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Enhancing Molecular Docking with Deep Q-Networks

RESUMEN

El descubrimiento de fármacos es un proceso largo y costoso que suele durar entre 10

y 15 años, desde la evaluación inicial de candidatos farmacológicos hasta la aprobación

final por parte de los organismos reguladores correspondientes. Por este motivo, simula-

ciones moleculares por computador, conocidas como Virtual Screening (VS) (o Cribado

Virtual), se utilizan a menudo para predecir los candidatos a fármacos durante las pri-

meras etapas de su desarrollo. Uno de los métodos más utilizados en el VS es el llamado

Docking Molecular, o simplemente abreviado como Docking (en español, Acoplamien-

to Molecular). El objetivo de este método es resolver el problema de las Interacciones

Proteína-Ligando (PLDP) o Docking. Dicho de otro modo, se trata de predecir las confor-

maciones 3D en las que un candidato farmacológico (también conocido como ligando) se

acopla a un receptor determinado (normalmente una proteína) en un punto concreto de

su superficie. Los métodos tradicionales de Docking se basan en procedimientos de opti-

mización de funciones de puntuación (o de scoring) siguiendo determinadas heurísticas.

Se trata de funciones matemáticas que modelan las interacciones moleculares.

Estos métodos se caracterizan por ser computacionalmente costosos. De esta manera,

en esta tesis se pretende aprovechar los prometedores algoritmos de Deep RL para

mejorar la resolución del problema de Docking. Para ello, el hilo conductor de esta tesis

doctoral son las diferentes alternativas de representación de las moléculas de la escena

de Docking que serán utilizadas como datos de entrada de dichos algoritmos.

En consecuencia, primero se replantea el problema PLDP como uno de Aprendizaje

por Refuerzo (RL). Acto seguido, se construye un sistema básico basado en el algoritmo
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de Deep Q-Network (DQN), originalmente diseñado para enseñar a agentes artificiales

a jugar a videojuegos de la consola de Atari 2600. En segundo lugar, se utiliza una im-

plementación, denominada QN-Docking, basada en un vector de características sencillo

para la representación molecular. Dicha implementación es testada en un entorno con

un receptor relativamente pequeño y un espacio de acciones limitado. Los resultados de

la fase de predicción muestran que QN-Docking consigue un aumento de velocidad 8

veces mayor en comparación con métodos estocásticos como METADOCK 2. Dicho pro-

grama es un nuevo software de alto rendimiento que incluye diversas metaheurísticas

para el Acoplamiento Molecular. Por último, una implementación alternativa basada en

imágenes, MVDQN, es testada en el mismo escenario que QN-Docking. Los resultados

muestran un rendimiento similar al de la primer implementación durante la fase de en-

trenamiento. Sin embargo, en la fase de predicción los resultados son mixtos. El agente

actúa de forma subóptima en varias de las posiciones de partida establecidas en el expe-

rimento. Este escenario final parece prometedor, no obstante, ya que hay mucho margen

de mejora para seguir puliendo el algoritmo y mejorar la representación molecular.

En resumen, estos resultados suponen un valioso hito en el desarrollo de un método

basado en Inteligencia Artificial más rápido y efectivo para resolver el problema PLDP

en comparación con métodos más tradicionales.

Palabras clave: Informática, Inteligencia Artificial, Redes Neuronales, Farmacología

molecular.
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ABSTRACT

Drug discovery is a long and expensive process that normally takes 10-15 years

from primary evaluation to regulator’s approval. As a result, molecular computer

simulations known as Virtual Screening (VS) are often used to predict drug candidates

during the first stages. One of the most widely used methods in VS is Molecular

Docking—or just Docking. The goal of this method is to solve the Protein-Ligand

Docking Prediction (PLDP) problem. In other words, to predict the 3D conformations

where a pharmacological candidate (also known as the ligand) binds to a given receptor

(normally a protein) in a particular spot around its surface. Traditional Docking methods

are based on optimization procedures of scoring functions following specific heuristics.

These mathematical functions model the molecular interactions.

Such methods are characterized by being computationally expensive. Thus, in this

dissertation it is intended to take advantage of the promising algorithms of Deep RL to

enhance the resolution of the Docking problem. To do so, the common thread of this

doctoral thesis is the different alternatives of representing molecules from the Docking

scene to be used as input for those algorithms.

Consequently, it is first reframed the PLDP problem as one of Reinforcement Learning

(RL). Then, it is built a basic system based on the algorithm of Deep Q-Network (DQN),

originally designed to teach artificial agents to play Atari 2600’s video games. Second, an

implementation based on a simple feature vector for molecular representation called QN-

Docking is used. This implementation is tested in an environment based on a relatively

small receptor and limited action space. Results for the prediction phase show that QN-
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Docking achieves 8 × speedup compared to stochastic methods such as METADOCK

2, a novel high-throughput parallel metaheuristic software for Docking. Finally, an

alternative implementation based on images, MVDQN, is tested in the same setting.

Results shows similar performance to QN-Docking during the training phase. However,

the results are mixed in the prediction stage. The agent acts suboptimally in several

of the starting positions set in the experiment. Nevertheless, this final scenario seems

promising since there is much room for improvement to keep polishing the algorithm

and improving the molecular representation.

In summary, these results entail a valuable milestone in developing a faster and

effective Artificial-Intelligence-based method to solve the PLDP problem in comparison

with more traditional methods.

Keywords: Computer Science, Artificial Intelligence, Neuronal Networks, Molecular

Pharmacology.
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Chapter 1

Introduction

1.1 Docking and Deep Reinforcement Learning

Drug development is known for being an excessively expensive, long, and difficult pro-

cess. It often takes an average of 10-15 years from the initial steps to market launch [8, 46].

Drug discovery, in particular, includes the first steps of the entire drug development pro-

cess. To this aim, thousands of pharmacological candidates—also know as ligands—are

subsequently filtered in a workflow known as Virtual Screening (VS). VS is a computa-

tional method employed in drug discovery to seek libraries of ligands in order to identify

those structures which are most likely to bind to a specific drug target, normally a protein

or enzyme. They consist of molecular simulations performed in a fast and precise fashion

to recreate the atomic interactions among molecules. A few hundred of the candidates

are selected through VS previous to the High-Throughput Screening (HTS) phase. In

that later phase, millions of pharmacological tests are conducted in order to check the

validity of the potential drugs. Those HTS tests are performed with the assistance of

robotic arms, data processing/control software, liquid handling devices, and sensitive

detectors. Therefore, they are normally quite expensive compared to the in silico exper-

1
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iments conducted with VS. Thus, VS methods have been extensively used to speed-up

the first stages of drug development in the last decades.

One of the most effective methods in VS is Docking[114], applied to solve the prob-

lem known as Protein-Ligand Docking Prediction (PLDP). In 1982,Kuntz et al. [73] were

the first to design and test a collection of algorithms to explore the geometrically viable

alignments of a ligand and a target molecule. But it was not until the 1990s when it

became widely used thanks to further improvements in the method itself [92], the sig-

nificant improvement in raw computational power of computer systems, and the incre-

ment in available molecular structural data. Two notes must be made before continu-

ing, for the sake of clarity and contextualization: (1) The term Molecular Docking, or

just Docking, will be interchangeably used to refer to both the PLDP problem and the

method to solve it from this point forward; and (2) The current dissertation will revolve

around the interaction between a large target molecule (normally, a protein) and a small

molecule (the ligand), not encompassing protein-protein Docking. Likewise, Docking

consists of the exploration of ligand conformations adopted within the binding sites of

macromolecular targets like proteins [33]. As a result, this method not only shortens

the research-to-market cycles but also leads to enormous cost savings [63, 155]. How-

ever, it demands powerful high-performance computing platforms, advanced parallel

programming models and complex algorithmic optimizations to deal with its intensive

computational expense [28, 52].

In parallel, the field of Artificial Intelligence has gained a tremendous momentum in

the last decade. This heyday is mostly due to the last achievements in the subfield of

Machine Learning (ML), and in particular in Deep Learning (DL) [76]. DL is a family

of algorithms based on learning data representations, whose most representative models

are the Artificial Neural Networks (ANNs). These are vaguely inspired by the biological

neural networks. They are made of many simple computing units (artificial neurons)
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arranged in sequential layers [131]. If a given ANN has three or more layers, then it is

described as a "deep" neural network. One of the strongest features of these powerful

and flexible models is that they are able to automatically learn high-level abstractions

of data. Consequently, DL has been successfully tested in a wide range of research and

application fields such as image recognition, speech recognition, machine translation,

self-driving cars, medical diagnosis, virtual personal assistants, stock market trading,

online fraud detection, recommender systems, and power systems [29, 76, 135], to name

just a few.

Furthermore, in the last lustrum there has been an increasing, vivid research trend

of DL applied to drug discovery [12, 15, 45], specially since the astounding results

achieved in Merck Kaggle [91] and NIH Tox21 [95] data challenges. Such trend has

sharply increased in the last year because of the high interest in finding a cure, either

a novel vaccine or a small pharmacological molecule, for the SARS-CoV-2 and stop the

thousands of deaths that this coronavirus is causing worldwide [56, 74]. Recently, it

has also achieved astonishing results in protein structure prediction [64, 136, 158]. The

proposed system, named AlphaFold, is able to create high-accuracy structures for 87

out of 146 free modelling domains in the 14th Critical Assessment of Protein Structure

Prediction (CASP14) benchmark [103]. The resulting dataset covers 58% of residues with

a confident prediction, of which a subset (36% of all residues) have very high confidence.

To give the reader a rough idea of the great impact of this research, it should be remarked

that traditional techniques to elucidate the shape of a protein based on synchrotrons or

on electron cryomicroscopy normally take months or even years. AlphaFold predicts

the structure of a given protein in just a few minutes. Moreover, there are only about

180,000 protein structures available in public databases, but the authors intent to publish

100 million structures in the next few months. Actually, the final dataset already covers

98.5% of human proteins with a full-chain prediction. Thus, this contribution in protein
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structure prediction is expected to accelerate research in virtually all areas in Biology.

In addition to DL, Reinforcement Learning (RL) is another renowned sub-discipline

in ML. It pursues the goal of teaching an agent to interact with a given environment to

maximize some notion of cumulative reward in the long term [151]. During training, a

policy function that determines the action to be taken by the agent is optimized in an

iterative trial and error learning process. RL has been living a renaissance in recent

years [71] thanks to more powerful computers, new algorithmic techniques, mature

software packages and architectures, and strong financial support [81]. Among those

novel algorithmic techniques, it stands out the combination of DL and RL, giving rise

to a new family of algorithms known as Deep Reinforcement Learning—henceforth

Deep RL. These algorithms integrate ANNs in some of the basic components of a RL

system such as the policy function, the value function, or the transition model. It should

be highlighted, therefore, that Deep RL comprises algorithms that are essentially RL

algorithms, so they share most of the pros and cons of this well known type of learning

in ML. The only but substantial difference is that Deep RL algorithms make use of ANNs

as function approximator in some of its component. Although there has been several

important attempts to integrate DL and RL algorithms in a single system, nobody had

been successful until the advent of striking breakthroughs such as Deep Q-network

(DQN) [99, 100] and AlphaGo [140, 141]. Other remarkable advances have been made

later to deal with traditional RL challenges like long time horizons, multi-agent settings,

complex, continuous state-action spaces, and imperfect information [9, 161].

In fact, Deep RL has also lead to an extensive variety of applications such as

autonomous driving, industry automation, natural language processing, healthcare,

robotics manipulation, etc. RL and Deep RL have been applied in drug discovery as well

in areas like molecular de novo design [102], retrosynthesis [133], and inverse-design

chemistry [127]. Thus, Deep RL is expected to revolutionize the field of AI in the next
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years [1] since it is considered as one of the closest approaches to the longed-for concept

of Artificial General Intelligence (AGI) [124, 163].

Therefore, in the current doctoral thesis it is intended to take advantage of the

promising algorithms of Deep RL to enhance one of the most popular in silico methods

in drug discovery known as Docking. DL techniques based on supervised learning are

already producing outstanding achievements in drug discovery and VS [66]. To the

best of our knowledge, there had not been any attempt to apply Deep RL in Molecular

Docking. Thus, we believe that the current research could contribute to accelerate drug

discovery and be able to deliver medicines to patients in a shorter time frame.

1.2 Hypotheses and objectives

Solving the Docking problem is an expensive process from a computational point of

view, as mentioned previously. In fact, the fastest traditional methods of Docking cannot

process vast molecular databases in a feasible amount of time [54]. The central hypothesis

of this dissertation, then, is formulated as follows:

• Main hypothesis. The resolution of Docking can be enhanced by using an Arti-

ficial Intelligence approach based on Deep Reinforcement Learning algorithms.

In particular, the finding of the optimal pose for a given conformation can be accel-

erated in comparison with traditional Docking methods.

In addition to the central hypothesis, it is necessary to make the following assumption

when defining the states of Deep RL to fully understand the research work behind this

thesis and specially the structure of Chapter 3. In the context of this dissertation those

states refer to the molecular representation/encoding. Those states are later used as input

data for an ANN.
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• Secondary hypothesis. It may necessary to add structural information from both

the ligand and the receptor to build the states of Deep RL. This can correctly

inform a model of ANN to solve the Protein-Ligand Docking Prediction problem.

Thus, the ultimate goal of the current dissertation can be deducted from the previous

main hypothesis and stated in this wise:

• Ultimate objective. To accelerate the resolution of the Protein-Ligand Docking

Prediction problem for any given ligand-receptor pair compared with traditional

Docking methods.

Furthermore, the following specific objectives are proposed in order to accomplish

this ambitious and challenging aim:

• Specific objective 1. To set up the basic system based on a Deep Reinforce-

ment Learning algorithm to solve the Protein-Ligand Docking Prediction prob-

lem. Such system will be devised to incorporate a Deep RL algorithm yet to

be determined—for instance, Deep Q-Network (DQN), Deep Deterministic Pol-

icy Gradient (DDPG), or Asynchronous Advantage Actor Critic (A3C). Likewise,

it should be flexible enough to accommodate different approaches with respect to

the basic RL components. For instance, the user should be able to change the state

representation, the size of the action space, the reward function, the model of the

value/policy function, the rules of the environment, etc. This modularity is essen-

tial in a research context such as this one.

• Specific objective 2. To implement the basic system created in the Specific ob-

jective 1 by representing the states through a feature vector to solve the Protein-

Ligand Docking Prediction problem in a simple environment. The initial Dock-

ing setting will be simplified as much as possible to quickly test the viability of the
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system. Thus, a small receptor requiring less computation will be selected for test-

ing. Moreover, a small feature vector will be used to represent the Docking scene.

Such feature vector will contain positional information of the ligand like 3D coor-

dinates and quaternions. As a consequence, a standard feedforward ANN will be

used to approximate the true value/policy function.

• Specific objective 3. To further develop the basic system created in the Specific

objective 1 by representing the states through images to solve the Protein-Ligand

Docking Prediction problem in a simple environment. Following the secondary

hypothesis, it will be necessary to add structural information from both the ligand

and the receptor in the RL states to correctly inform the model (a neural network)

to solve the problem. This directly affects to the way that molecules are represented

in the Docking scene. For further information about molecular encoding, see

Section 2.3. In particular, the RL states will be represented as images from 2D

drawings of molecules generated by a molecular viewer software since they include

the structure of both molecules and their relative distance from each other. In

addition, a multi-view model will be applied to avoid molecular overlapping

considering that images are two-dimensional by nature but the molecular space

is three-dimensional.

1.3 Contributions and impact

The contributions of this dissertation can be summarized as follows:

• QN-Docking, a novel Molecular Docking method based on Deep RL, was success-

fully developed. It was built upon Q-learning using a single-layer feedforward

neural network to train a ligand (the agent) to find its optimal interaction with re-

spect to the receptor molecule. In addition, the corresponding environment of RL
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and the reward function based on a force-field energy function were implemented.

The proposed method was evaluated in an exemplary molecular scenario based on

the kaempferol and beta-cyclodextrin. Results for the prediction phase showed that

QN-Docking achieved 8× speedup compared to stochastic methods such as META-

DOCK 2, a novel high-throughput parallel metaheuristic software for Docking. The

work of QN-Docking was published in Applied Soft Computing [138].

• An early approach using images to represent the states of Deep RL was explored.

Images of the Docking scene were generated in each timestep using PyMol [134].

