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RESUMEN 

Debido al continuo aumento de la cantidad de residuos plásticos a nivel 

mundial, la definición de políticas eficientes de planificación urbana junto con una 

correcta gestión y recogida de los residuos domésticos pueden ser a menudo un 

reto muy exigente. Muchas ciudades y países se enfrentan a menudo con una 

inadecuada eliminación de los residuos plásticos, como los dos países en los que 

se centra esta tesis: India y Filipinas. En este sentido, India tiene políticas diferentes 

en función de su segmentación geográfica. Dos de los estados de dicho país que se 

analizan con más detalle son Punjab, donde la mayoría de las ciudades no tienen 

un contenedor de basura adecuado, y Gujarat, donde el uso e implantación de los 

contenedores municipales acaban de empezar. 

Esta tesis presenta un sistema colaborativo inteligente que se centra en la 

monitorización de los residuos plásticos a través de un enfoque novedoso para 

definir políticas que ayuden en el proceso de gestión de este tipo de residuos en 

entornos urbanos. El sistema propuesto se compone de contenedores domésticos 

inteligentes equipados con balanzas de peso y una aplicación inteligente para 

recoger y anticipar los residuos plásticos que se almacenarán en el contenedor en 

diferentes horizontes temporales. Por otro lado, el sistema es también capaz de 

genera rutas mediante un mecanismo de planificación que facilita a los 

recicladores la recogida proactiva de residuos en los hogares con diferentes medios 

de transporte. Los recicladores pueden utilizar las diferentes ubicaciones de los 

contenedores municipales de residuos plásticos que han sido previamente 

inferidas por nuestro sistema a través del análisis de datos abiertos 

socioeconómicos y demográficos. Este sistema inteligente ha sido evaluado en dos 

zonas urbanas de la India y Filipinas mostrando resultados convincentes.  

Gracias a la continua promoción mundial de los datos abiertos como método 

para acceder a datos transparentes, este estudio también ha utilizado datos 

abiertos para recuperar la demografía, el número de locales dentro de diferentes 

categorías, el número de segmentos de calles y la ubicación de los contenedores de 

cuatro ciudades occidentales de referencia: Nueva York, Málaga, Madrid y 

Stavanger. El objetivo principal de extraer los datos abiertos de estas cuatro 

ciudades es determinar la distribución de las papeleras en función de las variables 

mencionadas. Como prueba de concepto, hemos empleado estos datos para 

planificar un escenario de gestión de residuos urbanos en las ciudades objetivo de 

Filipinas e India. La comparación de las ciudades de referencia y las ciudades 

objetivo también nos permite ver que las zonas de la India parecen ser más 

familiares, como Stavanger, debido a la distribución de los locales, y que Quezon 

City tiene una actividad ciudadana similar a la de Nueva York, Madrid y Málaga. 



   

En concreto, se realizó un análisis de regresión lineal sobre los datos de las 

ciudades de referencia para determinar las variables relevantes y el coeficiente de 

determinación que mide la confianza en los modelos. También se aplicó el análisis 

de mínimos cuadrados ponderados a las diferentes variables obtenidas en los 

pasos anteriores, como la densidad de población, el número de segmentos de calles 

y los cuatro usos del suelo predominantes obtenidos mediante la aplicación del 

algoritmo de análisis de componentes principales. Con ello, se identificó el número 

de contenedores necesarios y propuestos en cada una de las ciudades objetivo.  

 Por otro lado, la recogida de residuos en la mayoría de los países sigue 

basándose en métodos tradicionales con horarios fijos. Esto representa un 

problema, ya que una recogida de residuos inadecuada e ineficaz puede provocar 

contaminación y polución.  También pueden surgir grandes preocupaciones entre 

la población cuando hay un tratamiento inadecuado de los residuos plásticos 

debido a problemas de recogida como, por ejemplo, la irregularidad de la misma. 

Como alternativa, se utiliza un contenedor inteligente con una báscula de alta 

resolución para controlar los residuos plásticos domésticos. También se diseñó una 

aplicación colaborativa para gestionar la recogida de residuos domésticos en las 

comunidades con necesidades especiales, como residentes afectados por Covid-19, 

personas mayores o con discapacidad. Este desarrollo incluyó además un 

algoritmo para prever la generación de residuos de plástico con el fin de disponer 

de una ruta de recogida optimizada para los recolectores de basura doméstica. A 

modo general, el sistema recoge el peso de los contenedores de las casas a través 

del sensor de peso. Estos datos se envían a un servidor backend que incluye un 

panel de control para visualizar los datos recogidos por el sensor, así como un 

algoritmo de planificación capaz de personalizar las rutas de los recicladores 

registrados en el sistema para que la recogida de residuos sea proactiva y no 

tradicional.  

 Los datos utilizados para realizar las simulaciones se basaron en 

experimentos realizados a través de diferentes características demográficas como 

tipos de hogar y grupos de edad.  La predicción del peso se introduce en el módulo 

que se utiliza para crear rutas para los recicladores. También se obtuvieron tres 

clústers basados en dichas características, cada uno representando un perfil 

particular de generación de residuos plásticos. La evaluación de la simulación se 

llevó a cabo en la ciudad de Quezon, Filipinas, donde se definieron ocho 

contenedores inteligentes domésticos y dos ubicaciones de recicladores, y cada 

contenedor se vinculó a un clúster particular. Se simuló un enfoque iterativo en el 

que se extrajo un experimento particular y se generó un número específico de 

subexperimentos. Los puntos de recogida junto con el registro de tiempo u horas 

de los recicladores se introdujeron en un algoritmo para la optimización de las 

rutas de recogida necesarias para los recicladores. Posteriormente, se calcula la tasa 



  

de recogida que indica el porcentaje de contenedores incluidos en la ruta que son 

recogidos por los recicladores antes de que se llenen. Los cálculos de cada ruta 

incluyen la hora de recolección y la hora de llenado real de cada contenedor. Tres 

medios de transporte diferentes, coche, bicicleta y a pie, fueron estudiados para 

estudiar dicha tasa de recogida. Los resultados muestran que la solución alcanzó 

una tasa de recogida media del 80%. Además, cuando se utilizan bicicletas y 

coches, las tasas de recogida aumentan con el mayor número de predicciones de 

contenedores.  

 Con la integración del módulo de planificación urbana y el módulo de 

composición de rutas y contenedores inteligentes, los resultados muestran una 

tasa de recogida media superior al 80% para bicicletas, coches y a pie como medio 

de transporte. También se puede observar que el uso de los recicladores y los 

contenedores de residuos municipales en la misma zona, facilitaría un sistema 

sostenible que permite el uso de bicicletas y el desplazamiento a pie a las casas y 

los contenedores en lugar de en coche.  

 En definitiva, se ha conseguido una solución colaborativa que ayuda a 

distintos colectivos en la recogida de los residuos plásticos domésticos. Así, se 

propone un contenedor inteligente ligero de alta resolución para captar y 

pronosticar la cantidad de residuos plásticos en los contenedores de cada hogar. 

