, Journal of Parallel and
Distributed Computing 73 (7) (2013) 972 — 985.

E. Gaona, J. L. Abellan, M. E. Acacio, J. Fernandez, Deploying hardware locks to
improve performance and energy efficiency of hardware transactional memory, in: Ar-
chitecture of Computing Systems—ARCS 2013, Springer, 2013, pp. 220-231.

Cadence, SoC Encounter, http://www.cadence.com/.

M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen,
K. E. Moore, M. D. Hill, D. A. Wood, Multifacet’s general execution-driven multipro-
cessor simulator (GEMS) toolset., SIGARCH CAN 33 (4) (2005) 92-99.

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, B. Werner, Simics: A full system simulation platform., IEEE
Computer 35 (2002) 50-58.

A. B. Kahng, B. Li, L.-S. Peh, K. Samadi, ORION 2.0: A fast and accurate NoC power
and area model for early-stage design space exploration., in: DATE-13, 2009.

HP Labs, http://quid.hpl.hp.com:9081/cacti.

C. C. Minh, J. Chung, C. Kozyrakis, K. Olukotun, STAMP: Stanford transactional
applications for multi-processing., in: IISWC-4, 2008.

A. Dragojevic, R. Guerraoui, Predicting the scalability of an STM., in: Transact-05,
2010.

M. Herlihy, J. E. B. Moss, Transactional memory: Architectural support for lock-free
data structures., SIGARCH CAN 21 (2) (1993) 289-300.

C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, S. Lie, Unbounded
transactional memory, in: HPCA-11, 2005.

L. Hammond, V. Wong, M. K. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K.
Prabhu, H. Wijaya, C. Kozyrakis, K. Olukotun, Transactional memory coherence and
consistency., in: ISCA-31, 2004.

A. Shriraman, S. Dwarkadas, M. L. Scott, Flexible decoupled transactional memory
support., in: ISCA-35, 2008.

J. R. Titos, A. Negi, M. E. Acacio, J. M. Garcia, P. Stenstrom, ZEBRA: A data-centric,
hybrid-policy hardware transactional memory design., in: ICS-25, 2011.

A. Shriraman, S. Dwarkadas, M. L. Scott, Implementation tradeoffs in the design of
flexible transactional memory support., Journal of Parallel and Distributed Computing
70 (10) (2010) 1068-1084.

F. Klein, A. Baldassin, G. Araujo, P. Centoducatte, R. Azevedo, On the energy-efficiency
of software transactional memory., in: SBCCI-22, 2009.

24

Epifanio Gaona et al.

34.

35.

36.

37.

38.

39.

40.

41.

T. Moreshet, R. I. Bahar, M. Herlihy, Energy-Aware Microprocessor Synchronization:
Transactional Memory vs. Locks., in: Workshop on Memory Performance Issues, 2006.
S. Sanyal, S. Roy, A. Cristal, O. Unsal, M. Valero, Clock gate on abort: Towards energy-
efficient hardware transactional memory., in: HPPAC-2009, 2009.

C. Ferri, S. Wood, T. Moreshet, R. I. Bahar, M. Herlihy, Embedded-TM: Energy and
complexity-effective hardware transactional memory for embedded multicore systems.,
Journal of Parallel and Distributed Computing (JPDC) 70 (10) (2010) 1042-1052.

E. Gaona-Ramirez, J. R. Titos-Gil, J. Ferndndez, M. E. Acacio, Selective dynamic seri-
alization for reducing energy consumption in hardware transactional memory systems.,
The Journal of Supercomputing 68 (2) (2014) 914-934.

E. Gaona-Ramirez, J. R. Titos-Gil, J. Ferndndez, M. E. Acacio, On the design of energy-
efficient hardware transactional memory systems., Concurrency and Computation: Prac-
tice and Experience 25 (6) (2013) 862-880.

A. Cristal, O. Unsal, G. Yalcin, C. Fetzer, J.-T. Wambhoff, P. Felber, D. Harmanci,
A. Sobe, Leveraging transactional memory for energy-efficient computing below safe
operation margin., in: TRANSACT-2013, 2013.

T. Krishna, A. Kumar, L.-S. Peh, J. Postman, P. Chiang, M. Erez, Express virtual
channels with capacitively driven global links., IEEE Micro 29 (4) (2009) 48-61.

J. L. Abellan, J. Ferndandez, M. E. Acacio, Efficient hardware barrier synchronization in
many-core cmps., IEEE Transactions of Parallel and Distributed Systems 23 (8) (2012)
1453-1466.