Furthermore, the original model from QN-Docking based on a standard feedfor-

ward neural network was replaced by a Multi-View Convolutional Neural Net-

work [148] originally designed to solve problems of 3D shape recognition. The new

method was named MVDQN. Similar results to QN-Docking were obtained in the

context of the kaempferol and beta-cyclodextrin. Nevertheless, the Specific objec-

tive 3 (to implement the core system created in the Specific objective 1 by repre-

senting the states through images) could not be fully attained due to: (1) Sampling

inefficiency: generating images of the Docking scene in each timestep of the algo-

rithm is too costly for PyMol, specially with large receptors. This drawback slows

down the learning process in excess considering that images have to be constantly

generated during training; (2) Molecular overlapping: this challenge may be solved

by using a transparency effect manually applied to the receptor in the molecular vi-

sualizer when generating the different views of the Docking scene. However, this

can hardly be applied automatically in PyMol for any given ligand-receptor pair

because many of the generated images turn out to be defective or non-informative

with respect to the Docking state. Even so, this approach is on par with respect

to the obtained poses from the feature-vector-based perspective and served to get

closer to achieve the Ultimate Objective defined in 1.2.
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• A first approach using point clouds to represent the states of Deep RL is being in-

vestigated. In particular, 3D atomic coordinates plus the atom type were included

in the input data to be fed to a DQN. The model of the new proposal, named DQN-

Docking, was also adapted to these new input data. This was necessary because

the standard feedforward neural networks cannot directly handle point clouds due

to their irregular, unstructured, and unordered nature. More specifically, a combi-

nation of the PointNet++ model [118] and the DQN Dueling architecture [166] was

developed to select the optimal action for the agent in each timestep. The energy

function is currently being vectorized to deal with larger receptor for the sake of

generalization.

• A novel molecular Docking method named METADOCK 2 was built. This method

incorporates several novel features, such as (1) A ligand-dependent blind Dock-

ing approach that exhaustively scans the whole protein surface to detect novel al-

losteric sites (i.e. global optimization); (2) An optimization method to enable the

use of a wide branch of metaheuristics; and (3) A heterogeneous implementation

based on multicore CPUs and multiple graphics processing units. The PhD candi-

date collaborated with other members from the research team to publish the article

in Bioinformatics [54].

• An initial version of QN-Docking was presented by the PhD candidate in the

International Conference on Parallel Processing (ICPP) held in Eugene, Oregon, in

August 2018. This work was included in the Proceedings of the 47th International

Conference on Parallel Processing [137].

• The latest advances in the research of this doctoral thesis with respect to the method

based on images for molecular encoding (see Section 3.3) have been formatted as a

scientific paper. The manuscript has been recently submitted to the editors of The
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Journal of Supercomputing (Q2). We are currently awaiting for their acceptance.

• The PhD candidate was awarded in May 2019 with the first prize in the competition

"Mi tesis en 3 minutos" (My thesis in 3 minutes) within the Doctoral Program in

Computer Technologies at Universidad Católica de Murcia. The student defended

his research work developed so far in front of the corresponding committee while

showing a short video tutorial hosted on YouTube for that purpose.

1.4 Thesis structure

In this section, it is summarized the content of each chapter included in the current

doctoral thesis:

• Chapter 1: Introduction. In this chapter it is performed the contextualization of this

doctoral thesis by describing the addressed disciplines and fields, the hypotheses

and objectives, the general contributions and research impact, and the general

structure of the document.

• Chapter 2: Background and related work. This chapter includes the theoretical

fundamentals of Molecular Docking and DQN necessary to fully understand the

content of rest of the chapters in this dissertation. Moreover, it also contains a

specific section to review the previous works of DL applied to Docking, which can

be considered as the closest studies to the research line addressed in this thesis.

• Chapter 3: Reinforcement Learning applications for solving the Protein-Ligand

Docking Prediction problem. This chapter is divided according to the specific ob-

jectives. More specifically, it is first described the conceptualization of the basic

system mentioned in the Specific objective 1 to solve the PLDP problem. In partic-

ular, it is comprehensively explained the reformulation of the PLDP problem as a
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RL task and the RL components—i.e. the agent, value function, environment, etc.

Such system will be the cornerstone for next implementations of this chapter based

on how the molecules are encode (or the RL states are represented): (1) Using a sim-

plified feature vector; and (2) Images. The corresponding methods, experimental

design, results, and discussion are presented for these two approaches.

• Chapter 4: Discussion, conclusions, and future work. Finally, this chapter in-

cludes a general discussion for the whole research work considering the results

from the two different approaches to represent the states of the Docking scene with

respect to the Deep RL algorithm. Likewise, the common conclusions and avenues

for future research are also incorporated in this final chapter.

• References. In this section, the reader may find the bibliography in order to delve

into the details of the different issues addressed in this dissertation.
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Chapter 2

Background and related work

2.1 Molecular Docking

The PLDP problem involves two molecules known as the ligand and the host. The

ligand—i.e. the pharmacological candidate or compound—is the smallest molecule with

normally less than 200 atoms. The host, also known as the target or the receptor, is

typically a protein or enzyme involved in a given disease [92, 125]. Molecular Docking

is a computational method that models the interaction between the ligand and the host

to solve the PLDP problem and has become an essential tool in drug discovery in recent

years. The main goal in Docking is for the ligand to find the optimal interaction site

where both molecules interact with one another (see Figure 2.1). To do so, Docking

consists of two interrelated steps: (1) Sampling conformations of the ligand in the binding

site of the host. The binding site, also called pocket site, encompasses the region on

the protein that binds to the ligand with specificity; and (2) Accurate prediction of

the interaction energy associated with those conformations using an energy function—

henceforth Scoring Function (SF). In this definition, it is assumed that the location of the

binding site of the protein is known. If the binding site is totally unknown, then the

13
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Figure 2.1: Illustration of the PLDP problem. The objective for the simulated ligand (A,
with a blue skeleton) is to find the optimal interaction site (B, with a green skeleton) in
the host surface. The optimal interaction site is zoomed for clarity sake.

problem is called Blind Docking [48, 110].

Moreover, there exist two different approaches in drug design, Structure-Based Drug

Design (SBDD) and Ligand-Based Drug Design (LBDD) [33, 98]. The latter approach is

also known as Similarity-Based Drug Discovery. SBDD exploits three-dimensional struc-

tural information gathered from the protein, while LBDD is based only on the knowledge

implicitly contained in the chemical structure or physical properties of other ligands—i.e.

their similarity—that bind to the biological target of interest. Needless to say, Molecular

Docking falls in the SBDD category. In addition, Docking is performed multiple times for

different chemical compounds from a ligand library in a method called Structure-Based

Virtual Screening (SBVS). From this point on, the term of VS will be used in reference to

SBVS particularly. Such a method broadly encompasses the following methods ranked

from lower to higher accuracy: Docking, Molecular Dynamics (MD), and Quantum Me-

chanics (QM). Although MD and QM are far more precise than Docking when recreating

the protein-ligand interactions, they are even more computationally expensive. This se-

rious downside make these two methods impracticable in a VS context where thousands

or even millions of candidates are normally tested.

In SBVS applied to Docking, large libraries of ligands are computationally screened
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against a target of known structure, and those that are predicted to bind reasonably fine

are experimentally tested through a subsequent High-Throughput Screening (HTC) pro-

cess [75]. HTC is a pre-clinical method based on industrial robotic arms, data process-

ing/control software, liquid handling devices, and sensitive detectors to quickly conduct

millions of chemical, genetic, or pharmacological tests. Additionally, the tested libraries

may contain millions of compounds [55]. So, the underlying assumption is that the more

extensive and diverse the database, the higher possibilities of discovering new drugs.

Nonetheless, SBVS methods currently fail to make accurate activity and toxicity predic-

tions. This is due to constrains both in the capability of the SFs from a theoretical point of

view and in the access to sufficient computational resources. The consequence of these

drawbacks is that even the quickest SBVS methods are not able to process large chemical

databases in a reasonable amount of time.

Another important distinction in Docking is related to flexibility of the involved

molecules. Early Docking programs follow the lock-and-key theory [34], which con-

ceives the ligand-host binding mechanism as a rigid ligand fitting into a rigid host just

as much as a key fitting in a lock. A more realistic approach is that of based on the

induced-fit theory [70], which states that both the ligand and the active site of the host

are continually reshaped by the interactions between each other. However, adding flexi-

bility to the host is a great challenge, especially with respect to backbone flexibility [47].

MD would be the ideal way of addressing this issue. Unfortunately, MD entails a much

higher computational cost, as previously mentioned. This prevents MD from being rou-

tinely applied to screen vast biological databases. Consequently, in nearly every Docking

software nowadays it is adopted an intermediate position that only considers the ligand

as flexible. This last approach implies a good trade-off between accuracy and cost.

Thus, the resolution of the PLDP problem is not an easy, straightforward task. As for

the conformational search, there are six degrees of translational and rotational freedom as
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well as the conformational degrees of freedom of both the ligand and protein. Therefore,

there is a huge number of potential interaction modes between two molecules, which

makes Docking an NP-complete problem [139]. In other words, it is computationally

unfeasible to generate all the possible conformations or to perform an exhaustive search.

Still, if the best Docking pose—i.e. the one with the lowest SF value—were found,

evaluating its binding energy would not be a trivial task either. At present, the accuracy

of the SFs remains the main limitation affecting the reliability of Docking and SBVS [2,

75]. In fact, there are three types of SFs depending on the nature of the information

included in their estimates: force-field-based, empirical, and knowledge-based [97].

More recently, it has emerged a new type of SF based on ML and DL (see Section 2.4

for further details). Each of those SFs have their own benefits and drawbacks.

Another serious problem with SBVS and Docking is that they cannot be applied to

target molecules with unknown 3D structures. Unfortunately, proteins with known 3D

structure are still relatively small compared with all the available chemical space [165].

Consequently, some authors like Rifaioglu et al. [123] argue that SBVS is not generally

suitable for large-scale ligand-protein interaction prediction. It is also important to note

that the available data for protein-ligand binding is inherently biased. For instance, the

DUD-E benchmark dataset is reported to suffer from the negative selection bias prob-

lem [16]. In addition to molecular flexibility, there are other issues to bear in mind, such

as the simulation of structural water located in deep cavities of the host, drug toxicity, or

how to represent or encode the molecules involved in the PLDP problem. Last but not

least, there is a natural limit of computational resources that makes necessary to find a

good balance between accurate, realistic representation of the molecular interactions and

the cost of such resources. In spite of all this difficulties and disadvantages, SBVS and

Docking may narrow the search space down to few hundreds of compounds with desired

properties to be further investigated in the subsequent stages of drug development. They
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are not definitively the panacea but what is undeniable either is that nowadays they have

become an essential part of drug discovery [66, 92, 114, 119].

2.2 Deep Reinforcement Learning and Deep Q-Networks

As previously mentioned, in RL an agent interacts with a certain environment trying to

learn an optimal control policy to maximize the sum of some kind of cumulative reward.

In finite-horizon, episodic tasks, the agent learns across a set of subsequent attempts or

episodes made of several time-steps. As it is shown in Figure 2.2, the agent observes a

state st at a given time-step t, takes an action at, gets the reward rt from the environment,

and transitions to the next state st+1. Unlike supervised learning, there is no explicit

dataset. The environment generates the data according to the actions that the agent

takes. Additionally, the proposed method is focused on non-stationary and Partially

Observable Markov Decision Process—where the agent is only able to see part of the

world state instead of the internal state (memory) to act optimally—problems.

Figure 2.2: Representation of a typical problem in Reinforcement Learning.



18 Antonio Serrano

RL is probably the hardest type of learning in ML in part because it encompasses

many different problems, each of them with their own peculiarities. For example, Can

the problem be modelled as a multi-armed bandit problem or as a Markov Decision

Processs (MDP)? If it is the latter, is it a Full or a Partially Observable MDP? Environment

dynamics are stationary or non-stationary? Is it a finite, indefinite, or infinite horizon

task? If they are finite, Could be considered as episodic or non-episodic? Are the

state and action spaces discrete or continuous? Does the size of the problem require a

tabular or approximate solution? Is it more suitable to use model-based or model-free

algorithms? If it is the latter case, Is it better to try optimizing the policy function directly

or a value function? Which strategy is more appropriate to handle the exploration

vs. exploitation trade-off? If a value-function-based algorithm is used, What degree of

bootstrapping regarding Temporal Difference should be applied? Is the agent facing one

or more tasks? Is there one agent interacting with the environment or are there several of

them at the same time? Etc. This heterogeneous nature of RL gives rise to a plethora of

algorithms, as shown in Figure 2.3. Describing every of the aforementioned theoretical

concepts and each of those algorithms is beyond the purpose of this dissertation, so they

are not covered in this section. For a further study of the fundamentals of RL, the reader

is referred to Sutton and Barto [151].

Furthermore, DQN is the selected algorithm of Deep RL to build the system men-

tioned in the Specific objective 1 (see Section 1.2) that is expected to solve the PLDP

problem. As shown in Figure 2.3, DQN is a MDP, model-free, value-based, off-policy

algorithm. MDP is "a classical formalization of a sequential decision making problem,

where actions influence not just immediate rewards, but also subsequent situations, or

states, and through those future rewards" [151]. By model-free, it means that DQN relies

on real samples from the environment to take actions, as opposed to model-based meth-

ods that leverage models to provide the agent information about the dynamics of the
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Figure 2.3: Map of Reinforcement Learning algorithms [174]. Boxes with thick lines
denote different categories, others denote specific algorithms.

environment. In value-based methods, the policy function that tells the agent what ac-

tion to choose next is not directly estimated as in policy-based methods. Instead, a value

function is estimated (by selecting the action with the best value) and the policy func-

tion is derived from that value function. Finally, off-policy algorithms are those where

the policy that is used to update the value function is different from the behavior policy

used for acting. For a detailed justification of the choice of that algorithm, the reader may

consult Section 3.1.

In the following lines this algorithm is briefly described, including its updating rule,

the loss function for the ANN, additional artifices to favor convergence, and further

improvements in recent years. DQN is based on another well-known algorithm called Q-

learning [168]. Q-learning is a model-free algorithm because the transition probabilities

are unknown. Instead, the environment produces the states and rewards. In addition,

it is value-based since it tries to learn a state-action value function—Q-function from
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here onward—that reflects the utility values (or Q values) of each state when executing a

certain action, instead of directly learn the optimal policy as in policy-based algorithms.

These utility values represent the estimated accumulated reward for the remaining

time-steps in the episode. More specifically, those Q values are continuously updated

according to the rule in Equation 2.1:

Q′(s, a) = Q(s, a) + α(r + γ max
a′

Q(s′, a′)−Q(s, a)) (2.1)

where Q(s, a) is the current expected utility of taking action a in the state s, α is the

learning rate, and the term in parenthesis refers to the error between the target expected

utility r + γ max
a′

Q(s′, a′) and its current predicted value Q(s, a). γ is a discount factor

(normally close to 1) that is used under the assumption that estimated future rewards

are worth less than certain immediate ones. The predicted expected utility is equal to

the sum of the immediate reward r plus the discounted Q value of the next state s′,

assuming that the best possible actions is taken (a′). Q-learning is considered as an off-

policy algorithm because the next action a′ is selected to maximize the value of the next

state s′ instead of following the current policy—also known as the behavior policy—as in

on-policy methods such as SARSA [150]. In particular, DQN follows an ε-greedy strategy

as the behavior policy in order to manage the exploration/exploitation trade-off in RL.

DQN is also an approximate solution method, not tabular. In particular, an ANN is

used to approximate the Q-value function Q(s, a|θ), where θ represents the weights from

the ANN that parametrize those Q values. Those weights are updated iteratively during

the training process. In every of those iterations, the goal is to minimize the loss function

included in Equation 2.2:

L(s, a|θi) = (r + γ max
a′

Q̂(s′, a′|θ−i )−Q(s, a|θi))
2 (2.2)
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The weights are updated in the next iteration i + 1 based on backpropagation by com-

puting θi+1 = θi − α∇θL(θi). As the Q-function performs several weights updates and

its estimates become more reliable, the agent starts to take more and more deterministic

actions based on that function. Adam [67] is chosen as the update rule for QN-Docking.

In supervised learning, the loss is the difference between the actual and the predicted

values. Similarly, in the context of DQN the loss is the difference between the target val-

ues rt + γ max
a′

Q̂(s′, a′|θ−i ), and the predicted values Q(s, a|θi). Note that θ−i refers to the

weights of the so-called target network, which is a copy of the deep Q-Network—also

known as online network. The difference between both ANNs is that the weights of the

target network normally remain fixed, being updated only every C iterations, while the

online network is updated in every single iteration. In other words, in every iteration the

estimated Q-values from the online network get a little closer to the ones from the target

network. But the target network’s weights are also updated now and then. Therefore,

it is as the algorithm was chasing a moving target, hence its highly oscillated training

process. It should be noted as well that the deep Q-Network architecture is based on a

Convolutional Neural Network (CNN) comprised of three hidden layers—two convolu-

tional layers (without pooling) along with a fully-connected layer [72, 82]. CNNs are a

particular architecture of neural networks that performs specially well in image recogni-

tion.