Además, se definen diferentes técnicas inteligentes para generar rutas optimizadas 

para los recolectores de residuos domésticos y los recicladores registrados. Esto les 

permitirá llevar a cabo una recogida de residuos eficiente. También se determina 

el número de contenedores de plástico necesarios en una zona específica a través 

de datos abiertos y diferentes variables relacionadas con la planificación urbana y 

la gestión de los plásticos extraídos de ciudades referentes en la gestión de residuos 

urbanos.  

 

KEYWORDS: Urbanismo, Computación de Estadística, Materiales plásticos, 

Diseño de Sistemas Sensores 

  



   

ABSTRACT 

With the continuous increase of the amount of plastic waste, efficient urban 

planning policies together with the proper management and collection of 

household waste can often be a demanding task. Many cities and countries are 

often faced with the inadequacy of plastic waste disposal such as the two countries 

which are focused on in this thesis: India and the Philippines. India has a lot of 

different policies based on its geographical segmentation. Two of the states which 

are further discussed are Punjab and Gujarat. Punjab wherein most cities do not 

have a proper disposal bin and in Gujarat where the use and implementation of 

municipal bins have just started. 

This thesis presents an intelligent collaborative system that focuses on 

monitoring plastic waste through a novel approach to define policies to help in the 

process of management of this type of waste in urban settings. The proposed 

system is composed of simple smart bins equipped with weight scales and a smart 

application to collect and forecast plastic waste generated at different time 

horizons. The application also generates routes based on a route-planning 

mechanism that makes is easier for waste pickers to collect waste from the 

households with different means of transport. The waste pickers can use the 

different municipal plastic waste bin locations that have bee previously inferred 

by our system through the analysis of socio-economic and demographic open data. 

This intelligent system for plastic waste management has been evaluated on two 

urban areas of India and the Philippines showing compelling results.  

Thanks to the continuous global promotion of open data as a method of 

gaining access to transparent data, this study has also used open data to retrieve 

the demographics, number of venues within different categories, number of street 

segments, and the location of bins of four western cities, namely New York City, 

Malaga, Madrid, and Stavanger. The main aim of retrieving these four cities’ open 

data is to determine the distribution of bins according to the abovementioned 

variables. As a proof of concept, we have employed these data to plan an urban 

waste management setting in the target cities in the Philippines and India. The 

comparison of the reference and target cities also allows us to see that the Indian 

areas appear to be more family-friendly like Stavanger due to the venue 

distributions, and Quezon City has similar number of human activities in New 

York, Madrid, and Malaga. A linear regression analysis was performed on 

reference city data to determine relevant variables and the coefficient of 

determination which measures the confidence in the models. Weighted Least 

Square analysis was also applied to the different variables obtained in the previous 

steps such as population density, number of street segments, and the four 



  

predominant land use obtained through the principal component analysis 

algorithm application. With this, the number of bins needed and proposed for the 

target cities were identified.  

 On the other hand, waste collection in most countries is still based on 

traditional methods with fixed schedules. It represents a problem as improper and 

inefficient waste collection can result to pollution and contamination.  Major 

concerns can also be raised when there is improper treatment of plastic waste due 

to collection issues such as irregularity of collection, for example. As an alternative, 

a simple smart bin using a high-resolution weight scale is used to monitor 

household plastic waste. A collaborative application was also designed to manage 

the collection of household waste in the communities with special needs, such as 

Covid-19 affected residents, elderly people, and people with disabilities. 

Additionally, an algorithm that can be used to forecast the generation of plastic 

waste in order to have a collection route that is optimized for residential garbage 

collectors. The overview of the system includes the system capturing the weight of 

the bins from houses through the weight sensor. These data are forwarded to a 

backend server that comprised of dashboard to visualize collected sensor data. A 

predictor that customizes routes for registered waste pickers is also used for the 

collection to be proactive and not traditional.  

 Data used to perform the simulations were based on experiments made 

through different demographic characteristics such as types of household and age 

groups.  The weight prediction is then fed to the module which is used to create 

routes for waste pickers. Three clusters were also obtained based on the features, 

and they represent a particular user profile in terms of plastic waste. The 

evaluation of the simulation was performed on Quezon City, Philippines, where 

eight household smart bins and two waste picker locations were defined, and each 

bin were linked to a particular cluster. An iterative approach was simulated where 

a particular experiment was extracted, and specific number of sub-experiments 

was generated. Pickup points along with waste pickers time or hours log were fed 

to an algorithm for optimization of route planning to compose collection routes 

necessary for the waste pickers. Collection rate which indicated the percentage of 

bins included in the route that is collected by the waste pickers is calculated. The 

calculations of each routes include the collection hour and actual filling hour of 

each bin. Three different means of transport such as by car, by bike, and on foot 

were primary means of transport based on the collection rate. The results show 

that the solution achieved an average collection rate of 0.8. Additionally, when 

using bikes and cars, the collection rates increase with the larger number of bins 

predictions.  

 With the integration of the urban planning module and the smart bin and 

route composition module, the results show an average collection rate of over 80% 



   

for bikes, cars, and on foot as a means of transport. It can also be noted that with 

the use of waste pickers and municipal waste bins in the same area, it will be a 

sustainable system which supports the use of bicycles and travelling from houses 

and bins on foot instead of by car.  

 All in all, a collaborative solution that assists different groups with their 

household plastic waste collection was attained. A lightweight high-resolution 

smart bin to collect and forecast the amount and generation of plastic waste in each 

household bins is proposed. Different intelligent techniques were defined in order 

to generate optimized routes for residential waste collectors and registered waste 

pickers. This will allow them to pursue efficient waste collection. In addition to 

that, the number of plastic bins needed in a specific area was determined through 

open data and different variables related to urban planning and management of 

plastic in the countries with existing placement of municipal plastic waste bins and 

through statistical analysis.  

 

KEYWORDS: Urban Planning, Statistical Computing, Sensor System, Artificial 

Intelligence, Human Ecology 
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I - INTRODUCTION 

1.1.  MOTIVATION OF THE STUDY 

Plastics are now covering most of our urban and natural ecosystems.  As 

stated by Kenyon and Kridler (1969), the first evidence of plastic accumulation was 

found through the examination of the gut content of seabirds in the 1960s. Up until 

today, little progress has been made in reducing plastics but large progress in 

knowing the effects they have on the environment (Barnes et al., 2009).  

According to Reddy and Sasikala (2012), the continuous increase of plastic 

waste in our cities can be harmful not only physically but also mentally, for 

example with cases related to depression, anorexia, and restlessness, among others. 

In India, 90 percent of solid waste including plastics is usually dumped in the open 

but reusing plastics has been known as a positive reinforcement in order to lessen 

plastic waste in a community (Banerjee, Srivastava, & Hung, 2014). According to 

the previously mentioned authors, recycling plastics through melting them and 

making a reusable product or using it for roads or as fuel is also a big help. 

However, it can lead to complications because of the incompatibility of the plastic 

polymers and their different melting points. There are solutions made available to 

help fix the problem of the accumulation of plastics. For example, as stated by 

Hopewell, Dvorak, and Kosior (2009), it is better if we throw our plastics in a 

landfill. On the contrary, Jindal (2019) stated that landfill is the least favoured 

option for a public or private initiative. This author also stated that there are many 

other ways to reuse plastics, such as using plastics for road constructions, mixed 

with cement, or turning plastic into fuel.  

Recently, due to the COVID-19 pandemic, the production and distribution of 

plastics have increased significantly. During this time, every individual needs face 

masks, face shields, or personal protective equipment to protect against the 

transmission of the disease (Sunjaya & Jenkins, 2020). Therefore, with the growth 

of plastics as seen in today’s time, efficient plastic waste management is necessary. 

However, because incineration or landfills is the most common way of eliminating 

plastic waste, finding an efficient way to manage plastic waste, without mistreating 

the environment additionally is indispensable (Singh & Sharma, 2016). In this 

context, this thesis aims to provide a knowledge-based framework to improve the 

management of plastics both in cities and in households.  



24  NAVJOT SIDHU 

1.2. INFORMATION TECHNOLOGY COMPONENTS FOR PLASTIC 

MANAGEMENT 

In this section, sensors, open data, and machine learning are defined and 

explained through related studies that have used these technologies for plastic 

waste management. The combination of these Information Technologies (ITs) will 

be used in this thesis for the development of a knowledge-based framework to 

manage plastic waste in urban environments. 

1.2.1. Sensors  

Sensor technologies and systems are normally used in medical applications, 

environmental systems, traffic and parking monitoring, agriculture, and many 

more to detect different types of characteristics such as temperature, motion, 

location, etc., and convert them into readable outputs (Dener & Bostancıoğlu, 2015). 

An example of the use of sensors in waste management is in segregating waste. In 

a study by Elhassan, Ahmed, & AbdAlhalem (2019), a sensor system was used to 

separate waste into five different types-paper, plastics, metal, glass, and the rest. 

Two capacitive sensors were utilized to separate paper from plastic, and metal 

sensors were also used. Glass waste was separated through an infrared sensor, and 

the remaining waste, which is organic waste, was what was left in the containers.  

The efficacy of these sensors has been proven yet communities are hesitant to 

put this proposal into action as the number of sensors and other hardware 

components being used in this process is not cost-efficient. These devices are also 

significantly efficient and effective, especially through the integration of 

information and communications technology and the Internet of Things (IoT). In a 

study by Atzori, Iera, & Morabito (2010) and Harbers et al. (2018), the IoT approach 

is difficult to understand even for researchers working in a specific field. It also 

affects or threatens the security and privacy of data.  Thus, they have created a 

Venn diagram to better explain certain aspects and examples of the IoT paradigm. 

An example of the use of sensors together with IoT is the collection of data 

through sensors on roads, in rivers, railways, and other media infrastructure for 

Smart Earth technologies which are environmental applications under IoT 

(Ganchev, Ji, & O'Droma, 2014).  
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Figure 1: The IoT paradigm based on The internet of things: a survey 

1.2.2. Open Data 

Open Data is the paradigm of how data, within different contexts and 

domains such as scientific, administrative, demographics, among others, can be 

published and re-used without permission barriers. This important concept of re-

use without permission is essential for further studies.  In scientific research, the 

rate of discovery can be accelerated by better access to data (Murray-Rust, 2008). 

Open data in smart cities means not only the global data collected and made 

accessible by the government, but also it should include the sharing of data among 

individuals and industries (Ahlgren, Hidell, & Ngai, 2016). Furthermore, as stated 

by Murray-Rust (2008), open knowledge amounts to data for everyone that is free 

to use, re-use, and redistribute without legal, social, or technological restrictions. 

As a result, public data in smart cities can be used as comprehensive datasets that 

are integrated into technological processes related to waste management. An 

example of this is the use of country-level municipal waste data, population, and 

gross domestic product to predict future municipal waste generation in a country 

(Lebreton & Andrady, 2019). 
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1.2.3. Machine Learning 

Machine Learning (ML) is a foremost branch within the Artificial Intelligence 

discipline. The key goal of ML is the use and development of data mining 

techniques and algorithms able to learn a particular task in a gradual manner as 

humans do.  It helps improve decision-making systems based on pre-defined and 

static rules into more dynamic and statistically oriented, settled systems that can 

adapt to new data (Amershi et al., 2019). Machine Learning can be classified into 

three approaches: supervised learning, the most widely used type that uses 

training data with labels to be able to predict future outputs; unsupervised 

learning, which uses training data without labels to be able to recognize, group, or 

cluster similar data; and reinforcement learning, that uses sequences and 

observational data to interact for further augmentation (Jordan & Mitchell, 2015). 

As an example of the application of ML in waste management, in a study by Dubey 

et al. (2020), Machine Learning techniques were used to forecast the fill level of the 

bins and to cluster data to differentiate between biodegradable and non-

biodegradable waste. 

1.3. TOWARDS THE DESIGN OF AN INTELLIGENT FRAMEWORK FOR 

PLASTIC WASTE MANAGEMENT  

Due to plastic waste increasing day by day, the use of IT elements as an 

alternative to manage the amount of plastic generated in the context of smart cities 

will be an essential solution. Thus, the design of an intelligent framework based on 

the IT components may represent a compelling solution for this task. For instance, 

developing a smart bin with low-cost sensors for households would be an 

important tool to accurately check and analyze plastic generation and management 

in urban areas. Likewise, open data such as the population, number of bins, their 

distribution in the streets, etc. of cities such as New York or Madrid can be re-used 

to design new urban plans for other developing cities lacking waste management 

infrastructures, for example, to distribute an optimal number of plastic waste 

containers in the streets. The starting point of this process would be urban planning 

for municipal waste bins in developing countries or countries with no waste 

containers in the streets.  The designated number of bins would be generated by 

applying different techniques coming from the fields of statistical analysis and 

machine learning on open data collected in several Western cities with previous 

successful experience in waste management. Finally, services such as the 
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generation of collection routes for waste pickers and volunteers for household 

waste and for stakeholders to collect municipal waste would be offered to provide 

these actors with optimal directions. 

All in all, all these services can be integrated into a general framework offered 

to help the community, especially in Asia where the waste management policies 

and technologies have not been updated while solid and plastic waste production 

has increased (MacRae, 2012; Marks, 2019).  

Figure 2 shows a general overview of the proposed intelligent framework for 

managing plastic waste in smart cities. The overview focuses on actors such as the 

households, local authorities, and the waste pickers interacting with the system in 

order to give or receive outputs for their own purpose such as collecting, disposing, 

and planning. The system consists of different processes such as intelligent 

modules, open data connectors, dashboards, and data storage that all revolve 

around smart bins which are responsible for the input and output of data. The low-

cost household bins equipped with sensors monitor plastic waste, while a designed 

application will be used to manage the collection of household plastic waste within 

the communities with the help of volunteers or waste-pickers. With this data, an 

algorithm is applied to forecast the generation of household plastic waste. It is also 

to optimize routes for residential garbage collectors and waste-pickers. The 

municipal plastic bin distribution and placements in communities is also another 

process wherein local authorities retrieve data through open data in order to 

analyse data statistically to determine the total number of bins needed in a city. 