In addition, the Q-learning algorithm with one-step return based on non-linear func-

tion approximators such as ANNs is known for its difficulty to converge. Thus, the au-

thors of DQN adopted additional measures to enable and speed up convergence, such

as the use of an experience replay database [87], the target network with frozen weights,

and reward clipping. Namely, the experience replay dataset is used to store a fixed num-

ber of experiences or memories, which are transition tuples containing (st, at, rt, st+1)–i.e.

the current state, the action taken, the reward obtained, and the next state. Those expe-
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riences are uniformly sampled from the dataset in minibatches to train the ANN. The

addition of those experiences helps to break the correlation between samples from sub-

sequent time-steps, and therefore facilitates convergence.

Moreover, DQN has been improved over the years with several refinements [49].

Thus, double deep q-learning [159] tackles the problem of overoptimistic value estimates

by evaluating the greedy policy according to the online network, while estimating its

value following the target network. This modification improves DQN in terms of value

accuracy and policy quality. In addition, the dueling network architecture [167] con-

tributes to identify which states are valuable per se, without learning the effect of each

action for each state. To do so, it includes two separate estimators, one for the state value

function V(s) and one for the action advantage function A(s, a). The stream V(s; θ, β) of

the model learns a general value that is shared across many similar actions at that state

s, leading to a faster convergence. Finally, prioritized experience replay [130] also speeds

convergence by sampling experiences according to how surprising or unexpected they

are instead of doing it randomly. To avoid overfitting, though, a stochastic sampling

method that interpolates between pure greedy prioritization and uniform random sam-

pling is employed.

2.3 Molecular encoding

DL methods are already producing outstanding achievements in drug discovery and

VS, as described in Section 2.4. This success may be explained, among other factors,

by advancements in molecular and biological representation instead of using traditional

human engineered descriptors. In effect, the interaction between protein and ligand

is the root of the binding affinity. For this reason, it is necessary to painstakingly

describe the protein–ligand interactions while reducing redundant information as much
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as possible, which may largely determine model performance [21, 27]. Nevertheless,

molecular encoding is a double-edged sword. As Kimber et al. [66] say, "the interactions

between protein and ligands are complex, and encoding the most informative bits in

a computer-readable format is one of the main challenges in both Cheminformatics

and Bioinformatics." In the same vein, Bender and Cortes-Ciriano [7] point out that

representing drug discovery information for AI is difficult because a single or even few

descriptors of a compound are not able to anticipate the full biological complexity of

drug effects, which, however, is the underlying assumption of many computational drug

discovery approaches. In fact, there is no workhorse representation for each problem in

drug discovery. With the coming of DL, different kinds of encoding formats to describe

molecules can be inputted into variants of ANNs, which bring more choices for drug

discovery. In the case of Deep RL, in addition, the size of the input data that fed to the

ANN is especially sensitive since it can affect system performance dramatically. For all

these reasons, it is briefly reviewed the main alternatives for molecular encoding in VS in

the rest of this section. Actually, molecular encoding is the backbone of this dissertation,

as the reader may deduct from the structure of Chapter 3. It should be highlighted as well

that molecular representation is a burgeoning topic in drug discovery. More specifically,

this section could not have been written so extensively for the simple reason that most of

the cited works were published this year or last year (2020 and 2021).

Thus, Xu et al. [173] distinguish the following molecular representations in drug dis-

covery: molecular descriptors, fingerprints, sequence data—such as Simplified Molec-

ular Input Line Entry System (SMILES) and SMILES Arbitrary Target Specification

(SMARTS)—, molecular graphs, and 2D and 3D structures of molecules. In the context of

VS and protein-ligand interaction, Kimber et al. [66] identify different representation for-

mats according to the molecules involved: ligand, protein, or complex (both the ligand

and the protein) encoding. Following the recent overviews of Kimber et al. [66] and Qin
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et al. [119], the rest of this section will focus on the molecular representation in the con-

text of VS at a complex level, namely on molecular descriptors, Interaction FingerPrints,

molecular graphs, 3D grids, and other encoding formats.

Molecular descriptors are domain-specific, physiologically relevant features tradi-

tionally used in ML models for drug discovery. In the context of SBVS, descriptors

encode a binding interaction with numerical values describing the existence of certain

binding features including their degree and frequency. Likewise, these chemical de-

scriptors used to represent binding features can be zero-dimensional (if generated from

a scalar), 1D, 2D, 3D or 4D [153]. They are extremely diverse, as they cover geomet-

ric descriptors (including coordinates, distances, angles, surface areas, and curvatures),

chemical descriptors (such as atomic partial charges, Coulomb potentials, atomic electro-

static solvation energies, and polarizable multipolar electrostatics), and other advanced

descriptors [14].

According to the way that protein–ligand interactions are represented, these descrip-

tors can be grouped into knowledge-based descriptors, descriptors derived from terms

of force-field or empirical SFs, and descriptors based on advanced mathematics [119].

Knowledge-based descriptors are usually estimated by counting the protein–ligand con-

tacts between two elemental atom types or calculating the distance-dependent pairwise

statistical potentials (see Figure 2.4). The force field-based SF utilizes classical force fields

to calculate non-covalent protein–ligand interactions, such as Van der Waals and elec-

trostatic interactions. The terms molecular mechanics PoissonBoltzmann surface area

(MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA) are

normally included in the computation to deal with the solvation effect [88]. In addition,

the empirical SF includes further terms representing entropic contributions, such as po-

lar surface area and solvent-accessible surface area (SASA). Therefore, the terms in the

force field and empirical SFs are potentially used to represent the binding features. As
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for the descriptors based on advanced mathematics, there are three types of mathemati-

cal methods to represent binding interactions: differential geometry, algebraic topology,

and graph theory. The fundamental hypothesis of these methods is that the physics and

intrinsic properties lie in low-dimensional subspaces or manifolds embedded in a high-

dimensional data space [106]. The models based on these descriptors have succeeded

in the Drug Design Data Resource (D3R) Grand Challenges [78, 105]. For a compre-

hensive list of the computational models based on molecular descriptors to represent

protein–ligand interactions, the reader is referred to Table 2 in Qin et al. [119].

Figure 2.4: Sketch of the process of characterizing the protein-ligand complex (PDB:
2p33) as a set of structure-derived descriptors (C.C to I.I) in Ballester et al. [4]. The
discontinuous green lines connect the ligand chlorine atom with all protein carbon atoms
within the distance cutoff represented by the green sphere, with the number of these
pairs giving value to the C.Cl descriptor. The rest of the descriptors are calculated in an
analogous manner.

Interaction FingerPrints (IFPs) describe the interactions between a protein and a

ligand based on a defined set of rules [152]. The bit string, in this context, encodes

the presence or absence of interactions between the ligand and the surrounding protein

residues. Some of these fingerprints are derived at the level of protein residues, while

some others are derived at the atomic level [119]. In the former case, each binding site

residue is described by the same number of features, which usually include interaction
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types such as hydrophobic, hydrogen bond donor and acceptor. There exist several

IFPs encoding interaction types such as Structural Interaction Fingerprints (SIFts) [24],

Protein-Ligand Interaction Fingerprint (PyPLIF) [120], IChem’s IFP [20], and PADIF [58].

For example, the SIFts represent the interactions between the ligand and binding site

residues as an n × 7 long bit string. In this case, the seven interaction types describe

whether: (1) The residue, their main, or side chain atoms are in contact with the ligand;

(2) A polar or apolar interaction is involved; and (3) The residue provides hydrogen bond

acceptors or donors. Another example based on IChem’s IFP is explained in Figure 2.5.

Figure 2.5: Table of protein–ligand interactions and interaction fingerprint (IFP) gener-
ated by IChem [20]. For every ligand-binding residue, seven bits are switched either on
(1) or off (0) as whether a particular interaction is detected or not with the ligand. Inter-
actions are registered in a precise order (hydrophobic, aromatic face-to-face, aromatic
edge-to-face, hydrogen bond accepted by ligand, hydrogen bond donated by ligand,
ionic bond with ligand negatively charged, ionic bond with ligand positively charged).

The IFPs are sensitive to the order of the residues and may change according to the

size of the molecules. This limits their application for ML purposes, as discussed in

the last paragraph of this section. As a solution, Simple Ligand–Receptor Interaction

Descriptor (SILIRID) [17] is proposed as a binding site independent and fixed-length IFP.

In addition, distances with respect to interaction pairs or triples are introduced to explain

the interactions more explicitly [25, 112, 129]. IFPs based on circular fingerprints—those

that incorporate information about the arrangement of heavy atoms around each central
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atom—are also applied with the aim of becoming more independent from predefined

interaction types [19]. This is done by encoding all possible interaction types implicitly

via the atom environment. For a thorough list of the computational models based on

IFPs to represent protein–ligand interactions, the reader is referred to Table 1 in Qin et al.

[119].

Moreover, it should be noted that fingerprints and molecular descriptors have been

the traditional inputs of ML models for drug discovery, while other formats of molecular

encoding such as sequence data and 2D and 3D structures were mainly used for storing

and presenting molecules. Nonetheless, the design of fingerprints and descriptors is a

complex and arduous process, so it cannot be performed at a large-scale level. Addition-

ally, it can also entail the loss of essential information. Likewise, DL algorithms have

made significant progress in representation learning, as explained in Section 1. They can

directly learn highly nonlinear functions to minimize the input data. As a result, the lat-

ter formats have become more and more popular as encoding alternatives for ML and

DL models. In the next paragraphs, these thriving formats of molecular representation

are explained.

Complexes can be encoded using molecular graphs as well. These graphs represent

the structural formula of a chemical complex comprising nodes (corresponding to the

atoms of the complex) and edges (corresponding to the chemical bonds). The nodes

normally come with an associated feature vector, while the bonds or the relationship

between atoms are usually encoded in matrix form [66]. Some authors also consider

features such as one-hot encoded atom type or degree and a binary value to describe

aromaticity [86], for example. The node description in the complex is straightforward,

but the complexity of molecular graphs in VS comes with the description of the interac-

tions between the atoms. These interactions should include covalent and non-covalent

bonds. Thus, Tsubaki et al. [157] use an attention mechanism to model those interactions
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by computing which subsequences in the protein are more important for the ligand by

assigning greater weights to the subsequences. This add some flexibility to capture the

interactions between compounds and proteins rather than obtaining a simple summa-

tion.

Lim et al. [86] create another DL approach for predicting drug-target interaction us-

ing a distance-aware graph attention algorithm to differentiate various types of inter-

molecular interactions. In this case, they considers two adjacency matrices. The first one

represents purely covalent interactions, while the second one describes both covalent

interactions and noncovalent intermolecular interactions plus their strength through dis-

tances. Finally, Feinberg et al. [32] introduce another method for protein-ligand binding

affinity prediction based on a Graph Convolutional Neural Network (GCNN)–see Fig-

ure 2.6. They set two tensors to treat the interactions between atoms: (1) a 2D tensor with

the distance for each atom pair from the ligand and receptor; and (2) a 3D tensor whose

shape is N × N × Net, where N is the number of atoms and Net is the number of edge

types. So Aijk = 1 if atom j is in the neighborhood of atom i and if k is the bond type

between them. If not, that same entry is equal to 0. This procedure numerically encodes

the spatial graph as well as the bonds through edge type.

Another type of encoding used in predicting protein-ligand interactions are 3D grids.

In this format, the protein is embedded into a three-dimensional Cartesian grid centered

on the binding site. Analogously to images, each little cube of the grid holds one or

several values that describe the physicochemical properties of the complex at that specific

position in the three-dimensional space. Such cubes may comprise just 1D floating point

array [162] or a 4D tensor [147] to be used as input for a DL model, for example. The

entire grid has normally a size between 16 and 32 ångströms (Å), while each cube is

usually 0.5 - 1 Å wide [35, 149, 162]. The features included in each cube may consist

of (1) Simple annotations of atom types and IFPs, as in Hochuli et al. [50], Li et al.
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Figure 2.6: Visual depiction of the gated graph neural network with atoms as nodes
and bonds as edges in Feinberg et al. [32]. The small molecule propanamide is chosen
to illustrate the propagation of information among the different update layers of the
network.

[80], Wallach et al. [162]; (2) Pharmacophoric or physicochemical features, as in Skalic

et al. [143, 144], Stepniewska-Dziubinska et al. [147]; and (3) Energy-based attributes

using one or diverse probe atoms, as in Erdas-Cicek et al. [31], Sunseri et al. [149]. An

example based on pharmacophoric/physicochemical features of the ligand is shown in

Figure 2.7.

Nevertheless, this approach based on 3D grids has also its own disadvantages. Al-

though the size of the grid and its resolution may be adjusted, in general, it entails many

data points to be used as input data for an ANN, which can slow down the training

process in DL. Also, in the grid representation, a large amount of empty grid points can

cause unnecessary computation and memory usage. Moreover, the grid representation

can lose distance information between atoms depending on the selected grid spacing.

There are also other encoding formats in VS, which will only be shortly explained

in the following lines. The first format is known as topology-based methods [13]. The

study of topology deals with the connectivity of different components in a given space,

and characterizes independent entities, rings and higher dimensional faces within the
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Figure 2.7: Example of generated properties (hydrogen bond acceptor, donor, and aro-
maticity) for (PDB entry 1FPU) in Skalic et al. [143]. Ligand occupancy is displayed in
black wireframe while aromatics, Hydrogen bond acceptors and donors are in yellow,
red and violet, respectively. The generated predictions shown in the column labeled 0.5
used half the atom counts of the cocrystallized ligand as the input. Column 1.5 follows
the same logic, while the third shows actual cocrystallized ligand. As the atom count
grows, the generated fields expand and are able to match more peripheral groups.
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space. Although some authors like Kimber et al. [66] consider this type of molecular

representation an independent format, for some others scholars they are a specific kind

of fingerprints called "topological fingerprints" [13, 119]. Either way, element-specific

topological invariants can help retaining the 3D biological information. In this case, the

complex can be represented by an image-like topological representation, as if they were

barcodes (see Figure 2.8). For example, Zhu et al. [176] introduce a molecular encoding

simply based on the protein-ligand atom pairs and their distances. All atom pair energy

contributions are summed, while the contributions themselves are learned through an

ANN considering the properties of the two atoms and their distances.

Figure 2.8: An illustration of barcode changes from wild type to mutant proteins
from Cang and Wei [13]. (a) The wild type protein (PDB:1hmk) with residue 60 as Trp.
(b) The mutant with residue 60 as Ala. (c) Wild type protein barcodes for heavy atoms
within 6 Å of the mutation site. Three panels from top to bottom are Betti-0, Betti-1, and
Betti-2 barcodes, respectively. The horizontal axis is the filtration radius (Å). (d) Mutant
protein barcodes obtained similarly to those of the wild type.

Likewise, Pereira et al. [111] propose a Docking-based VS method based on DL.

In this case, the interactions between atoms are handled through the concept of atom

context—i.e. atom and amino acid embeddings. The idea of using information from
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closest neighbor atoms of both compound and protein have been successfully explored

in previous work on structure-based drug design [169]. The model is composed of an

embedding layer that extracts relevant features from the atom context followed by a

convolutional layer to summarized all that information in a fixed-length vector. The basic

features extracted from the context of an atom include the atom types, atomic partial

charges, amino acid types, and the distances from neighbors to the reference atom. Then,

the first hidden layer in their ANN transforms each basic feature value of atom contexts

into real-valued vectors (embeddings) by a lookup table operation.

There are also other encoding formats that have been successfully applied in drug dis-

covery but barely used in the specific context of VS. That is the case of Simplified Molec-

ular Input Line Entry System (SMILES) and 2D structures of molecules (2D grids) Xu

et al. [173]. Such methods could be a promising alternative to accurately represent the

protein–ligand interactions in an efficient manner.

Thus, sequence data have the advantage of being able to be used as input for more

powerful variants of ANNs other than feedforward neural networks, such as Recurrent

neural networks (RNNs) and CNNs. Simplified Molecular Input Line Entry System

(SMILES) is a specification in the form of a line notation for unambiguously describing

the structure of chemical molecules using short ASCII strings. It was developed in 1988

by [170] and has been the most popular line notation and sequence data ever since.

The SMILES representation, non-unique and unambiguous, is obtained by assigning a

number to each atom in the molecule and then traversing the molecular graph using

that order and a given algorithm such as depth-first search, for example [22]. There

can be multiple atom numberings for a given molecule, leading to different SMILES.

The ensemble of SMILES representing one molecule can be referred to as enumerated

or randomized SMILES and are obtained by, for each molecule, randomly selecting an

initial node for graph traversal while keeping the same graph traversal algorithm, thus
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leading to different atom orderings. To avoid conflicting SMILES representations for

the same molecule, a unique SMILES can be designated, and several canonicalization

methods exist to this end [108, 132]. SMILES has been successfully used to generate new

SMILES sequences so that automatic de novo drug design can be realized [10, 39, 44].