Figure 2: General overview of the proposal of an intelligent framework for 

managing plastic waste in smart cities.  
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1.4. BACKGROUND OF THE STUDY  

In this section, we analyse the context in which the project developed in this 

thesis takes place. Recently, the control and management of plastic waste in cities 

have become an issue of concern to society. New urban planning and services 

become a necessity in order to efficiently manage waste and this process can be 

fostered using different IT elements and the data gathered from them. An example 

is the use of cellular data in order to capture city dynamics in Morristown, New 

Jersey. Call detail records and cellular traffic was noted for 2 months with the 

purpose of plotting and visualizing the activity of residents during the day and late 

at night. This type of collected data and visualization can be used to provide 

services such as optimization of waste collecting routes in the city according to this 

activity (Becker et al., 2011). In another example, data collected from different 

private and public organizations in the city was used to identify target points in a 

city such as physical, socio-economical, and political-institutional, in a way to plan 

an active and holistic plastic waste management in coastal areas (Moura et al., 2020) 

In a study by Thota et al. (2018), the use of incentives is discussed for people 

who live in a community when they dispose of plastic waste to raise awareness 

about plastic waste management. Thus, a reverse vending machine called ReVa is 

proposed to increase recycling of plastics. This machine, when given a 

Polyethylene material, rewards the users with air miles. Additionally, a recycling 

bin that produces a positive sound and emoticon has also been developed to give 

a reason for citizens to recycle and be aware of plastic pollution. The bin has a 

proximity sensor attached inside the bin, while an LCD monitor and speakers are 

attached outside the bin. When the sensor detects a plastic waste is being thrown 

inside the bin, the LCD displays a positive emoticon (Berengueres et al., 2013). In 

this line, mobile applications with QR code scanners have also been proposed to 

determine how much a person has recycled in specific plastic waste containers 

(Briones et al., 2018).  

Another line of work in this area is the location of plastic bins.  Hence, there 

are mobile applications that can tell the users if the bin is empty or full through 

GPS and ultrasonic sensors, so the users can know the easiest way or closest bins 

possible. Likewise, there is an interest in finding optimal paths for stakeholders as 

well. In Cartagena (Spain), sensors were used to define different bin levels in order 

to determine when to collect the bin. An open-source platform was also used to 

display waste bin maps and the optimal route was calculated based on the costs of 

fuel consumption and the weight of the collected waste (Bueno-Delgado, Romero-

Gázquez, Jiménez, & Pavón-Mariño, 2019).  
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In order to plan for waste management in smart cities, a bin with proximity 

and weight sensors can be used, as in Catania & Ventura (2014). It was determined 

that proximity sensors can help detect placement locations, and weight sensors to 

recognize the weight of the bins. This system was planned to make the collection 

time efficient. Data gathered from the sensors are also stored and used in a database 

to analyze the amount of plastic waste in a city. Another study (Vijay et al., 2008.) 

focuses on the location of waste bins by digitizing maps and building a road 

network by connecting points where bins are currently located. Additionally, to 

analyze if the location of the bins is precise or needed in the area, the p-median 

model was used. Household locations and demand for bins were also utilized in 

the equation. In India, due to the lack of solid waste collection bins, mathematical 

modelling and geographical analysis were used in order to determine the number 

of bins and the location of these bins (Rathore, Sarmah & Singh, 2020). 

 

1.5. OBJECTIVES OF THE THESIS 

This thesis aims to develop a framework for the holistic and intelligent 

management of plastic waste in urban areas of developing countries by using 

heterogeneous and open data sources. The specific objectives of this thesis are: 

1. Planning locations of municipal plastic waste containers through open data 

and statistical analysis for developing cities with zero to a limited number 

of plastic bins. 

2. Developing a smart bin based on a low-cost sensor set to monitor the fill 

level of the bin in household environments.  

3. Predicting the weight of plastic bins and number of plastic items in the 

smart bin through statistical analysis.  

4. Developing a framework that will store, analyze and display data acquired 

from the smart bin sensors for the following purposes: 

a. For the municipal authorities to analyze plastic waste trends in the 

region. 
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b. For people with disabilities, senior citizens, and Covid-19 affected 

residents to be able to automatically call or request for waste-picker 

volunteers. 

c. For waste collection services and waste pickers to be able to know 

the location of the house where plastic waste needs to be collected 

and the location of the municipal bins where the plastic waste can 

be disposed of properly through optimal collection routes. 

1.6. PUBLICATIONS 

1.6.1. Main publication related to this thesis 

Journal details   Sensors 

Guest Senior Editor: Dr. Raffaele Bruno   

ISSN: 1424-8220 

Editor: Multidisciplinary Digital Publishing Institute (MDPI) 

Impact Factor (2021): 3.576 

Category: Internet of Things  

Ranking: Q2 

Website: https://www.mdpi.com/journal/sensors 

Publication  

Title  A Collaborative Application for Assisting the Management of Household 

Plastic Waste through Smart Bins: A Case of Study in the Philippines  

Issue Sensors and Assistive Technologies for Smart Life  

Year 2021 

DOI 10.3390/s21134534 

State  Published  
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      II – STATE OF THE ART 

 This chapter includes a discussion on the technologies that compose 

the proposed intelligent framework for plastic waste management. It also 

includes the most relevant literature reviews relating to sensors, open data, 

and Machine Learning.  

2.1. SENSORS 

2.1.1. Smart Bins 

There have been multiple studies relating to the use of sensors as a way to 

manage plastics. According to Angin et al. (2018), using a sensor to separate trash 

by type is one of the best ways to segregate waste. The sensors used in the study 

were infrared, metal, and light, for organic, metal, or paper trash, respectively.  

Infrared sensors are also found helpful by other lines of research to detect if a bin 

is full or not for proper waste disposal.  The use of different kinds of sensors with 

compatibility with each other has proved to be highly effective. According to Al 

Mamun, Hannan, and Hussain (2014), with the use of accelerometer, ultrasound, 

temperature, and humidity sensors, it is easy to monitor a bin in real-time. These 

are all in one group named Smart bin. The second group consists of the load cell 

that sends data from the bins through the gateway to process the data and save it 

in the database. 

 Smart bins are a combination of software and hardware components in 

order to manage waste through technology. Systems integrated with smart bins are 

normally designed with tier architecture that defines each level by its 

characteristics and needs. An example of this system is a three-tier architecture (See 

Fig. 3) in a paper by Folianto, Yeow, & Low (2015) which included sensors and 

gateway nodes in the first level that receive and transmit data to the second level. 

The backend server under the next level combines and processes data and readings. 

This information is then visualized and displayed in the third level to user 

applications. 
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Figure 3. Smart bin architecture based on Folianto, Yeow, & Low (2015). 

 

Additionally, some smart bins are not defined by their levels of architecture, 

but by the number of sensors combined and used in the bin.  Smart bins are usually 

developed for multiple purposes such as checking the bin level if it is full or not, 

checking if the lid of the bin is closed or not, and many more. However, the 

purposes are established by the type of sensor and what it is used to detect. In a 

study by Al Mamun, Hannan & Hussain (2014), sensors were distributed in two 

groups to accurately explain and justify the results obtained. The first group 

consisted of an accelerometer that keeps track of the cover of the bin, a hall effect 

sensor that monitors if the bin lid is open or closed, an ultrasound sensor that 

measures the bin level, a temperature, and a humidity sensor. While the other 

group consisted of a few load sensors which detected the weight of the bin waste. 

These sensors are used for solid waste in order to keep track and manage waste 

collection for an optimized collection route and real-time detection of waste.  

2.1.2. Bin Level Detection and Location of the bins 

 Bin level detection is one of the existing ways to manage waste. 

Determining the level can help in order to regulate waste and can benefit the 

garbage collectors by scheduling routes when the bin is full or reducing fuel 

expenditure by planning routes to go to the bin. Waste level detection can be done 

using several types of sensors. The following paragraphs give details about the type 

of sensor with example studies and smart bins used with the sensor.  

 Ultrasound and ultrasonic sensors are the most prominent sensors that can 

be used for level detection. These sensors are used for measuring the distance and 

time from one signal to go back and forth. It usually has mesh holes for transmitting 
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sound and for a microphone. It has the capability of differentiating sounds from all 

types of objects-solid, liquid, or gas (Thota et al., 2018).  

Determining the bin location is also important for different purposes such as 

computing the distance of the bins from each other, optimizing collecting routes, 

etc. Medvedev et al. (2015), mentioned that the use of sensors to detect bin location 

is efficient to know and plan the route of garbage collectors from destination to the 

waste bins. Sensors, when detecting the level of fullness of the bin, send signals to 

microprocessors or microcontrollers through Wi-Fi or other connectivity modules. 

These signals often indicate the precise location of the bins (Thota et al., 2018; Patel, 

Kulkarni & Sharma, 2019). Another added service once the location is determined 

is scheduling the collection of waste in a neighbourhood. Data gathered from 

sensors about the location of bins can be stored and processed to be used for future 

reports for waste collection and for mobile applications.  

Tracking of bins can be done through Global Positioning System (GPS) which 

is a navigation system that can be used for applications such as traffic signal timing, 

weather forecast, earthquake monitoring among others. The receivers use 

necessary information such as the location of a moving vehicle through multiple 

ranges transmitted through signals to calculate the exact location of users or bins 

(Thota et al., 2018). Storing data in the main device is also another way to store 

locations. In a study by Sivasankari, A., & Priyavadana, V. (2016), a camera, which 

had a specific ID and location stored, was placed in each garbage bin. The cameras 

were used for live video streaming of the level of the bin. If the bin becomes full, 

the exact location of the bin is sent to the garbage disposal vehicles for collection.  

2.2. OPEN DATA 

2.2.1. Overview of Open Data 

 Open data can be defined as the publication and redistribution of scientific 

data without barriers in terms of permission and access. Data is supplemental for 

further studies, which is why reusing accessible data is necessary. Moreover, 

because the rate of scientific data discovery is increasing, accessibility of these data 

should increase as well (Murray-Rust, 2008). 

  Open data policies are published and improved by constant updating 

through different media. Data policies and transparency frameworks vary per 

country, as different countries choose what they want to publish for the citizens 

based on motivations and country authorities. Additionally, access also varies as 

licensing, the extent of data transparency, and privacy can become an issue. In a 
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country, there are different governmental levels of data policy. An example of this 

is the Netherlands, where there are 3 levels such as national, ministerial, and the 

lower level of bureaucracy which are the research organizations under the 

ministries (Zuiderwijk & Janssen, 2014). 

According to Stork (2000), the Open Data initiative is an Internet-based 

collaborative framework aimed at developing and innovating software such as 

intelligent reasoning systems, speech and handwriting recognition, 

recommendation applications, etcetera. The essential contributions of this initiative 

fall on three levels, as follows:  

a. domain experts who help in learning fundamental algorithms 

b. infrastructure/tool developers who retrieve necessary data and 

rewards netizens (i.e., people who regularly use the internet) 

c. non-expert netizens who contribute over the web  

Large datasets that are needed in some algorithms or systems to provide their 

services are often missing or not made accessible by private organizations or 

individuals. As an alternative, non-expert netizens can provide and contribute to 

the missing data. This collaboration amongst experts and non-experts is one of the 

reasons why there is growth in the participation level as well as a growing trend of 

this initiative.  

 The implementation of transparency of data in governmental websites has 

significantly increased in the past few years as some motivators are noticed and 

acknowledged by the said governments. The first motivator lies in the essence of 

freedom of information, which open data fulfils by becoming a path for the 

government to not have secrecy within their term and for the citizens. The 

European Commission and the implementers of The Open Government Directive 

in the United States believe that this will eventually strengthen democracy. The 

second motivator is in terms of economics. With data such as meteorological, 

geographical, macro, and micro statistics, road, traffic, and community 

information, and so on, being made public, there is a higher chance to inspire 

growth for the business and for the individuals.  

2.2.2. Open Data and Plastic Waste Management 

Examples of open data for creating solutions for smart cities can be found in 

places such as New York and Chicago, where combining multiple open mobility 

sources was used to infer the functional uses of their districts (Terroso‐Saenz, 

Muñoz, & Arcas, 2021); Paris, where maps have been created on accommodation 

for the elderly and people with disabilities (Bonvalet & Ogg, 2008); and Zurich, 
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where they have a 3D model of the city for easier municipal development planning 

and monitoring the urban climate in real-time, to name just a few (Neis & Zielstra, 

2014; Schrotter& Hürzeler, 2020; Gessa & Sancha, 2020). 

In a study by Latora et al. (n.d.), a combination of Geographical Information 

Systems (GIS) and demographic, territorial, and economic open data is generated 

in order to develop an efficient and sustainable waste-management policy in the 

province of Sicily (Italy). Likewise, a method to optimize the spatial tessellation of 

a geographical area for waste management is proposed (Richter et al. 2019). In 

particular, the system relies on several open data repositories to extract the 

shapefiles defining the administrative boundaries of the regions under study. Then, 

a framework is applied to such regions in order to define the best division so that 

each new area is managed independently.  

The use of Open Data can also be essential in tracking the location of bins in 

a city. Layouts from the Geographical Information System (GIS) database about the 

location of the containers in streets and roads were used in a study by Bueno-

Delgado, Romero-Gázquez, Jiménez, & Pavón-Mariño (2019).  In a similar study by 

Shyam, Manvi, & Bharti (2017), the use of open data by using GIS data of the street 

segments of Pune, India was essential. A simulation for the bin placements was 

done with 5,000 waste bins considering 10 locations in the city. Another similar 

study by Zamorano et al. (2009) used GIS in order to determine the number of bin 

containers and their location in Granada, Spain. Two models were proposed to 

differentiate residential and commercial areas, while the parameters used in the 

model included distance among streets, number of inhabitants, and waste 

generation rate, among others. 