It has been also employed with RL and Deep RL algorithms in de novo drug design

[42, 107, 115, 127], as mentioned in Section 2.4.

Images have been also used to model molecules in drug discovery. Thus, Goh et al.

[36] propose using images of 2D drawings of molecules to predict toxicity, activity,

and solvation properties. The method is later improved by increasing the channel of

feature vectors [37]. Their results show that intuitive information about molecules can

be appropriate inputs of CNNs. In addition, Matsuzaka and Uesawa [94] develop a

molecular image-based Quantitative Structure-Activity Relationship (QSAR) approach

also based on images as inputs for their ANN. Unlike the previous work, they use 3D

chemical structures generated by Molecular Operating Environment (MOE) software

from SMILES, not from the 2D drawings of molecules directly. In a similar vein, Rifaioglu

et al. [123] also use 200-by-200 pixel 2D images generated from SMILES sequences in the

context of Docking.

Finally, it is worth to make three general considerations with respect to molecular

encoding applied to VS. First, ANNs and their variants cannot accept variable-sized

molecules as direct inputs. But ligands and proteins do vary in size. As a result, the

encoding formats described above deal with this problem in several ways. For example,

the fingerprint format of SILIRID is obtained from binary IFPs by summing up the bits

corresponding to identical amino acids. This results in a fixed size vector of 168 integer

numbers corresponding to the product of the number of entries (20 amino acids and

one cofactor) and 8 interaction types per amino acid (hydrophobic, aromatic face to

face, aromatic edge to face, H-bond donated by the protein, H-bond donated by the
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ligand, ionic bond with protein cation and protein anion, and interaction with metal

ion). Likewise, most of graph-based methods commented above have shared weights

and biases for local atoms—similar to the convolutions in CNNs—to handle the fixed

size problem. For instance, Tsubaki et al. [157] update vectors of nodes and edges by

considering the surrounding nodes and edges within a certain radius. Lastly, 3D grids

has a fixed size between 16 and 32 Å and normally limited to the binding site.

Second, many of the models behind the cited works in this section seek to replace tra-

ditional energy functions or SF for predicting binding affinity. These functions normally

consider all the atoms from both the ligand and receptor to compute the binding score.

The 3d-grids-based studies mentioned above or the work from Pereira et al. [111] relying

on the atom context, however, only take into account the structure of the binding site.

Therefore, it is still not clear whether these approaches are sufficient to accurately predict

binding affinity compared to more traditional energy functions. And third, as the reader

may deduce from the overviews mentioned above, for the moment there is no clear win-

ner with respect to molecular encoding in the context of Docking and DL. Actually, it is

a topic continuously evolving and many papers with different encoding alternatives are

released every year.

2.4 Related work

The summary of this section is displayed in Figure 2.9. As far as we are aware, there

are barely peer-reviewed works in the intersection of Docking and Deep RL. There are

published articles in other drug development problems like de novo drug design [57, 89,

102, 107, 115, 146] but this challenge and its difficulties are quite different compared to

the Docking perspective.

Perhaps the closest study to the proposed approach would be that of the model
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Figure 2.9: Overview of the performed literature review. The closest works to the
intersection of Docking and Deep Reinforcement Learning are those in Deep Learning
applied to Protein-Ligand Interaction Prediction.

named Molecule Optimization by Reinforcement Learning and Docking (MORLD) pro-

posed by Jeon and Kim [59], as shown in Figure 2.9 in blue. MORLD entails a hybrid

approach halfway between LBDD and SBDD. This integration of both perspectives have

been proposed in the past by several research groups [3, 160]. In the case of MORLD, it

takes an initial ligand in the binding spot of a given protein and generates a new phar-

macological candidate in each episode of RL by adding or removing atoms and bonds

as long as the valence constraints are satisfied. Then, the modified ligand is evaluated

by LBDD metrics like Quantitative Estimate of Drug-likeness (QED) and the synthetic

accessibility (SA) in every step. QED score is a quantitative estimate for how similar par-

ticular molecules are to the known drugs in terms of several physicochemical properties

and structural features. SA score is used to estimate the ease of synthesis of drug-like

molecules. The weighted sum of these two metrics is given as the reward for a DQN. If

the episode reaches the final state where these two metrics cannot be further improved,

then a Docking SF based on QuickVina 2 with respect to the target protein is computed

and used in the RL system as reward.
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Eventually, after sufficient number of episodes, MORLD tends to generate potential

novel inhibitors with lower binding energy along with high SA and QED scores to the

given protein structure. However, it remains unclear how switching the reward signal

based on QED and SA at the end of the episode by the Docking score affects training

since in MDPs is normally assume a fixed reward function. In addition, in this model it is

assumed that the binding location is known. Therefore, this process could be considered

more like some sort of fine-grained Docking. In contrast, the proposed methods in this

dissertation solely rely on a SBDD approach to identify the optimal location inside the

binding site.

Next, it is succinctly reviewed those works of DL applied to Docking since they

could be considered as the closest ones to the intersection of the PLDP problem and

Deep RL. Note, however, that these articles are based on supervised learning instead

of RL. Over the last decade, a wave of DL methods and applications to boost VS has

emerged [66, 113]. Such trend has become specially prolific in the last year due to the high

interest in finding a remedy, either a novel vaccine or a small pharmacological molecule,

for the SARS-CoV-2 and the global pandemic that is causing thousands of deaths around

the world [5, 6, 154]. This development relies not only on new DL algorithms but

on the availability of more and more compounds, structures and mapped bioactivity

data, and novel encoding techniques. Basically, these works aim to substitute traditional

Docking SFs and ML SFs by DL SFs to predict binding affinity [38, 50, 62, 96, 147, 149],

active/inactive molecules [40, 101, 111, 121, 123, 162], binding sites [61], or properties

of potential ligands interacting with proteins [143]. In the next paragraphs, the models,

results, and some disadvantages of these studies are briefly reviewed.

In the models behind these works, 3D grids are the most widely used encoding for-

mat to describe the molecules. These 3D grids does not only take into account the atom

coordinates but also extra information such as the atom types, partial charges, phar-
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macophoric and SMART properties, voxel occupancy, atom connections, hybridization,

amino acid types, etc. For these grids, 3D CNNs [60] is the preferred ANN’s architecture.

It is worth noting that only Jiménez et al. [62] make use of deeper ANNs—in particular a

variant of SqueezeNet [51]—, while the rest of the authors make use of shallower CNNs

with no more than three convolutional-pooling layers and a fully connected network

with no hidden layers attached at the end, in most cases.

Results obtained up to now are slightly better or at par than other methods based

on traditional and other ML SFs. For example, Wallach et al. [162] achieve an AUC

greater than 0.9 in the DUD-E benchmark, surpassing previous Docking methods in-

cluded in Smina [69]. But these results are constrained to 57.8% of the targets included in

the benchmark. Furthermore, the CNN from Ragoza et al. [121] outperforms Autodock

Vina [156] empirical SF, and ML-based SFs like RF-Score and NNScore in VS and inter-

target evaluations of pose prediction. However, it performs worse at intratarget pose

ranking, which is more relevant to Docking. Sunseri et al. [149] evaluate their CNN in

the D3R challenge. They find that their performance is best-in-class when performing

affinity ranking for two of the targets (three of the subchallenges), albeit it is average on

two of the other targets and poor on a third. The model from Stepniewska-Dziubinska

et al. [147] outperforms the SFs tested in Li et al. [79] in two test sets (PDBbind v. 2016 and

CASF-2013)—the best-performing X-Score had R = 0.61 and SD = 1.78, while their model

achieved R = 0.70 and SD = 1.61. However, the RF-Score v3 SF has better performance,

achieving R = 0.74 and SD = 1.51 on CASF-2013. Jiménez et al. [62] compare their model

with other three ML SFs (RF-Score, X-Score, and cyScore). In the PDBbind core set, their

model is able to outperform the rest of the methods, with a similar correlation coefficient

as RF-Score while achieving significantly lower error in terms of RMSE. In the CSAR sets,

however, RF-Score offers the best average performance, supporting the hypothesis that

more complex ML methods tend to underperform outside the training manifold.
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McNutt et al. [96] use an ensemble of CNNs to outperform AutoDock Vina on reDock-

ing and cross-Docking tasks both when the binding site is defined (Top1—the percent-

age of targets where the top pose is better than 2Å root mean square deviation—increases

from 58% to 73% and from 27% to 37%, respectively) and when performing a Blind Dock-

ing (Top1 increases from 31% to 38% and from 12% to 16%, respectively). However, they

do not compare their system with other Docking methods other than Vina. With re-

spect to the binary classification problem of active/inactive compounds, Morrone et al.

[101] proposed a graph-based CNN that includes a dual architecture based on separate

subnetworks for the ligand bonded topology and the ligand-protein contact map. Their

model for binding mode prediction uses Docking ranking as input in combination with

Docking structures. It also outperforms AutoDock Vina in a variety of tests, including

on cross-Docking data sets that mimic real-world Docking use cases. For example, on an

independent test set drawn from the PDBbind database, their model gets an Area Under

the Curve (AUC) = 0.90 and a success rate (the fraction of ranked “1” binding modes that

are correct) = 0.380 against Vina’s AUC = 0.66 and success rate = 0.364). Again, these

authors only compared their method with Vina. Finally, Rifaioglu et al. [123] suggest an-

other system based on deep CNNs for drug-target interaction prediction. Their system

employs 2D structural representations of compounds based on SMILES. They tested their

model on the DUD-E dataset and obtained a mean performance of AUC = 0.85, similar

to Gonczarek et al. [40], Ragoza et al. [121], Wallach et al. [162].

Indeed, the main drawback of all these models is that they resoundingly fail when

predicting the output with new examples out of the datasets they were trained for.

This problem of generalization is not only related with the algorithms themselves and

the molecular/input representation but also with the lack of gold-standard datasets in

ML applied to drug discovery [122]. One of the difficulties is that the bioactivity and

structural information need to be linked for solving the PLDP problem. Therefore, the
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3D structural information of protein-ligand complexes stored in the Protein Data Bank

(PDB) or the labeled bioactivity data available in PubChem and ChEMBL databases

is not sufficient for Docking computational purposes. Another difficulty lies in the

heterogeneity of the information included in the drug discovery datasets. In this sense,

there have been some recent, laudable efforts in drug discovery to create something

similar to ImageNet database in image recognition [35, 171]. For more information

about the available databases in SBVS, the reader is referred to Kimber et al. [66]. In the

meantime, datasets like PDBbind, scPDB, CSAR, DUD, and DUD-E remain as probably

the most widely used benchmarks in protein-ligand interactions prediction. Finally,

although some of these results obtained with CNNs are encouraging, some authors

like Chen et al. [15] maintain that the problem of generalization casts doubts on the

ability of these DL models to consistently improve results compared to traditional SFs

and other ML-based methods.
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Chapter 3

Reinforcement Learning applications to

solve the Docking problem

As stated in Section 1.2, the ultimate goal of this dissertation is to accelerate the reso-

lution of the Protein-Ligand Docking Prediction problem for any given ligand-receptor

pair compared with traditional Docking methods. To do so, it is first necessary to build

a versatile system capable of accommodating different interpretations regarding the for-

mulation of Docking as an RL problem, as stated in the Specific objective 1. Second,

following the secondary hypothesis of this dissertation, it is necessary to add structural

information from both the ligand and the receptor to correctly inform the ANN to solve

the PLDP problem. Therefore, two different alternatives for molecule representation are

proposed next in this section: feature vectors and images—as stated in the Specific ob-

jective 2 and 3, respectively. In the next lines, the corresponding methods, experimental

design, and results for each of these approaches are presented.

41
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3.1 Basic system of Deep RL applied to Docking

In the following section it is described the core system mentioned in the Specific objective

1 in Section 1.2. This basic system will be shared by all the alternative models proposed

in the Subsection 3.2 and 3.3, so it is worth to thoroughly explain its foundations.

As explained in Section 2.2, DQN is the selected algorithm of Deep RL to build the

system. Before delving into the implementation of this algorithm, a justification for its

selection is elaborated in the next lines. Among the MDP family, a model-free algorithm

was chosen to redefine the PLDP problem as one of RL. This decision was made because

of the absence of an accurate model to explain the dynamics of the environment—

i.e. the full distribution of next states and next rewards. It should be noted that in

the RL literature it is normally differentiated between the term "model" as a model of

the environment that precisely provides dynamics of the environment, and the use of

statistical learners such as ANNs, which are called "function approximators". In this

dissertation, the term "model" will be used to refer to the ANN since there is no model for

the environment dynamics. Within the model-free approach, a Q-learning perspective

was selected since this kind of algorithms are usually off-policy, so they are prone to

be more sample efficient than policy-based optimization algorithms because they can

exploit data from experts or other sources e.g. in the case of DQN, that source would be

the experience replay buffer. That pool allows to select the tuples of experiences to train

the ANN without having to make use of expensive model calculations.

Next, it is first illustrated how the PLDP problem has been reformulated as an RL

task. This brings about important decisions on the building blocks of RL and ANN–i.e.

defining the states, actions, reward function, architecture of the ANN, stop conditions,

etc. The major components of RL (see Section 2.2) associated with the PLDP problem

are listed in Table 3.1. Those components are further explained below. Likewise, the
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functioning of the general approach proposed in this dissertation can be visualized at a

glance in Figure 3.1. As mentioned before, the system is highly inspired by the DQN

algorithm, originally used to teach an AI’s agent to proficiently play classic video games

from the Atari 2600 console. In the context of Docking, the agent would be the ligand

instead of the player. In Artificial Intelligence, an intelligent agent is anything which

perceives its environment, is able to take actions autonomously to reach goals, and can

improve its performance through learning or by using some kind of knowledge. Agents

may be simple or complex. For example, a robot, a video game character, devices such

as a thermostat, or even a human being or any system that meets the definition, like a

firm, state, or biome may be considered as an agent [126]. The possible actions for this

agent would be to move and rotate in the three-dimensional molecular space, although

other actions such as molecular folding could be considered as well. Each time the agent

performs an action from a given state, it receives a reward from the environment that

could be related to a traditional energy function. The agent transitions to the next state

or position and a new loop begins. The crucial question here is how to guide the agent

to take the best actions to reach the global optimum. That role is performed by the policy

function or indirectly by the value function. Thus, the value function in this case is

estimated by a function approximator based on a Deep Q-Network.

As for the actions, at each time-step the agent takes a specific action at from the

space of possible actions, A = {1, . . . , K}. These actions include both translation

and rotation. An important assumption in this doctoral thesis is that the physical or

molecular space is considered as discrete. Consequently, in each timestep the ligand

moves a specific distance (0.1 Å) and certain degrees of rotation (0.5 degrees). Therefore,

the ideal size for this discrete action space is twice the degrees of freedom of moving

the agent in the three-dimensional space. To do so, 6 degrees of freedom are involved,

which give a total of 12 possible actions: translation and rotation in the three axes
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RL component Representation
Agent Ligand

Value/Policy function ANN estimating the Q values

Actions Moving and rotating in one or three axes forwards and backwards

Environment DockingEnv-v0

States Feature vector or images

Reward function Transformed score from a given SF

Table 3.1: RL components in the Docking problem.
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Figure 3.1: Operational schema of the general approach proposed in this dissertation.

forwards and backwards. Then, the selected action is used to output the new position

or state of the ligand in the environment. For the RL environment ε, an OpenAI Gym
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environment called DockingEnv-v0 is created, including the step, reset, and render

methods for the corresponding class in Python. OpenAI Gym [11] is a Python’s library

that provides an easy to set up, general-intelligence benchmark with a wide variety of

different environments—similar to the database offered in the ImageNet Large Scale

Visual Recognition Challenge in supervised learning.

With respect to the states, these are directly linked to the molecular representation

of the Docking scene. The alternatives for molecular encoding are diverse, as shown in

Section 2.3, and there is no clear winner. Thus, two different approaches are proposed in

Section 3: feature vectors and images.

Furthermore, the reward function is one of the most sensitive parts in RL since it

serves as a guide for the agent to interact with the environment. It implies a deep

knowledge concerning the problem to be solved–in this case, the PLDP problem. A first,

natural attempt in this context is to use a traditional energy function or SF in Docking.

Nevertheless, this approach is not valid, as explained in Section 3.2.1. The score from

the SF turns out to be too noisy to be employed as a reward signal and it does not

favor convergence of the RL algorithm. Alternatively, numerous prototypes of reward

functions are tested along Section 3.

The ANN architecture is conditional upon the form of the states. Thus, a different ar-

chitecture is used in each approach described in Section 3. Namely, in the case of feature

vectors, a standard feedforward ANN is used as the function approximator for the value

function. For images, a Multi-View Convolutional Neural Network (MVCNN) [148] is

used in conjunction with the dueling network architecture [167]. These ANNs take tran-

sition tuples containing (st, at, rt, st+1)–i.e. the current state, the taken action, the obtained

reward, and the next state–as input from the experience replay dataset. Moreover, those

memories are sampled from the dataset in minibatches to train the ANN. Specifically, the

criterion of absolute Temporal-Difference (TD) error is followed to relatively favor more
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surprising (better) experiences. In turn, the network outputs the estimated Q values of

each action in a given time-step. The action with the highest Q value is selected for the

agent at that particular time-step.

Finally, another important aspect in RL refers to stop conditions. The Docking prob-

lem in this doctoral thesis has been conceived as a finite-horizon, episodic task. Conse-

quently, it must be specified when a given episode is over. Thus, two stop conditions

are manually added. First, a maximum number of time-steps (1,000) is set as in any RL

episodic task. Second, sometimes the ligand may deviate and get away from the host ex-

cessively. To correct such undesired behavior, the episode immediately terminates if the

Euclidean distance between the two molecules is greater than a certain cut-off D in the 10

following time-steps. In practice, this condition limits the exploration area of the agent

around the host to the binding site. These two stop conditions definitely contribute to

accelerate the learning process. Furthermore, an overall condition is necessary to deter-

mine when the agent has optimized the policy well enough. So, another condition is set

through a callback function to stop the whole training process when the average reward

in the last 100 episodes reaches a theoretical maximum. That quantity is calculated con-

sidering the distance between the initial position of the ligand and the optimal solution,

the maximum time-steps per episode, the highest possible reward per time-step, etc. In

the proposed methods, the aforementioned distance between the initial position and the

solution can be estimated since the latter is known. In practice, however, the solution is

unknown, so the theoretical maximum should be reformulated.

As a conclusion, in the lines above it has been devised a basic system with an

embedded ANN to train the ligand to look for the optimal solution in a molecular

Docking setting by following a reward signal derived from a traditional force-field-based

SF. The proposed method is general and modular enough to be able to adapt to different

interpretations of the the basic RL components described in 3.1. Such core system will
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allow to incorporate different alternatives of state representation such as feature vectors

and images (as intended in the next subsections) to solve the PLDP problem. Therefore,

the Specific objective 1 has been successfully met.

3.2 Molecular encoding with a simplified feature vector

In this first approach, it is intended to achieve the Specific objective 2 stated in Section 1.2.

In particular, it is expected to implement the basic system developed in the previous

subsection to solve the PLDP problem. In particular, the proposed implementation is

based on a feature vector to represent the states—namely, positional information of the

ligand like 3D coordinates and quaternions. Thus, this first functional version, called

QN-Docking, is heavily inspired by the DQN algorithm. Nevertheless, it does not make

use of a deep ANN (3 or more layers) since the feature vector is too small to require such

a powerful model. Specifically, it is based on a feedforward ANN with 1 layer with 256

units, as explained below. In this sense, the simplicity of the model to quickly assure the

viability of the system is prioritized over the use of more advanced and complex models

such as deep ANNs. Therefore, this first implementation cannot be considered as a Deep

RL solution from a strictly technical point of view. Even so, this first method is a success

and the Specific objective 2 is accomplished.

3.2.1 Specific methodology

To fully understand the current section, the reader is referred to subsection 3.1 about

the foundations of the core system based on Deep RL to solve the Docking problem.

Thus, Table 3.1 is updated with the assumptions made for the initial system based on

a simplified feature vector as input data. The new table is listed as Table 3.2. It is

worth noting that in this case the ANN takes the form of a standard feedforward ANN.
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RL component Representation
Agent Ligand

Value/Policy function Feedforward ANN estimating the Q values

Actions Two actions: moving forward/backward along one spatial axis

Environment DockingEnv-v0

States Mass center of the ligand + Rotational quaternions and the norm

Reward function Transformed score obtained from Metadock SF. Gradually adds
the SF terms according to several conditions

Table 3.2: RL components in the Docking problem.

Moreover, the possible actions for the ligand to be taken are reduced to just two (moving

forward/backward along the "x" axis). The states are based on a feature vector that

includes the mass center of the ligand plus the rotational quaternions and the norm.

Finally, the reward function is computed by adding several partial terms from a given

force-field-based SF. These RL components are explained in more detail in the following

paragraphs. Likewise, Figure 3.1 has been adapted for this particular implementation,

so the operation of QN-Docking can be observed in Figure 3.2. Next, we are going to

describe all the RL components and their representation in detail.

As for the actions, at each time-step the agent takes a specific action at from the set

of possible actions, A = {1, . . . , K}. As mentioned earlier, for this problem, two

possible actions can be taken by the ligand. In particular, the agent can move forward and

backward along the x axis. The idea is to narrow down the search space of Q-values to

facilitate the convergence of the algorithm. In the next approaches of molecular encoding,

it is intended to include movement and rotation in the three axes. Then, the selected

action is used to output the new position or state of the ligand in the environment. For the

RL environment ε, the DockingEnv-v0 OpenAI Gym environment is created, including

the step, reset, and render methods for the corresponding class in Python.
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Figure 3.2: Operational schema of QN-Docking. Coordinates (x, y, z) belong to the mass
center of the ligand. (a, bi, cj, dk) represents the rotational quaternions and their norm.
(a0, a1) indicates the possible action to be chosen, that is, moving forward along axis x or
backward. Finally, es, ww, and hb stands for the SF terms, which respectively correspond
to the electrostatic term, Wan der Waals forces, and hydrogen bonds. In addition, sc
refers to the overall score from the SF.

With respect to the states, these are vectors xt ∈ Rd representing the position of the

mass center of the ligand, where t refers to a particular timestep from a given episode

and d to the dimension of the states. In addition, it is included the rotational quaternions

and their norm in the input data for later extensions of QN-Docking. However, they

are not meaningful in this first approach since the ligand is only allowed to move along

the "x" axis. Likewise, it should be pointed out that more complete representations of

molecules like molecular graphs or 3D grids [66, 173] could be used here. However, those
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alternatives were discarded in favor of simplicity to ensure a functional Docking method.

For the same reason, information concerning the host is not incorporated in the states

nor other kind of knowledge such as atom types or partial charges. That information is

indirectly included via the reward function based, in turn, on the SF, which implicitly

takes into account the structure of the host. Those two functions–reward and SF–are

described in the lines below.

The reward function is one of the most sensitive parts in RL since it serves as a guide

for the agent to interact with the environment. It implies a deep knowledge concerning

the problem to be solved–in this case, the PLDP problem. The natural choice in this

context would be to directly take the raw score from the SF since it represents the quality

of the position of the ligand coupled with the host. In particular, the SF used in QN-

Docking was originally developed in [128] as part of a blind virtual screening method

known as Bindsurf. Such energy function involves the calculation of three major terms,

as shown in Equation 3.1: (1) electrostatic interactions; (2) the potential of Lennard-Jones

as a mathematical model to solve Van der Waals’ forces; and (3) the hydrogen bonds term.

In addition, it can include the same solvation term and rotable bonds than AutoDock 4.

Algorithm 1 briefly describes how the score is computed by the SF given a particular

position of the ligand.
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The score from the SF was tested as the reward signal. However, unlike other settings

such as the Atari video-games that DQN was originally designed for, this score is not
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Algorithm 1 Sequential baselines for the Lennard-Jones interactions between host and
ligand.

for i=1 to N_CONFORMATION do
for j=1 to N_ATOMS_HOST do

for k=1 to N_ATOMS_LIGAND do
Energy = 4× ε× (term_raised_to_12(j, k)− term_raised_to_6(j, k))
Scoring += Energy

end for
end for
S_energy[i] = Scoring
Scoring = 0

end for

cumulative, it does not increase slightly over time, and it is not always positive. Instead,

it is negative most of the time and can drop sharply if (1) the two atoms with positive

charge from the ligand and host respectively get too close (electrostatic repulsion); or

(2) the ligand overlaps the host (steric repulsion). In fact, the range of the SF goes

from stratospheric negative numbers (e.g. -4.5e+21) to 500 at most, depending on the

molecules involved.

To show the complexity of the SF, an illustrative experiment was performed. In this

experiment, the ligand is pushed forward along the X axis from outside the cyclodextrin

toward the center, where the crystallographic solution is, and beyond. The values from

the SF are collected and plot against the number of time-steps in Figure 3.3. Although

at a first glance the SF may seem relatively simple, a closer look reducing the y-axis

minimum limit shows the extremely wide range of its values, going from -713,079,000

to 192. This last maximum value corresponds to the crystallographic spot to be found.

Thus, Figure 3.3 shows the large complexity of the Docking SF. Such complexity requires

more powerful non-linear functions such as ANNs instead of simpler linear and kernel

functions.

As a result, the score from the SF turns out to be too noisy to be employed as a

reward signal and it does not favor convergence of the RL algorithm. Alternatively,
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Figure 3.3: Scoring function values for the ligand crossing the center of the cyclodextrin.
The y-axis minimum limit is changed to show the extremely wide range of the function
due to Van der Waals forces term. In particular, (a) y min limit = -1e08 and y max limit =
3e08. (b) y min limit = -1e06 and y max limit = 300,000. (c) y min limit = -100 and y max
axis limit = 200.

other reward signals were tested, including the Euclidean distance between the initial

position of the ligand and the crystallographic solution (obviously not realistic since

the crystallographic solution is supposedly unknown) and the difference between the

energy at the initial and current positions (not valid because it used to get stuck in

local optima quite often). Finally, a reward function based on the SF terms seemed to

be the most suitable option. These terms are retrieved and gradually added according

to several conditions described in Algorithm 2. This reward function enables a more

reasonable behavior for the agent. It is worth noting that 15 prototypes for the reward

function were tested in total until the final candidate was selected. Most of them are

slight modifications or combinations of the aforementioned alternatives. For instance,

the Van der Waals forces term was discretized and different partial reward values were

assigned to each bucket, several values for the cut-offs were tested, a combination of an

Euclidean-distance-based function and a SF-terms-based function was explored as well.

Additionally, the value function in QN-Docking is based on a standard feedforward

ANN, also known as dense (fully connected) neural network or multilayer perceptron

(MLP). This ANN takes transition tuples containing (st, at, rt, st+1)–i.e. the current state,

the taken action, the obtained reward, and the next state–as input from the experience
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Algorithm 2 Reward function in QN-Docking
Require: es: electrostatic term; ww: Wan der Waals forces; hb: hydrogen bonds; sc: overall score

from the SF ;λ, ι, δ, ζ: empirically-set cut-offs.
Ensure: reward.

Initialize reward terms esr, wwr, hbr, and scr.
if abs(es) >= λ then

esr = 1
if -ww >ι then

wwr = log(-ww)
if hb <-1 and abs(ww) <δ then

hbr = 1
if -sc >ζ then

scr = η
end if

end if
end if

end if
reward = add(esr, wwr, hbr, scr)

replay dataset. For the task at hand, the optimal number of layers and units for that layer

are 1 and 256 respectively, as explained in Section 3.2.2 below. This simpler architecture

is chosen over other more compelling alternatives because of the relative simplicity of

the inputs/states. In particular, CNNs and RNNs are discarded since QN-Docking does

not use 2D/3D grids or molecular sequences as input data, unlike the works analyzed

in Section 2.4. Moreover, those memories are sampled from the dataset in minibatches

to train the ANN. Specifically, the criterion of absolute Temporal-Difference (TD) error

is followed to relatively favor more surprising (better) experiences. In turn, the network

outputs the estimated Q values of each action in a given time-step. The action with the

highest Q value is selected for the agent at that particular time-step. The specific hyper-

parameters of the ANN model are listed in Table 3.3.

3.2.2 Experimental design

Next, the experimental design to evaluate the proposed solution is described. It should

be remarked that since this is the first attempt to solve the PLDP problem with RL with
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an ANN as function approximator, as far as we know, there are no previous standard

experiments to evaluate the proposed method in the Docking context. Moreover, the

state-of-the-art Docking methods work differently [109]. They do not start from a

given location making subsequent virtual trajectories like QN-Docking. Instead, they

normally start from potential hot spots (like alpha carbon atoms) in the host and try

different positions following certain heuristics like Monte Carlo or genetic algorithms,

for example. Therefore, in addition to setting up the RL environment and the stop

conditions, a new experimental setup was created to test QN-Docking.

As for the involved molecules, the evaluation of QN-Docking is based on a beta-

cyclodextrin as the target host. These molecules are produced from starch by enzymatic

conversion. They stand out for their simplicity and water solubility. As for the ligand,

the candidate selected for the experiment is known as kaempferol. Both the target and

the ligand were obtained from the Protein Data Bank (PDB).

The conducted experiment entails the training of the agent starting from six different

positions independently, as shown in Figure 3.4. Three of these positions fall into the

left side of the cyclodextrin set in the origin, while the rest lie on the right side. The

agent can move forwards and backwards along the axis that cross through the inner hole

of the cyclodextrin and its optimal spot. These six positions on the left and right side

of the cyclodextrin are set on purpose to study how the distance to the crystallographic

solution affects the convergence of the algorithm. Likewise, the symmetric layout with

the origin of coordinates at the center of the cyclodextrin is conscientiously set to analyze

the impact of the sign change from the x-axis coordinate on the convergence as well. This

mirror set up allowed to discover that the ReLU activation function in the ANN is not

suitable for the PLDP problem since the spatial coordinates include negative numbers.

The ReLU function transforms the negative number to 0, distorting the original input. In

this regard, the hyperbolic tangent is more appropriate.
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Figure 3.4: Evaluation methodology based on beta-cyclodextrin and kaempferol. The
agent is independently trained from six different positions numbered from 1 to 6. The
objective for the agent is to discover the optimal solution in the center of the cyclodextrin
and stay oscillating around that spot. In a later predictive episode for each of those six
training process, the agent is allowed to move according to the learned policy starting in
the original position that was trained from and the rest of the five positions, giving rise
to a total of 36 runs for the prediction phase.

Additionally, a different maximum number of time-steps per episode is set empiri-

cally for each position to guarantee convergence. In particular, for the most distant start-

ing positions (position no. 1 and 6), the agent is trained in episodes with 4,000 maximum

time-steps. This limit decreases up to 2,000 steps for intermediate positions (2 and 5)

and to 1,000 for closer positions (3 and 4) since the optimal solution is nearer, so the al-

gorithm needs less training in order to converge. After training, the agent is allowed

to act according to the learned policy in a new single episode of prediction with a 1,000

time-steps length. In particular, the ligand trained in each starting position is run in the

predictive episode starting from that position (just as a step of control to check that it

behaves as expected) and the other five. This leads to 36 different runs as a result of

crossing the six starting positions in training and prediction. Finally, the goal and de-

sired behaviour for the agent is to check whether it can find the optimal solution, which

is known beforehand, and stay put to maximize the reward across the episode.

The experiments were performed on a server with an Intel(R) Xeon(R) CPU E5-2640

v4 @ 2.40GHz, 128 GB of RAM, 1 TB SSD Hard Disk. It should be noted that it was
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solely conducted on CPU. The massive Single-Instruction Multiple-Thread (SIMT)-based

parallelism and the high memory bandwidth make GPUs extremely faster than a CPU

in the context of DL. However, for small problems/models as the one at hand, where

the number of parameters is not as high as in DL models, CPUs are still considered as

more effective and cost efficient. Since the current Q-Network has only 2,562 parameters

(without counting on the target neural network) there is simply not much to be gained

from faster matrix multiplication. So making use of the GPU would be almost like using a

hammer to insert a needle. In fact, the experiment was also conducted with an NVIDIA

GeForce GTX 780 GPU but a degradation in the execution speed was observed. Such

decrease occurred because the time gain thanks to faster matrix multiplication from the

GPU did not balance out the loss due to the data transfer between the CPU and the GPU.

In addition, OpenAI Baselines 0.1.5 [26] was used to deploy QN-Docking. This library

is based on Tensorflow and Keras frameworks to design and train ANNs. Specifically,

TensorFlow 1.7.0 and Keras 2.1.5 were used for the experiment.

3.2.3 Results and discussion

First of all, a manual hyperparameter tuning [41] focused on execution time is carried out

in order to select the optimal combination of RL and ANNs hyperparameters and speed

up training. The performed analysis encompasses more than 180 runs with different

combinations of the hyperparameters for initial position no. 3. For each hyperparameter,

different values are tested. In turn, for each of these values five runs are performed with

the intent to reduce the uncertainty caused by the randomness of several elements of the

algorithm such as the weights initialization of the ANN or the ε-greedy strategy. After

performing the five runs, the best value on average is set for the next hyperparameter to

be tested. This process of selecting the value of hyperparameters sequentially requires

a deep knowledge of the interrelations among them. For example, changing the maxi-
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mum of global timesteps of the experiment directly affects the impact of the exploration

fraction on execution time. Those interrelations are carefully considered in this analysis.