Additionally, while GIS is a significant tool to use for analysing and 

displaying spatial data, it is not enough to do an analysis of municipal solid waste 

management system development through a scenario setting. A comprehensive 

simulation while changing spatial setting schemes is necessary to produce a spatial 

selection for bins using GIS (Shmelev & Powell, 2006). There are also certain times 

when sensor data can become voluminous. When this occurs, the data gathered, 

processed, and stored can be linked to big data. Open data is considered to be a 

backer of big data technologies including IoT and also the combination of both can 

be used for a broader vision for smart solutions (Misra, Das, Chakrabortty & Das, 

2018). 
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2.3. MACHINE LEARNING 

 2.3.1. Machine Learning techniques in urban environments 

It is possible to find in the literature a varied range of works that propose the 

use of Machine Learning techniques within urban environments for the 

provisioning of different services. For example, in a study by Liu et al. (2017), street 

images of Beijing were gathered from Baidu Map1, and three machine learning 

models, that are different convolutional neural networks, were used to differentiate 

the street and building images from each other. These models were SIFT (Lowe, 

1999), AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), and GoogLeNet (Szegedy 

et al., 2015). After labelling these images, the building images were screened again 

to confirm the expert rating or the quality of the building for construction and 

maintenance. A similar study by Hecht, Herold, Meinel & Buchroithner (2013), 

used machine learning to automate the building and house classification of urban 

structures in Dresden, Germany through several data sources such as remote 

sensing images like satellite photos, and aerial photos and topographic data such 

as landscape models and maps. With these, Support Vector Machines (SVM) and 

Random Forest (RF) were both used as techniques in order to produce a full report 

on the urban structure type in the said city.  

 In another interesting study by Milusheva et al. (2021), the use of social 

media data such as Twitter data as a source to characterize different populations 

by their demographic or social media posts was explored as a resource for urban 

planning. Social media posts about road accidents and crashes were considered as 

events and were focused on the area of study, Kenya, which has road crashes as 

the number one cause of death in young adults. I Bayes and SVM were both used 

to analyze combinations of words such as “overturn” or “accident”. After that, 

geolocation tags are then placed in order to identify the exact location or the area 

of the crash. To ensure these data are reliable, data quality and performance 

validation is conducted. A motorcycle delivery service is sent to the tagged location 

and the crash is verified.  

 

2.3.2. Machine Learning techniques and Plastic Waste management  

 There are different techniques that can be applied to waste management 

planning through Machine Learning. As a matter of fact, there are Machine 

Learning approaches that were used in the modelling and prediction of the 

 
1 Baidu Map: https://map.baidu.com/ 

https://map.baidu.com/
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generation of the regional municipal solid waste management in Canada 

(Kannangara, Dua, Ahmadi, & Bensebaa, 2018). Artificial neural network (ANN) is 

a technique that is inspired by the human brain to learn and understand complex 

relationships when presented with data. When ANN was used in the study, it 

created better models than the decision tree as it showed 72% of accuracy in 

municipal solid waste generation models. The authors also explained the 

differences between using decision trees and ANN. While decision tree models are 

able to handle categorical variables, ANN has a high learning capacity which can 

model complex non-linear data as well. Some disadvantages of ANN, however, are 

that its inner architecture is difficult to interpret.  Recurrent neural networks (RNN) 

also adopt a loop network in order to use previous information to provide a 

solution (Hussain et al., 2020). In terms of RNN, it was used in a system that 

enabled the long-term learning dependency of material identification in a mixed-

waste bin.   

 In the city of New York, estimation of the weekly waste generation for the 

609 administrative subsections of the 223 different sections of New York was 

decided and set through the comparison of neural network and gradient boosting 

regression tree (GBRT). GBRT is an advanced iteration of a normal decision tree 

which splits and weighs the data features through their errors to reduce the 

residual sum of squares (Kontokosta, Hong, Johnson & Starobin, 2018).  In a study 

by Meza, Yepes, Rodrigo-Illari, & Cassiraga (2019), ANNs exhibited accuracy in the 

results of forecasts of the average generation rate of seasonal municipal waste in 

the city of Bogota (Colombia). It has higher accuracy and precision because of the 

nonlinear nature of the data. Decision trees were also used to reduce 

unpredictability in identifying patterns that are not known from the recognized 

patterns. SVMs were also utilized for the prediction of urban waste generation.  

 Another technique that helped with smart waste management was 

proposed by Gupta, Shree, Hiremath, & Rajendran (2019), where the shortest path 

spanning tree (SPST) was used to determine the shortest distance between bins that 

were mapped in the city. After that, genetic algorithms to optimize trash-collecting 

cycles, similar to the travelling salesman problem (Reinelt, 1991), were also used. It 

proved efficient in the optimization of the routes for the clearance of trash. 

2.4. ICT SOLUTIONS FOR PLASTIC MANAGEMENT IN CITIES 

The integration of Information and Communication Technology (ICT) 

solutions with urban development planning is one of the paramount points for the 

realization of smart cities. This growing technology can be used to improve the 
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quality and efficiency of services in a city. Indeed, the concept of the Internet of 

Things (IoT) fosters the connection and transmission of data among any type of 

device in a city, allowing citizens and organizations to exchange these data and 

create collaborative services on top of these IoT systems.  

A survey published by Anagnostopoulos et al. (2017) presented the different 

models of waste management opportunities in IoT-enabled smart cities. Thirty-six 

case studies involving different models which use different types of sensors such 

as capacity, weight, temperature, humidity, chemical, and pressure sensors were 

studied. The characterization and process of the survey were three-tiered; physical 

infrastructures, IoT technology, and software analytics. Physical infrastructure 

focuses on the waste bins, pipes, depots, dumpsites, types of waste, and other 

things that pertain to the hardware or physical properties that are associated with 

the bin and waste. IoT technology includes the recording and transferring of 

information through sensors, actuators, with the use of GPS, WSNs, RFID tags, and 

Near Field Communication (NFC) to measure the quantities of waste such as 

humidity, temperature, weight, capacity, and other attributes. Lastly, software 

analytics involves the analysis of data such as decision support systems, dynamic 

scheduling, dynamic routing among others.  

 In a study by Ramson et al. (2021), the proposed IoT waste management 

system used a bin level monitoring unit and a wireless access point unit. The level 

monitoring unit included an ultrasonic sensor, a network processor, and a power 

management unit. On the other hand, the wireless access point unit consisted of a 

wireless router deployed at several points close to the bins, to provide data 

connectivity to users. As it was self-powered due to its low dropout regulator, the 

entire unit could last up to 434 days based on the experiments. The unfilled levels 

could also be monitored precisely from a distance of 119 meters and less.  

 The study by Aleyadeh & Taha (2018) included the use of proximity and 

humidity sensors, load cells, a lever-activated switch, GPS and microcontroller. A 

mobile application was also used by garbage vehicle drivers to schedule bin 

collection and the location of the routes. In a similar study (Kumar, Shankar, Shah, 

Chinnu, & Venkataraman, 2013), Near Infrared Spectroscopy was used to classify 

five different types of plastics. Based on this technology, an automatic wireless 

sorting system was successfully created. The system includes an automated device 

that can detect 4 plastic items per second and can sort 5 different polymers through 

pattern recognition. The accuracy reported for sorting is at 96-98% for materials like 

polyvinyl chloride, polyethylene, polypropylene, polystyrene and 99% accuracy 

for polyethylene terephthalate. The monitoring of the system is done with a remote 

wireless interface.   
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Another IoT-based plastic waste management system (Aithal, 2021) includes 

ultrasonic sensors that can measure bin fill levels, RFID tags for easy tracking, load 

cells that can identify the weight of the bins, image sensors that capture the image 

of the bin from the inside, and temperature, humidity, and gas sensors, which are 

used for classifying the materials inside the bin. Each bin is also equipped with a 

bin controller, which transfers all the data to the server that can be accessed by the 

users and by garbage collectors. The database in the server contains and stores data 

such as the number of filled, empty and under-filled trash bins, bins that need 

immediate service, total weight of the bins, route information and communication 

status information of each bin.  