Likewise, this tuning process is cyclically repeated several times until there is no any

remarkable improvement in terms of time saving. As a result, execution time is progres-

sively reduced from the original 80 hours to only 12 hours for initial position no. 3.

Figure 3.5 shows the hyperparameters that prove to have a deeper impact in terms

of computational efficiency. Overall, exploration fraction and mini-batch size are the

most determining ones. With respect to the mini-batch size (Figure 3.5.a), 32 tuples of

experiences seems to be the optimal. This value is in line with the original work of DQN.

Regarding the neural network architecture, a standard feedforward ANN with up to 5

hidden layers composed of 128 units each is tested (Figure 3.5.b). The ANN with one

layer seems to be the most suitable for the task at hand. However, three or more layers

make the algorithm unable to converge. Next, it is also tested the number of units for

one layer (Figure 3.5.c). Specifically, 256 neurons seem to be the optimal considering the

size of the error bars although time saving is not really significant compared to other

hyperparameters. The impact of the target network updating frequency C (Figure 3.5.d)

is not specially important but values greater than 1 million make the algorithm unfeasible

to converge. Moreover, the exploration fraction (Figure 3.5.e) is the most important

hyperparameter with respect to execution time. In particular, small values (between

0.005 and 0.02) considerably lower convergence time from more than 50 hours on average

(0.1) to just 12. For all these tests, a global maximum limit of 10 million time-steps was

set. Finally, Table 3.3 shows the most efficient combination of hyperparameters selected

to train the agent after the manual hyperparameter tuning.

Next, it is shown the evolution of the average total reward per time-step during

the training process for each initial position in Figure 3.6. It is calculated with respect

to the previous 100 episodes. This evaluation metric is chosen among other common
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Figure 3.5: Result of hyperparameters analysis of QN-Docking. Hyperparameters values
are tested sequentially. Red bars with diagonal stripes indicate that the algorithm failed
to converge. Error bars are based on confidence intervals with α = 0.05. Note that the
y-axis scale is the same for all the bar charts, ranging from 0 to 70, but for 3.5.d, which
ranges from 0 to 150.

alternatives in RL like the sum of the cumulative reward, sample complexity, regret,

etc. following [100] but note that unlike that study, the current work does not make

use of the average Q-values but the average reward itself. For the PLDP problem, the
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RL hyperparameters
Hyperparameter Value Description
Number of global time-steps 488,581 / 293,332 / 195,571 Average number of global time-steps completed along the simulation for positions 1&6, 2&5, and 3&4
Global maximum time-steps limit 10,000,000 Maximum time-steps limit along the entire simulation
Maximum time-steps per episode T 4,000 / 2,000 / 1,000 Maximum time-steps limit per episode for positions 1&6, 2&5, and 3&4
State space 7 Real numbers needed to represent a particular state
Action space 2 Real numbers needed to represent the possible actions to be taken by the agent
Shifting length per step 0.1 Ångströms traveled by the ligand in each step when shifting
Rotating angle per step 0.5 Degrees turned by the ligand in each step when rotating
Exploration fraction 0.005 Fraction of entire simulation over which the exploration rate is annealed
ε initial value 1 Initial value of ε (if ε=1, then 100% actions are randomly selected)
ε final value 0.02 Final value of ε.
γ discount rate 0.99 Discount rate for future rewards
Experience replay pool size N 1,000,000 Number of memories (st, at, rt+1, st+1, terminal) to be stored to perform experience replay
Learning start 100,000 Number of initial steps where the agent only takes random actions
Steps C to update target network 1,000 Frequency at which the target network is updated
α PER 0.6 Alpha parameter for prioritized experience replay
β0 PER 0.4 Initial value of beta for prioritized experience replay
β iterations PER None Number of iterations over which beta will be annealed from initial value to 1
ε PER 0.000001 Epsilon to add to the TD errors when updating priorities

ANN hyperparameters
Hyperparameter Value Description
Number of hidden layers 1 Number of hidden layers between input and output layers
Hidden layer size 256 Number of units in the hidden layers
Activation function tanh Activation function used by hidden units to decide whether they should be activated or not
Update rule Adam The parameter update rule used by the optimizer
Learning rate 0.1 Learning rate used by the optimizer
Minibatch size 32 Number of training examples per update

Table 3.3: Values of the hyperparameters used in QN-Docking

average reward is not as noisy as for the Atari environment. Agent in positions 1 and

6 (charts a and f) needs almost 500,000 time-steps and 20 hours of training since these

are farthest from the crystallographic solution. Conversely, agent in positions 3 and 4 (c

and d) spends less than 200,000 time-steps and 10 hours of training. Thus, the average

total reward takes a while until it starts rising. When this happens, it gradually increases

until the algorithm converges, suggesting that the agent steadily learns to make better

decisions over time. When visualizing its movements in PyMol by the end of training,

the ligand tends to stick to the optimal solution oscillating between that position and the

next closest one. This is the optimized and desired policy considering that for the agent

staying still is not an option.

As for prediction, it is considered to be more suitable a task-oriented metric to

evaluate the performance of the proposed method. In particular, the quality of the

given position is measure via the Root Mean Square Deviation (RMSD). The heatmap

in Figure 3.7a shows the RMSD in ångströms between the last position in the episode of
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Figure 3.6: Average total reward per time-step during the training process for QN-
Docking. The average is calculated considering the previous 100 episodes. For the sake
of comparison, both x and y axes share the same range of values in the six charts.

prediction and the optimal solution. This distance is calculated for each pair of training

and prediction initial positions. The purpose is to demonstrate that the agent is able

to find the optimal spot regardless of which was the initial position during training

and, therefore, the validity of the proposed method for the selected ligand-host pair.

Specifically, the RMSD varies between 0 and 6 for all cases insinuating that the agent

successfully ends up in the optimal location. Consistently with its behavior at the end of

the training process, the ligand alternates between the solution (where RMSD = 0) and

the next closest position (RMSD = 6) once arrives to the former.

Alternatively, the average RMSD value between the current position at each time-step

and the optimal solution is computed across the episode of prediction. The intention of

this measure is to ensure that the agent behaves according to the optimal policy. In effect,
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Figure 3.7: (a) RMSD between the last position in the episode of prediction and the op-
timal solution. The distance is computed for each pair of training and prediction initial
positions. The maximum distance between the current position and the solution across
the 36 pairs is 256 Å. (b) Average RMSD between current position and the optimal solu-
tion across the episode of prediction. The standard deviation is shown in parentheses.

the average RMSD in Figure 3.7b is pretty low (10 Å as much) for each pair of training

and prediction initial positions. This confirms that the ligand does not behave erratically

before arriving to the optimal spot. Additionally, the minimum RMSD value between

the current position at each time-step and the optimal solution was also calculated.

However, the corresponding heatmap is omitted as the RMSD = 0 for all of the 36 pairs of

training and prediction initial positions. These results corroborate that the ligand finds

the crytallographic solution at least once in every pair, which is coherent with findings

in the previous heatmaps.

Furthermore, one could claim that the agent was trained in exactly the same position

that it would find in prediction. For the avoidance of doubt, a straightforward experi-

ment is conducted. The agent from position no. 3 is trained with the fastest combination

of hyperparameters revealed in the manual hyperparameter tuning but changing the

shifting length per step from 0.1 to 0.2 Å. Then, in the prediction phase, the agent is let
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QN-Docking Metadock 2
Training 3451.8

8.250Prediction 1.033

Total 3456.774 8.250

Table 3.4: Execution time (seconds) for the pair kaempferol and beta-cyclodextrin

behave according to the learned policy but with a shifting length per step of 0.1 Å. In

this way the agent is forced to visit new positions in the prediction phase. Actually, the

algorithm converges and the agent goes directly towards the crystallographic solution.

Finally, QN-Docking is compared with a state-of-the-art Docking method in order

to prove its validity in terms of efficiency. In particular, METADOCK 2 was chosen

opposed to other alternatives such as Autodock 4 and Autodock Vina because the former

stands out for being computationally faster [53]. As shown in Table 3.4, our comparison

reflects the execution time in seconds for both QN-Docking and METADOCK 2 in the

case of kaempferol and beta-cyclodextrin. In particular, QN-Docking starts the episode

from position no. 3 and METADOCK 2 follows a heuristic based on a greedy algorithm.

As it can be observed, QN-Docking is faster than METADOCK 2 when comparing the

prediction stage of the former (1 against 8.2 seconds). However, if the training plus

prediction stages are taken into account, METADOCK 2 clearly surpasses QN-Docking

(3,456 against 8.2 seconds).

Nevertheless, the training process in RL and supervised learning with ANNs is

normally performed a single time. As long as these results could be generalized to

other ligand-host pairs, that 8× speed increase would have a tremendous effect on time

saving in a VS context where hundreds, millions or even billions [90] of these individual

Docking executions are carried out. Figure 3.8 clarifies this last idea by representing the

projection of the execution time from both QN-Docking and METADOCK 2. Particularly,

this projection has been made for 1,000 Docking executions in a hypothetical VS pipeline.
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QN-Docking starts from 3,451 seconds corresponding to the previous training phase

while METADOCK 2 starts from zero seconds because such a phase does not exist for

traditional heuristics. As the Docking executions increase, METADOCK 2 would start

consuming more time than QN-Docking after 478 of those executions. It should be

remarked that this line graph has been made for illustrative purposes only. It does not

include real data since it is assumed that every Docking execution has the same duration

than that of the cyclodextrin. This is obviously not realistic but it is expected for the

graph to envisage the potential of QN-Docking.
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Figure 3.8: Projection of the execution time from QN-Docking and METADOCK 2.

3.2.4 Conclusion

In this first approach, it has been created a system with an embedded Q-Network to train

the ligand to look for the optimal solution in a molecular Docking setting by following

a reward signal derived from a traditional force-field-based SF. Therefore, the Specific

objective 2 has been successfully completed. Results show that, once the agent has been

trained, the proposed method is up to 8× faster than a breakthrough Docking software
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like METADOCK 2. Of course, if the training time is also considered, the total execution

time of QN-Docking is not shorter than METADOCK 2. However, as in every problem of

RL and supervised learning with ANNs, the training process is typically performed only

once. If the proposed method could be generalized to other ligand-host pairs, its impact

on time saving would be enormous in VS workflows where hundreds, millions or even

billions of these Docking executions are carried out. Therefore, QN-Docking opens a

fresh, promising opportunity to develop a general and faster Docking method in order

to contribute to accelerate drug discovery and be able to deliver medicines to patients in

a shorter time frame.

3.3 Molecular encoding based on images

In this second approach, it is plan to reach the Specific objective 3 stated in Section 1.2.

In other words, to implement the basic system created in the Specific objective 1 by

representing the states through images to solve the Protein-Ligand Docking Prediction

problem in a simplified environment. To do so, it is assumed the secondary hypothesis,

which states that it is necessary to add structural information of both the ligand and the

receptor to correctly inform the Deep Q-Network to solve the problem. As previously

shown in Section 2.3, there are several alternatives for molecular encoding but none

of them can be considered as a clear winner. Consequently, an innovative decision is

made by selecting images from 2D drawings of molecules to represent the Docking scene.

Additionally, a multi-view CNN is developed to avoid molecular overlapping in those

images. The resulting system is termed Multi-View Deep Q-Network (MVDQN). It is

tested on a setting with similar conditions to that of QN-Docking in order to evaluate

the new system before moving to a more complicated, ambitious scenario. In this

case, MVDQN successfully achieves similar results than the implementation based on
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RL component Representation
Agent Ligand

Value/Policy function Multi-View Convolutional Neural Network

Actions Two actions: moving forward/backward along one spatial axis

Environment DockingEnv-v1

States 1 image of the Docking scene

Reward function Transformed score obtained from Metadock SF. Gradually adds
the SF terms according to several conditions. A penalty for ending the episode sooner is added

Table 3.5: RL components in the Docking problem based on images to represent the
states.

feature vectors with the kaempferol and the cyclodextrin during the training phase. In

prediction, however, results are mixed. As a result, the Specific objective 3 is partially

attained.

3.3.1 Specific methodology

The reader is referred again to Section 3.1 to be able to wholly comprehend the aspects

contained in this section. Next, Table 3.1 is updated with the peculiarities of the RL

components of MVDQN and listed in Table 3.5. The selected architecture for the ANN

in this case is a CNN considering that the input data is based on images. The action

space includes the previous 2 movements. DockingEnv-v1 was built with OpenAI Gym

for the RL environment including the corresponding modifications in the step, reset,

and render methods within the Python class. As for the states, these are built upon

the values corresponding to the pixels from 2D drawings of molecules in gray scale. In

this experiment, only one image of the Docking scene is render. The reward function is

also slightly modified. Its changes along with those of the rest of the RL components

are described more in depth in the lines below. Likewise, Figure 3.9 summarizes the

operation of MVDQN.

With the respect to the action space, the two actions from QN-Docking are included
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Figure 3.9: Operational schema of MVDQN. States are represented by pixels of an image
from the Docking scene (although it can accept more than one perspective). Possible
actions correspond to moving forwards and backwards along the "x" axis (translation
in the three axes and rotations can be activated as well). The value function is based
on a Multi-View Convolutional Neural Network. The reward function present minor
changes, as explained in Algorithm 3. The rest of the RL components remain unaltered
with respect to the previous approach represented in Figure 3.2.

(moving forward/backward along the x axis) in this second approach. Shifting in the

three axes and rotation could have been added as well, but it is preferred to deal with

one problem at a time and to not complicate the scenario in excess to avoid undesirable

pitfalls. The states now consist of images based on 2D drawings of molecules that

represent the Docking scene. As previously shown in Section 2.3, none of the alternatives

in Docking for molecular encoding are the panacea. Thus, a pioneering approach is
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proposed in this section by selecting images to represent the molecules involved in the

ligand-protein interactions. This alternative way of representing molecules has been

used before in drug discovery Goh et al. [36, 37], Matsuzaka and Uesawa [94], Rifaioglu

et al. [123] but not in the protein-ligand interaction prediction context. We believe that

images could be a more suitable input to compress pertinent information related to

Docking while harnessing the power of more complex ANNs in this context beyond

standard feedforward ANNs.

In particular, the images are taken using the Python’s API of PyMol and saved as

Portable Network Graphics (PNG) files. These are gray-scale images with a resolution

of 84 by 84 pixels. Furthermore, the optimal position for the ligand is often situated in a

deep cavity in the receptor. Therefore, overlapping between the ligand and the receptor

in the 2D drawings is something usual when searching the optimal location around the

surface of the receptor. To overcome this hurdle, it is proposed to use a Multi-View

CNN [148]. Although this multi-view scheme is developed to extend the basic system

referred in the Specific objective 1, it should be noted that only one image of the Docking

scene is used in the experiment performed in this section. More details about MVDQN

using more than one view is discussed in Section 4.1.

There are also changes with respect to the reward function. First, the SF from

METADOCK/Bindsurf was translated from C to Python in order to save execution time.

Generally speaking, C programs run faster than those written in Python because it is a

compiled programming language, as opposed to an interpreted language like Python.

Nevertheless, the way METADOCK is designed involves several reads and writes of

the scoring and molecular files to disk, which ends up increasing the execution time

excessively. Second, the reward function was slightly improved to provide a more clear

reward signal and facilitate convergence (see Algorithm 3). Particularly, a penalty for the

agent is imposed equal to the maximum reward that it can obtained if it finds the optimal
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solution (η). The purpose of this penalty is to strengthen the prevention of the ligand

for finishing the episode earlier than it should according to the maximum timesteps per

episode set at the beginning of the simulation. Finally, the used of the energy function

from AutoDock Vina is also explored. Unlike the energy function from Bindsurf, which

is a force-field-based function, the SF from AutoDock Vina is a hybrid scoring function:

empirical and knowledge-based function (see Section 2.1). It is inspired in the X-Score

function [164], mainly differing in some terms and in the parametrization method. One

of the strongest points of this SF is that is commonly used as a baseline when comparing

diverse energy functions. Nevertheless, its use is not feasible in the proposed system due

to its high computation cost through the Python’s API, as explained in the lines below.

Algorithm 3 Reward function in QN-Docking
Require: done: whether the current episode has ended; current_step: present timestep;

max_timesteps_per_episode: maximum number of timesteps per episode; es: electrostatic term;
ww: Wan der Waals forces; hb: hydrogen bonds; sc: overall score from the SF ;λ, ι, δ, ζ:
empirically-set cut-offs.

Ensure: reward.
Initialize reward terms esr, wwr, hbr, and scr.
if done = True and current_step <max_timesteps_per_episode then

reward = −η
else

if abs(es) >= λ then
esr = 1
if -ww >ι then

wwr = 1
if hb <0 then

hbr = 1
if -sc ≥ ζ then

scr = η
end if

end if
end if

end if
end if
reward = add(esr, wwr, hbr, scr)

As for the ANN architecture, the value function in QN-Docking relies on a modified

version of the Multi-View CNN [148]. This ANN was originally conceived to recognize
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3D shapes according to view-based descriptors instead of native 3D formats, such as

voxel grid or polygon mesh. The authors make use of a CNN architecture that com-

bines information from multiple views of a 3D shape into a single and compact shape

descriptor offering even better recognition performance than state-of-the-art 3D shape

descriptors. More specifically, the architecture includes a basic CNN to handle each view

separately. Then, a global view-pooling layer is attached after the previous convolution

layers. In this view-pooling layer an element-wise maximum operation is performed

across the views. Finally, a unique CNN is use to solve the class prediction problem.

Several works have improved the results obtained by Su et al. [148], like Leng et al.

[77], Qi et al. [116], or Kanezaki et al. [65]. This last approach leads the Modelnet40

leaderboard at the time this thesis is being written [172]. Namely, it achieves a classifica-

tion accuracy of 97.37% while Su et al. [148] gets 90.1%. These superior results come at

the expense of more complexity, problem specialization, and the use of additional tricks.

For example, previous approaches in 3D shapes recognition are based on known view-

point labels for training, while the method in Kanezaki et al. [65] treats the viewpoint

labels as latent variables learned in an unsupervised manner during the training using

an unaligned object dataset. Thus, the architecture in Su et al. [148] is selected to be ap-

plied to the Docking context due to its higher simplicity and generalizability compared

to more advanced algorithms such as Kanezaki et al. [65] or Zhang et al. [175].

Figure 3.10 shows the architecture of the neural network in MVDQN, where

it is combined a Multi-view CNN with a dueling architecture [167]. In particu-

lar, three convolution layers handle the input data (a PyTorch tensor with shape

(batchsize, no.o f views, inputheight, inputwidth, no.o f channels)). The filter size for each

of these layers is 8, 4, and 3, respectively, combined with a stride of 4, 2, and 1. As the

reader may have noticed, there is no max nor average pooling layers after each convo-

lutional operation. Pooling layers in general address the problem known as local trans-
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lation invariance—i.e. the fact that the output feature maps from the convolution layers

are sensitive to the location of the features. One approach to deal with this sensitivity is

to down sample the feature maps. This makes the resulting down sampled feature maps

more robust to changes in the position of the feature in the image. However, it was pre-

ferred to respect the original layout devised by Mnih et al. [100] where any pooling layer

was attached. The reason behind this decision may be to avoid distance distortion in the

images from the Atari 2600 emulator. In this regard, distance is also crucial to compute

the binding affinity for a given ligand-receptor pair.

After the corresponding matrix multiplication, the global view-pooling layer per-

forms an element-wise maximum operation across the three views. The output is then

split into two streams following a dueling architecture. The state-value stream helps to

distinguish which states are good or bad per se, without taking any particular action.

The action advantage stream, however, focuses on identifying the best actions for each

state. Both streams are composed of two consecutive fully connected layers. The first of

these layers has an output size of 512 units in both streams. In the second one, however,

the output size is equal to one in the case of the state-value stream, while for the action

advantage stream it corresponds to the number of actions. As in the previous approach

based on the simplified feature vector, the final output consists of the estimates of the

Q values indicating the quality in the long run of each action in each state. There are

no changes with respect to the application of the prioritized experience replay during

training. Finally, the specific hyperparameters of the ANN model are listed in Table 3.6.

3.3.2 Experimental design

MVDQN is tested using the previous setting based on the kaempferol and beta-

cyclodextrin. This experiment is performed for sake of consistency, to ensure that the

new approach is able to attain at least similar results when solving the PLDP problem.
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Figure 3.10: Example of the neural network architecture of MVDQN for three views.

As for hardware, the experiment was performed on a server with an Intel(R) Xeon(R)

Silver 4216 CPU @ 2.10GHz, 384 GB of RAM, 32 TB SSD Hard Disk. Unlike the feature-

vector-based approach, the execution relied not only on the CPU but on the GPU as well.

It should be recalled that the molecular encoding is now based on images and the ANN is

a Multi-View CNN. As a consequence, the total number of trainable parameters amounts

to 3,285,667 for 2 actions and 1 view, which in both cases is considerably more than the

2,562 from the previous approach of QN-Docking. This makes the use of the GPU essen-

tial to speed up the training process. Specifically, the server is equipped with two Nvidia

GeForce RTX 2080 Ti.

With respect to software, a vanilla version of the DQN algorithm was adapted

from Cook [18]. This kind of simpler implementations offers more control and flexi-

bility to adjust the code to other contexts, as it is the case. The code for the Prioritized

Experience Replay was borrowed from Silveria [142]. This implementation is based on
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an unsorted sum tree model to sample the tuples from the replay buffer more efficiently.

MVDQN was coded using PyTorch 1.2.0 instead of relying on the combo of Tensorflow

plus Keras. The change of framework is due to PyTorch’s higher ease of use at the time

the application was built. Namely, PyTorch works with dynamic graphs, so one does not

need to statically define it first to run the code and start debugging it. This has changed

in the past year, however, with the development of TensorFlow 2.x. In addition, OpenAI

Gym 0.17.2 was used to create the RL environment of DockingEnv-v1. PyMol 2.5.0 was

chosen to render the images from the Docking scene, and move and rotate the ligand

in the three-dimensional space. Finally, AutoDock Vina 1.2.2 was employed to offer an

alternative SF beyond that of Bindsurf.

3.3.3 Results and discussion

The following lines are focused on a similar scenario to the previous feature-vector-

based approach to dock the kaempferol and beta-cyclodextrin. But in this case, MVDQN

is tested. Analogously, a manual hyperparameter tuning centered on execution time

is conducted although a little less exhaustively. In particular, the performed analysis

encompasses more than 40 runs with different combinations of the hyperparameters

for initial position no. 3. Like in QN-Docking, different values are tested for each

hyperparameter. In this case, each value is tested three times with different seeds and

the average time is then calculated. After performing the three runs, the best value on

average for that particular hyperparameter is set for the next hyperparameter to be tested

following a cascading pattern.

Before analyzing the results, it is worth to highlight the slight differences in the im-

plementation of MVDQN and that of QN-Docking. As one might expect, the definition

of the hyperparameters related to the DQN algorithm itself barely varies compared to

the previous section. One remarkable difference is that in the implementation of OpenAI
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Baselines, the ε value within the ε-greedy strategy is annealed by specifying a fraction

of the total number of timesteps set for the whole simulation through linear interpo-

lation. In this case, epsilon decay is used. This method consists of a multiplicative

factor (<1) that decreases the value of ε in each episode, not in each timestep like in

linear interpolation. Another minor change in the new implementation affects the hy-

perparameter that takes over the soft updating of the target network. Instead of up-

dating the target network every C steps, a τ hyperparameter following the equation

θtarget = τ × θlocal + (1− τ) × θtarget is applied. Thus, if τ = 1e−4, the target network

will update every 1,000 steps; if τ = 1e−3, it will update every 10,000 steps; etc. So,

this replacement of the C steps by τ is equivalent and does not entail a real change in

the algorithm compared with the previous approach but it is necessary to understand its

meaning. The definition of the rest of the hyperparameters like the exploration fraction,

γ discount rate, learning start, etc. remain as they are.

As for the hyperparameters related to the Docking problem (maximum time-steps

per episode, shifting length per step, rotating angle per step, etc.), there are no changes

but in the state space. In the previous system, the states are based on a feature vector

that includes the mass center of the ligand plus the rotational quaternions and the

norm, so the state space is equal to 7. In this proposal, the state space is equal to

no. o f views × input height × input width × no. o f channels = 1 × 84 × 84 ×

1 = 7, 056. The action space remains equal to 2 (moving forwards and backwards

along the x axis). Likewise, there are new hyperparameters related to the Multi-View

CNN: the height of the image resolution, width, number of channels, and the number of

views or perspectives. As mentioned before, the number of convolutional layers remains

fixed with respect to the architecture from the original algorithm of DQN, so it is not

considered a hyperparameter. The hyperparameters of the CNN such as the kernel size,

stride, or padding are not tweaked either. The same happens with the number of fully-
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connected layers in the block of the dueling architecture. The definition of the rest of

the hyperparameters like the update rule, learning rate, or the minibatch size remain

unchanged.

Figure 3.11 shows the most common and important hyperparameters in DL and/or

those that prove to have a deeper impact in terms of computational efficiency. In the

case of the initial position no. 3, the execution time is gradually decreased from the

initial average of 5 hours (corresponding to the best QN-Docking’s hyperparameter

combination applied to MVDQN) to 3 hours and 54 minutes. As expected, this reduction

in the execution time is not as pronounced as in the hyperparameter analysis performed

in QN-Docking since the initial combination is precisely that of QN-Docking, so the

room for improvement is narrower. But it is worth to conduct such analysis as a control

measure.

Thus, a learning rate of 0.01 turns out to be the best value, as in QN-Docking. It should

be noted that values equal or greater than 0.1 make the algorithm unable to converge.

With respect to the frequency to update the target network (τ), τ = 1e−3 (or equivalently

10,000 steps) is faster for convergence than the value of τ = 1e−4 (1,000 steps) from

QN-Docking. This configuration saves around 1 hour of computation. However, it is

observed that MVDQN is not able to converge during training with that value (τ = 1e−3)

if the ligand starts from farther positions. Therefore, τ = 1e−4 is the final value selected

to continue with the analysis. Surprisingly, the mini-batch size, traditionally one of the

hyperparameters with greater impact in training performance in DL, barely affects the

execution time but for very large values (>1,024). Therefore, the original value for the

batch size in DQN (32) is maintain for the next hyperparemeter exploration.

Finally, the activation function proves to be the most decisive hyperparameter in this

analysis. The best activation function in QN-Docking is the hyperbolic tangent (TanH).

However, in MVDQN nor the TanH nor sigmoid functions enable convergence. This
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Figure 3.11: Result of hyperparameters analysis of MVDQN. Hyperparameters values
are tested sequentially. Red bars with diagonal stripes indicate that the algorithm failed
to converge. Error bars are based on confidence intervals with α = 0.05.

is probably due to their tendency to saturate [41]: large values snap to 1.0 and small

values to -1 or 0 for TanH and sigmoid, respectively. Once saturated, it is quite hard

for the learning algorithm to keep adjusting the weights to improve the performance of

the model. Goodfellow et al. [41] also points out another flaw of these two traditional

activation functions. In large networks, they tend to suffer from the vanishing gradient

problem because the deeper layers fail to receive useful gradient information, so the error

is back propagated through the network and used to update the weights. Nonetheless,

this not the case of MVDQN since their CNNs only have 3 convolutional layers. The

activation functions that do converge are the Rectified Linear Unit (ReLU) and some

of its more popular variants. In particular, the standard ReLU is the fastest activation



76 Antonio Serrano

RL hyperparameters
Hyperparameter Value Description
Number of global time-steps 152,855 / 92,105 Average number of global time-steps completed along the simulation for positions 2&5, and 3&4
Global maximum time-steps limit 10,000,000 Maximum time-steps limit along the entire simulation
Maximum time-steps per episode T 2,000 / 1,000 Maximum time-steps limit per episode for positions 2&5 and 3&4
State space 7,056 Real numbers needed to represent a particular state
Action space 2 Real numbers needed to represent the possible actions to be taken by the agent
Shifting length per step 0.1 Ångströms traveled by the ligand in each step when shifting
Rotating angle per step 0.5 Degrees turned by the ligand in each step when rotating
ε initial value 1 Initial value of ε (if ε=1, then 100% actions are randomly selected)
ε final value 0.02 Final value of ε.
ε decay 0.99 Multiplicative factor per episode for gradually decreasing ε.
γ discount rate 0.99 Discount rate for future rewards
Experience replay pool size N 50,000 Number of memories (st, at, rt+1, st+1, terminal) to be stored to perform experience replay
Learning start 50,000 Number of initial steps where the agent only takes random actions
τ to soft update target network 1e−4 Indirectly controls the frequency at which the target network is updated
α PER 0.6 Alpha parameter for prioritized experience replay
β0 PER 0.4 Initial value of beta for prioritized experience replay
β iterations PER None Number of iterations over which beta will be annealed from initial value to 1
ε PER 0.000001 Epsilon to add to the TD errors when updating priorities

ANN hyperparameters
Hyperparameter Value Description
Image height 84 Height regarding image resolution
Image width 84 Width regarding image resolution
Number of channels 1 Number of filter maps applied in each convolution layer
Number of views 1 Number of perspectives from which the images of the Docking scene are taken
Activation function ReLU Activation function used by hidden units to decide whether they should be activated or not
Update rule Adam The parameter update rule used by the optimizer
Learning rate 0.01 Learning rate used by the optimizer
Minibatch size 32 Number of training examples per update

Table 3.6: Values of the hyperparameters in MVDQN

function followed by the Exponential Linear Unit (ELU). Leaky ReLU, the variation with

a small slope for negative values instead of altogether zero, is also able to converge

although slightly slower. Finally, Table 3.6 shows the most efficient combination of

hyperparameters selected to train the agent after the manual hyperparameter tuning.

In Figure 3.12, it is shown the evolution of the average total reward per time-step

during the training process. The average reward is also computed considering the

previous 100 episodes. In this case, however, it is considered 4 positions instead of 6.

Position 1 and 6 (see Figure 3.4) are discarded as unnecessary since they are deemed

unrealistic for being too far from the receptor. This is because most of Docking methods

start from potential hot spots like alpha carbon atoms, not from locations far from the

surface of the receptor. Thus, position no. 2 is 3 angstroms to the left of the optimal

solution, position no. 3 is 1.5 Å, position no. 4 is 1.5 Å to the right, and position no.
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5 is 3 Å also to the right. Thus, the maximum distance between both end positions (2

and 5) is 6 Å in total although the ligand is allowed to move 1 Å beyond those opposite

sides. Agents in positions 2 and 5 (charts a and d) needs more than 140,000 time-steps

and 8 hours of training since these are farthest from the crystallographic solution. In

positions 3 and 4 (c and d), however, it spends less than 100,000 time-steps and 6 hours

of training. As in Figure 3.6, the average total reward gradually increases until the

algorithm converges, suggesting that the agent steadily learns to make better decisions

over time. When visualizing its movements in PyMol by the end of training, the behavior

of the agent is similar to the one in QN-Docking i.e. it tends to stick to the optimal

solution.

Finally, the prediction or inference phase is tested analogously with respect to

QN-Docking. In other words, the agent is allowed to act starting from positions 2, 3,

4, and 5 according to the learned weights in each of those positions during training. This

gives rise to 4× 4 = 16 combinations based on the available prediction (starting) and

training positions. In each of them, the RMSD is also analyzed to deem the quality of the

learning acquired at training. Figure 3.13a shows the RMSD in angstroms between the

last position in the episode of prediction and the crystallographic solution. The distance

is calculated for each pair of training and prediction positions, oscillating between 0 and

5 angstroms at most. Those pairs whose RMSD is larger than 0 mean that the agent does

not end the episode of prediction in the crystallographic solution but somewhere else. As

expected, those episodes where the starting and training positions match (i.e. the diag-

onal of the heatmap) behave optimally. In addition, there are some others combinations

of prediction and training positions outside the diagonal where the ligand also finds the

solution and remains in it. However, the ligand does not lie in the optimal spot in most

of those combinations outside of the diagonal. This is confirmed in Figure 3.13b through

the average RMSD between the current position of the ligand and the optimal solution
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Figure 3.12: Average total reward per time-step during the training process for MVDQN
for positions 2, 3, 4, and 5 (see Figure 3.4). The average is calculated considering the
previous 100 episodes. For the sake of comparison, both x and y axes share the same
range of values in the four charts.

across the episode of prediction. For example, for the ligand trained in position no. 2

and starting from position no. 5, the average distance across the whole episode is 4.03

angstroms, which proves that the ligand is not able to traverse from one end to the other.

The sub-optimal behavior in those combinations whose average RMSD across the

episode of prediction is larger than 1 was confirmed by visualizing the agent in motion

with PyMol. In some of those cases, the agent tends to stick around ghost positions

somewhere in the middle of the one-dimensional path of the "x" axis. In some others, the

agent drifts away beyond the boundary in one of the ends of such path. This suggests
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that the model could suffer from overfitting [41], trying to move the agent to fix positions

in the space. In other words, the Multi-View CNN has learned the input data excessively

well, performing poorly on hold out samples (i.e. new starting positions). Overfitting,

in general, can be addressed by adding more training examples and/or reducing model

complexity. The first measure could be applied by including more perspectives of the

Docking scene in the input data for the same ligand-receptor pair. Another alternative

would be to change the molecular pair involved in the Docking process to get more

examples. But this would entail changing to a new environment, so it is not a real

solution. In addition to adding more views, it could be tried to reduce the capacity of

the ANN by applying a regularization methods such as dropout.