 In a study by Malche, Tiwari, Tharewal & Tiwari (2021), a waste collector 

that can use an application to retrieve information from the ultrasonic sensor 

attached to the bin, is proposed. Three different lights are used to notify the users 

about the fill level of the bins to know whether it needs to be cleaned or not. Yellow 

sign relates to the empty level, green for moderate, and red is being used for the 

full or critical level of the bin. It also shows the shortest path from the user to the 

garbage bin which shows the red light, or which means it needs cleaning. A similar 

study (Marwan et al., 2021) uses four different systems including a smart bin, 

control system, mobile phones, and a server. This study focuses mainly on the 

emptiness or fullness of the bin. The control system includes an ultrasonic sensor 

and an Arduino Uno processor. 

 Segregation, collection, and transportation are the purposes of a study by 

Lokuliyana, Jayakody, Dabarera, Ranaweera & Perera (2018). The types of waste 

bins are biodegradable, plastics, glass, and paper where each bin is equipped with 

an ultrasonic sensor that can detect fill level and hand movements to open the lid 

of the bin. The bin is also equipped with a Raspberry Pi Zero W development board 

that can automatically lock the bin lid when it is full. Text messages are also sent to 

the administrators of the system to notify them when the bin is full. With the data 

acquired through the different sensors, a calculation or algorithm was also 

developed to forecast the different types of garbage levels in the coming months 

for all types of waste.  

 In a study by Gade & Aithal (2021), different types of waste which need 

proper waste management were presented. Among the types include organic, 

hospital, electronic, nuclear, green, recyclable, and industrial waste. Although it 

was reiterated now that smart cities have grown exponentially, the waste 

management issues have also increased in terms of inefficacy and improper 

handling. The study suggests an in-depth analysis of the features that should be 

included in a smart waste management system such as waste bin fill status 
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notifications, automated vehicles to collect waste, modernization of landfills, 

converting waste to energy, and waste collection vehicles running on natural gases. 

Smart bins include ultrasonic sensors to measure fill level, RFID tags to help with 

bin location tracking, load cell to determine the weight of the bins, image sensors 

to see the contents of the bin, temperature, and humidity sensor to detect industrial 

waste, and gas sensors for chemicals deposited in the bin. Additionally, the study 

suggests that waste collection vehicles are one of the most crucial parts of the smart 

waste management system. Some features that make an efficient vehicle include a 

robotic arm for the automation of collection, sites where solid and wet waste can 

be stored, accelerometer, air quality sensor, camera and wireless signals placed in 

the vehicles, and a GPS and real-time communication system with the server.  

2.5. SUMMARY 

 As discussed in this chapter, in order to deal with an intelligent 

management of plastics, certain ICT technologies such as different types of sensors 

can be used. The different purposes of these sensors are in terms of segregation of 

trash, detection of bin level, and locating the bins in a particular place. Sensors such 

as accelerometers, or those aimed to measure temperature and humidity, are 

normally used for segregation waste by different types while ultrasound sensors 

are normally used for bin level detection. Open data also helps with the 

management of plastics through retrieval of the necessary open-sourced data such 

as demographic, territorial, economic, also national, ministerial, and scientific data 

from research facilities. These data are considered essential, especially when it 

comes to bin locations and distribution purposes.  Machine Learning (ML) 

techniques were also discussed in this chapter. Some ML models were used to 

predict the generation of waste, and some were built on historical data about the 

disposal of waste to provide a solution aimed at the identification of waste.  

  ICT solutions can improve the quality and efficiency of services that can 

enhance the planning and development of a city. Another aspect that is focused on 

is connectivity, which allows citizens and organizations to exchange data in order 

to innovate and create more collaborative solutions and services. Many different 

services involve a combination of sensors, physical infrastructure, or IoT 

technologies. Some examples mentioned above include sensors connected to 

wireless systems monitored to create services for the citizens or the stakeholders. 

With these, services such as tracking of bin placements across a place, GPS situated 

in garbage trucks, or prediction of the generation of plastics can be done.  
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 Different from the aforementioned studies, this thesis focuses on a holistic 

approach with the use of open data from countries that have municipal waste bins 

to infer the number of municipal bins in countries with limited to no bins. 

Additionally, weight sensors are attached in household bins to detect the bin levels 

for waste-pickers to be notified in order to pick up and dispose of in the municipal 

bins. Statistical analysis and machine learning techniques were also used in order 

to determine the number of municipal bins needed and to predict the shortest time 

for each waste picker to collect waste from households and until the municipal 

plastic waste bins.  
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III – Designing a Smart Bin System for Assisting the Management of 

Household Plastics 

Exposure to plastic waste has been evidently increasing globally with almost 

every industry, corporation and community relying on plastics as they have 

become a commodity to the citizens. With the United Nations announcing plastic 

pollution as a global crisis, many countries have banned single-use plastics and 

started to urge people to help minimize their plastic usage. Furthermore, many 

manufacturers and producers have started changing their entire production 

industry to help in their own ways to reduce plastics (Schnurr et al., 2018; Borrelle 

et al., 2020). In this context, an efficient collection of plastic waste is being perceived 

as a fundamental public service as stated by Han & Ponce, 2015. The existing 

solutions and policies for plastic-waste management differ per country. However, 

most policies are strictly based on traditional waste collection methods with fixed 

schedules (Debrah, Diogo & Dinis, 2021). Intelligent techniques integrated into the 

prevailing system could be one of the solutions to make this collection more 

efficient. Some studies focus on the digitization of solid waste bin maps while 

trying to minimize the route length of the collecting vehicles. Additionally, current 

studies rely on the use of devices such as weight sensors to measure the bin levels 

of a municipality in real-time (Vijay et al., 2008; Catania & Ventura, 2014).  

Despite these efforts, there are still situations in which due to no collection 

service, inadequate vehicle routing or insufficient funds, some communities find it 

difficult to have an accessible garbage collection. As stated by Abubakar, I. (2017), 

there are many cities in developing countries that are having issues with 

systematically and sufficiently providing garbage collection services. To worsen 

this situation, due to the COVID-19 pandemic, plastic pollution has visibly 

increased with the production of face masks, face shields and personal protective 

equipment (PPE) kits to protect against the transmission of the virus while 

lockdowns and quarantine restrictions are also applied in some countries (Sunjaya 

& Jenkins, 2020; Livingston, Desai & Berkwits, 2020).  

As a result of these situations, we have identified a necessity for managing 

the increasing household plastic waste, especially for the elderly, disabled people, 

or people in a quarantine situation, who may find themselves in a difficulty in 

accessing the plastic-waste bins at the street. Thus, the aim of this work is to 

develop an intelligent collaborative system to predict the state of household plastic 
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bins to optimize the route of residential garbage collectors or waste-pickers (Chen, 

Luo, Yang & Liu, 2018; Uddin, Gutberlet, Ramezani, Nasiruddin, 2020).  