Another reasonable explanation for such defective behavior is related to molecular

encoding. Perhaps the current representation of the Docking scene is not enough for the

model to approximate the optimal policy function. Again, adding more perspectives of

the scene could shed a bit of more light on the neural network in order to generalize to

new starting positions later in the prediction phase. In addition, we believe that it would

be eventually necessary to add more chemical knowledge relevant for Docking in the

states of the algorithm beyond structural information. For example, the number of chan-

nels could be increased to work with color images indicating the atom type. Moreover,

those channels could be expanded to contain information about partial charges, phar-

macophoric properties, atom connections, hybridization, aromaticity, amino acid types,

etc. Finally, the resolution of images could be increased for the model to be able to dis-

tinguished certain positions of the ligand more clearly, even though it could entail many

more parameters to train at the same time.
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Figure 3.13: (a) RMSD between the last position in the episode of prediction and the
optimal solution. The distance is computed for each pair of training and prediction initial
positions. The maximum distance between the current position and the solution across
the 16 pairs is 60 Å. (b) Average RMSD between current position and the optimal solution
across the episode of prediction. The standard deviation is shown in parentheses.

3.3.4 Conclusion

In this second proposal of implementation, similar results to QN-Docking were obtained

in the context of the kaempferol and beta-cyclodextrin during the training phase. Specif-

ically, it is able to steadily learn to approach the ligand to the crystallographic solution

and stick to it until the episode finishes. In the prediction phase, the agent behaves op-

timally if it uses the weights learned from the same position where it starts. In addition,

there are some other combinations of training and starting positions where the agent is

able to find the solution. But in most of those combinations the agent acts suboptimally

by sticking around ghost positions more or less far from the solution or by drifting away

beyond the physical boundaries of the environment. These problems could be faced by

applying solutions to a potential overfitting problem or improving molecular encoding

for the RL states. Thus, this scenario seems promising because there is much room for
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improvement. In other words, the system could be able to find the optimal solution in

relative small receptors and limited action spaces with further adjustments. In conclu-

sion, the Specific objective 3 has been partially achieved. In fact, a manuscript based

on these last findings has been prepared and submitted to the editors of The Journal of

Supercomputing (Q2). We are currently awaiting for their acceptance.
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Chapter 4

Discussion, conclusions, and future

work

In previous sections, the discussion and conclusions for both of the proposed approaches

to enhance the resolution of the PLDP problem have been already included. Neverthe-

less, numerous problems associated with the corresponding experiments were encoun-

tered. All these thoughts and challenges are commented in this final chapter. Last but

not least, the future research avenues to keep improving the explained methods are also

addressed in this chapter.

4.1 General discussion

Next, it is explained some of the most important challenges and the related decisions

made along the research process to prepare not only Chapter 3 but also additional

experiments that may yield relevant information for the reader’s understanding of all

the work done in this doctoral thesis.

As explained in Section 2.1, the accuracy of the SFs is currently limited, affecting the

reliability of Docking and SBVS methods in general. In fact, there are proposal to enhance

83
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the estimates of those SFs by replacing them with ML and DL models such as 3D CNNs,

as shown in Section 2.4. Since the proposed methods in this dissertation include a force-

field-based SF to provide the reward signal, the same limitations from the SFs apply to

them. To overcome this difficulty, it could be used a ML-based SF although their result

in terms of accuracy are normally at the same level with respect traditional SFs.

Moreover, increasing the action space was tested in both implementations in the

context of the kaempferol and the cyclodextrin. In those cases, the algorithm does not

converge. More specifically, the ligand tends to move around the surface of the receptor

but it does not find the optimal solution in the central hole of the torus. A possible

explanation for such behavior is precisely linked to the limitations of the SFs. The energy

landscape that these functions generate is simply too rough for any ANN to find the

global minimum energy in a reasonable amount of time. In Figure 4.1, this landscape is

drawn for the kaempferol and the cyclodextrin by plotting the values of the SF from

METADOCK/Bindsurf in each timestep for the center of mass of the ligand during

training with movement and rotation in the three axes. Dark points are supposed to

be better position in terms of Docking. Although there are quite a few black points in

the center of the torus where the optimal solution is located, there are also many relative

good positions around the surface of the receptor. This makes the global optima hard to

be found in such steep energy landscape.

Coarse-grained energy functions [68, 145] were explored to alleviate this problem and

make the energy landscape smoother, in a similar way to Figure 4.2. Unfortunately, this

kind of energy functions needs to shape the Docking scene with its own coarse-grained

model. We found such models too complex to be applied to the proposed methods

based on RL because they required digging into more accurate approaches of Molecular

Dynamics.

There is another problem related to the action space. The basic system described
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Figure 4.1: Energy landscape for the kaempferol and the cyclodextrin. Each point
represents the value of the SF from METADOCCK / Bindsurf for the ligand whose center
of mass is in that position at that very moment. Thus, black and darker values refer to
better Docking positions (i.e. with lower energy), while points in yellow are associated
with poor Docking positions (higher energy).

in Section 3.1 accepts up to 12 possible actions: translation and rotation in the three

axes forwards and backwards. Additionally, it would be necessary to include molecular

folding to dock the ligand more precisely and be at par with most of the state-of-the-art

Docking methods. This would entail adding 3 extra degrees of freedoms or 6 actions per

rotatable bond—move and rotate the molecule in the three axes forwards and backwards.

The number of these rotatable bonds depends on the ligand in question and the criterion
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Figure 4.2: All-atom versus coarse-grained energy landscape (image and caption taken
from Kmiecik et al. [68]). The figure illustrates the effect of the smoothening of the energy
landscape in a coarse-grained model as compared to an all-atom model. The flattening
enables efficient exploration of the energy landscape in search for the global minima,
while avoiding traps in the local minima.

followed for molecular modelling. In practice, it is not normally larger than 12 although

some Docking software like AutoDock Vina allow up to 40 rotatable bonds. Thus, for a

given candidate with 12 rotatable bonds, for instance, the size of the action space could

rise up to 84.

This entails two problems. First, the number of rotatable bonds depends on the

ligand in question but the action space in RL is fix by definition. Therefore, some artifact

should be applied here to overcome this hurdle. For example, the number of rotatable

bonds could set to just two at the expense of accuracy. Second, a large action space

is a serious problem in RL and value-based policies [85]. In the common case that

the value function is a parameterized function taking both state and action as input,

A evaluations are necessary to choose an action (see Section 2.2). This quickly becomes
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intractable, especially if the parameterized function is costly to evaluate, as is the case

with deep ANNs [30]. One key question here would be if 84 actions, for example, could

be considered as too many to be handled for the DQN algorithm. To the best of our

knowledge, there is no fix number of actions in the literature from which the action

space could be officially considered too large. That limit seems to be context/problem

dependent. Regardless, an alternative to alleviate this problem could be to consider the

action space as continuous. Consequently, a policy gradient method such as A3C or

DDPG could be used instead of DQN. This would halve the number of possible actions

but there would be still many of them if the rotatable bonds were considered. A large

number of entirely different actions, each with different results, would still require much

exploration to determine the optimal combinations of action-state pairs.

The next challenges are focused on the implementation of MVDQN. Even though

the ligand is not capable of finding the optimal solution for all starting positions (see

Figure 3.13) in the experiment conducted in Section 3.3, a more complex setting based

on seven actions and three color views was also explored. Those seven actions include

movement in the three axes forwards and backwards plus an empty action. This empty

or no-input action is added to allow for more optimal behavior by the ligand—if the

agent finds the solution, the best action is to stay put—as in Mnih et al. [100]. Further-

more, the Multi-View CNN architecture really comes into play by increasing the number

of views to three. These images are generated by PyMol in each timestep from the top,

front, and lateral perspectives by zooming the ligand at its current position in the binding

site. Also, the number of channels in the CNNs are increased to 3 in order to use color

images. This is important since molecules are colored by atom type, being this feature

relevant in Docking.

As stated above when discussing the shape of the energy landscape, MVDQN is not

able to find the optimal solution in this more complex setting even in the training phase.
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The ligand tends to move around the surface of the cyclodextrin, getting stuck in local

optima, and it is not forced by the algorithm to explore the hole in the center to find the

optimal solution. In addition to the problems mentioned above, we think that there are

three other challenges in this new setting. The first one concerns sampling inefficiency.

It was observed that generating images of the Docking scene in each timestep of the

algorithm is too expensive for PyMol, specially with large receptors. For example, the

host molecule fa10 (included in the DUD-E dataset [104]), has 3,638 atoms, quite a few

more than the 146 of the beta-cyclodextrin. The visualizer spends almost 6 seconds to

generate the three images with a resolution of 84 by 84 pixels. This drawback slows down

the learning process in excess considering that images have to be constantly generated

during training. A possible solution would be to limit the rendering of the Docking

scene to the binding site. But, as explained in Section 2.3, it is not currently clear if only

considering the structure of the binding site is adequate to compute binding affinity in

a precise manner. Nonetheless, it is also true that the SF used to compute the reward

function already includes every single atom from both the ligand and the receptor to

calculate the binding energy. In other words, in the system it is indirectly considered the

whole structure of the receptor through the SF.

The second challenge is also related to the size of the images and, by extension, to

the size of the model. In Section 3.3.3 it is proposed to add more perspectives to the

input data, increase the number of channels to include important chemical knowledge

about the Docking process, or to increase the resolution of the images to provide sharper

images to the neural network. Leaving aside the benefits of such measures to improve the

results in the prediction phase, they also increase the size of the states and the trainable

parameters. For example, in the simplified scenario used in MVDQN based on 2 actions,

1 view, and gray-scale images of 84 by 84 pixels, the total input size is 0.03 MB and the

trainable parameters are 3,285,667. However, with 3 views and color images of 84 by 84
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pixels, the input size is 0.24 MB and the number of parameters is 3,441,635. Likewise, for

3 views and color images of 128 by 128 pixels, the input size raises up to 0.56 MB and

the the number of parameters to 9,667,555. Finally, for 8 views (top, bottom, front, back,

left, and right standpoints plus two isometric views) and gray-scale images of 84 by 84

pixels, the input size is 0.22 MB and the trainable parameters are 3,788,547. In summary,

it can be concluded that the image resolution leads to the greatest increase in the size of

the input data and, above all, in the number of parameters to be trained. Note that, the

number of views also increases the size of the input data but not as much as the image

resolution. Nonetheless, as discussed earlier, increasing the number of views entails a

sharp increase in the workload of the molecular visualizer. It should be pointed out as

well that 0.22 MB, for instance, may not seem too much information for a modern server.

But that amount of data correspond to a experience tuple to be stored in the experience

replay buffer of the Deep Q-Network in each timestep. If a buffer size of 1 million is

set, for example, then the total size of the buffer once filled up will be 222 GB and that

amount of data is stored in the main memory. So, this calculus should be performed

carefully before including additional information in the input data.

The third issue is related to molecular overlapping. Initially, this challenge was solved

by using a transparency effect manually applied to the receptor in PyMol when gener-

ating the different views of the Docking scene. More specifically, this can be handle by

using the clip command to adjust the slab thickness in the molecular visualizer. This can

be correctly applied to small receptors such as the beta-cyclodextrin. Nonetheless, it can

hardly be applied automatically in PyMol for ligand-receptor pairs with large receptors

by just applying a fix parameter for the slab thickness. If that fix parameter is employed,

many of the generated images turn out to be defective or non-informative with respect

to the Docking state, as displayed in Figure 4.3. For example, the surface of the receptor

does not show properly in many samples, hiding the ligand sometimes and completely
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Figure 4.3: Examples of defective or non informative images of the Docking scene in large
receptors included in the DUD-E banchmark (fa10 and aa2ar). Images were generated
with PyMol. Those views marked with a red cross on the right side are considered as
defective. If not, the ligand is marked with a green box.

vanishing in some others. Consequently, this limitation makes this approach unfeasi-

ble to be applied automatically for any given ligand-receptor pair. Maybe a supervised

learning approach could be adopted, so the image would be carefully hand-picked in

advance. However, such an implementation would entail a completely different method

far from Deep RL and, therefore, the entire system would need to be reconsidered.

To overcome this last challenge, a new approach changing the images for molecular

encoding by atomic point clouds was investigated as well. Instead of feeding pixels to

the neural network, the 3D atomic coordinates plus the atom type can be included in the

input data. Actually, this way of representing molecules could be regarded as a natural
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extension of the feature vectors. However, point clouds were considered as intractable

until recently due to their irregular, unstructured, and unordered nature. These char-

acteristics make this kind of representations unmanageable for standard feedforward

ANNs. Nevertheless, in 2017, Qi et al. [117] developed a method able to cope with this

type of input data in the context of 3D classification and segmentation. Since then, a

multitude of alternative models have been published [43]. It is a growing research topic

indeed. In fact, there are already some works applied in drug discovery [23, 83, 93].

This new implementation based on point clouds is already built although it needs

further improvements in its current state. In particular, a combination of the PointNet++

model [118] and the DQN Dueling architecture [166] was developed to select the optimal

action for the agent in each timestep. The SF from METADOCK/Bindsurf is being

currently vectorized to deal with larger receptor more rapidly.

4.2 Conclusions

As a final balance of the research developed in this doctoral thesis, it should remarked

that the specific objectives stated in Section 1.2 have been mostly attained. Only the Spe-

cific objective 3 is not completely fulfilled. In other words, a basic system based on a Deep

Reinforcement Learning algorithm (DQN) is built to solve the PLDP problem. In addi-

tion, this core system is implemented with two alternative ways for molecular encoding.

The first one, QN-Docking, is based on a feature vector and is successfully tested with a

relative small receptor and limited action spaces. The second implementation, MVDQN,

is based on 2D drawings of the Docking scene and it is also test in the same setting than

QN-Docking. The results of this last method are mixed. Apparently, the agent steadily

learns to make better decisions over the training episode. However, it fails to identify the

optimal solution when it starts from a different position where it was originally trained.
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These mixed results with respect to MVDQN should be regarded as a golden oppor-

tunity to keep investigating in this captivating line of research involving the intersection

of the Docking problem and Deep RL algorithms. The future avenues of research com-

mented in the next section provide a rough idea of the many improvements that can be

carried out. In effect, despite all these achievements, the ultimate objective (accelerating

the resolution of the PLDP problem for any given ligand-receptor pair in comparison

with traditional Docking methods) is far to be completed. This is something expected

and understandable considering that it is a very ambitious and challenging and, there-

fore, it should be regarded as a long-term objective. But the effort will undoubtedly be

worthwhile because, Is there a more rewarding undertaking than developing faster com-

putational methods to sooner deliver medicines to patients?

4.3 Future work

Lastly, the next steps for expanding the work developed in this doctoral thesis are briefly

enumerated. First, more actions including movement in the three axes, rotation, and

molecular folding should be included for greater precision in terms of binding affinity.

Second, the proposed methods need to be generalized to other ligand-host pairs beyond

the kaempferol and the cyclodextrin. After solving the flaws observed in the prediction

phase in MVDQN, the implementations from sections 3.2 and 3.3 could be tested with

ligand-receptor pairs from datasets like PDBbind, scPDB, CSAR, DUD, and DUD-E,

for instance. Third, relevant chemical information with respect to Docking should be

included in the states of the algorithm beyond structural information, as explained in

Section 3.3.3. For example, in the approach based on images for molecular encoding, the

number of channels in the CNN could be increased to contain information about atom

types, partial charges, pharmacophoric properties, atom connections, hybridization,
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aromaticity, amino acid types, etc. The feature vector in QN-Docking could also be

extended with such chemical knowledge.

Fourth, it has been observed that even for a Docking local optimization problem

the state space is still extremely wide for a RL problem in spite of the use of ANNs.

Consequently, a traditional Docking method could be used a few iterations to get the

ligand closer to the optimal location. In a second step, QN-Docking could perform a

fine-grained Docking to finish fitting the ligand into that optimal position. Fifth, a more

systematic hyperparameter analysis could be performed by using different strategies and

algorithms e.g. random search, grid search, HyperOpt, Bayes optimization, Optuna,

etc. Tools like Ray Tune [84] or Microsoft’s Neural Network Intelligence could be

adapted to conduct the corresponding tests. Finally, as discussed in Section 4.1, the 2D

drawings used in MVDQN for molecular encoding should be improved by including

more perspectives of the Docking scene, increasing the number of channels, and/or the

resolution of the images. But at the same time, a balance should be struck between

accurate molecular representations and sample generation efficiency.
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