3.1. ARCHITECTURAL FRAMEWORK 

Figure 4 depicts the first part of the process within the general architecture of 

the paper (Figure 2) in relation to the low-cost household sensors and the 

forecasting of the generation of household plastic waste. First, the system captures 

the current weight of the plastic-waste bins from a set of monitored houses by 

means of a scale sensor. Next, these weight data are sent to a back-end server. It 

comprises a dashboard to visualize all the collected sensor data. Moreover, it also 

includes a predictor module to forecast the future weights of all the monitored bins 

in the short term. Finally, such predictions are used to plan customized routes for 

the waste-pickers registered in the system so that they can collect the plastic waste 

at each monitored home proactively. To do so, both the location of the on-street 

plastic containers or dumps and the waste picker’s means of transport are also 

considered to optimize the distances covered by these pickers.  

 

 

 

 

 

 

Figure 4: Smart-collaborative waste-management system. 
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3.2. SMART BIN 

A plastic waste bin with the dimensions of 75 x 34 x 36 cm was used in this 

study (see Figure 5a).  These dimensions allowed the placing of plastic waste of 

different sizes, forms, and weights into the bin. In this way, it was possible to use 

this bin in a large range of scenarios. The content of the bin is measured by means 

of a weight sensor (see Figure 5b). Since the plastic items placed inside the bin 

might have a very low weight, it was important to use an accurate sensor able to 

detect this kind of object in the container. For that reason, we opted for a coffee 

brew scale. This type of weighing scale has a very high sensitivity. In particular, we 

made use of the Acaia Pearl model (see Figure 6), an affordable weighing scale with 

a maximum capacity of 2000 g and a readability of 0.1 g2. Furthermore, it includes 

Bluetooth connectivity that allows real-time transferring of the bin’s weight to a 

custom application installed in a mobile device3.  

 

 

 

 

 

 
(a)Bin used for the study          (b) Location of the weight sensor under the bin 

 

Figure 5: Household plastic-waste collection  

 
2 Acaia Scale: https://acaia.co/collections/coffee-scales /products/pearl?variant=2433774125079 
3 Brewmaster application: acaia.co/pages/apps 

file:///C:/Users/navsi/Desktop/THESIS/%20https/acaia.co/collections/coffee-scales%20/products/pearl%3fvariant=2433774125079
file:///C:/Users/navsi/Desktop/THESIS/acaia.co/pages/apps
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Figure 6: Acaia Pearl weight sensor 

3.3. DATA COLLECTION 

Given the bin and the weight sensor described in the previous section, we 

undertook a palette of different experiments. These experiments were performed 

in the researchers’ environment, which included their households and workplaces 

along with the people they were living with and their co-workers within the age 

group of 21-50 years old. Different types of households ranging from one to five 

persons in student housing, a workplace and a family house were explored (see 

Table 1). The researchers used these data to simulate the behaviour assessed with 

the target clusters, as explained in the next subsections. In each experiment, we put 

the weight sensor under the bin as shown in Figure 5b. Then, we connected the 

sensor via Bluetooth to a mobile device to collect the weight of the bin at each 

moment. Next, the bin was just used normally to put plastic waste in it. Thus, we 

performed several experiments involving different types and sizes of plastics such 

as plastic bottles, cans, plastic bricks and bags. Through these experiments, 

different behavioural clusters related to plastic-waste generation were extracted, as 

explained in subsection 5.1.4.  
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Table 1. Demographic characteristics of the participants in the experiment 

Type of Household Age Group Gender Num. Of Experiments 

one-person 24-33 female 76 

two-persons 49-55 male, female 26 

five people 18-24 male 58 

workplaces  24-38 male, female 16 

Table 2. Data Samples collected from the experiments with the household bins 

Date/Time Total Time (sec) Total Weight (g) Weight Data 

03/02/2021 

20:12 

2525 207.8  0.00;0.00;0.00;0.00;0.50;1.40;3.80;63.7

0;94.70;91.80;37.3;21.3;43.70;110.2;11

0.2;110.2;110.2;110.2;110.2;110.2;110.

2;110.2;110.2; 

02/02/2021 

18:15  

1013 112.5 0.00;0.00;0.00;0.00;0.00;0.00;0.00;0.00;

0.00;0.00;0.00;0.70;0.70;2.20;76.90;76.

90;76.90;76.90;76.90;76.90;101.90;101.

90;101.90;101.90;101.90; 

3.4. DATA CLEANING 

Due to the high sensitivity of the scale sensor, it was able to capture any 

minimum weight fluctuation in the bin. Even though this allowed us to perceive 

any plastic item placed into the bin, a side effect was that this also generated rather 

noisy data sequences. As a result, a data curation process was performed over the 

collected data. The goal was to keep only the actual and meaningful weight 

variations of the bin.  

To do so, each experiment was regarded as a time series. This allowed us to 

seasonally decompose each series and therefore keep its trend dimension by 

discarding its residual and seasonal parts. The rationale for this decision was based 

on that the trend dimension actually captured most of the meaningful weight 

changes of the bin during each experiment.  
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3.5. DATA CLUSTERING 

Once the sensor data were smoothed, it was possible to group them to 

represent different behavioural patterns related to plastic-waste generation in 

households. To do so, we first extracted five different features from each 

experiment's time series, namely: 

● The mean weight of the bin contents throughout the experiments. (m) 

● The value of the first quantile of the bin contents during the experiments. 

(q25) 

● The value of the third quantile of the bin contents during the experiments 

(q75) 

● The number of usages of the bin during the experiment, i.e., the number of 

times the user puts one or more items in the bin (u) 

● The number of items that the user actually places into the bin. This is 

calculated as an estimation based on the assumption that an average item 

weighs around 10g. (i) 

Note that adding the quantile-based variables (q25, q75) might cause 

multicollinearity with respect to the mean weight variable m. However, both 

features have been included as part of the clustering step to provide a more 

descriptive representation of each cluster. This verbose representation makes it 

easier to link each cluster’s centroid to a particular user profile as it will be 

described in subsection 5.1.4.  

The clustering algorithm K-means was fed with these features to uncover 

different latent patterns in the experiments. Thus, each cluster was regarded as a 

different user profile within the system's contextual operation (Yu et al., 2018).  

3.6. WEB APPLICATION 

One of the contributions of this work is the development of a web application 

that enables a continuous data visualization of the weight data for the plastic waste 

in the smart bin (see the dashboard component in Figure 4. This application also 

includes a module for predicting the generation of plastic waste in the smart bin 

(see subsection 3.7.)  

The development of this application has followed the SCRUM methodology. 

This methodology divides the application development into small stages, known 

as sprints, which offer a high degree of adaptation and flexibility and customer 

testing before finalizing the development. The SCRUM team was led by the 

Product Owner, a role that corresponded to Andrés Muñoz, who stated the 
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requirements of the applications as user stories. Fernando Terroso-Sáenz acted as 

the SCRUM Master, ensuring that the SCRUM practices and principles were 

followed in the project. Finally, the Development Team consisted of Navjot Sidhu 

and Alberto Pons-Buttazzo, who created and maintained the software. For this 

development, 8 sprints, 7 user stories, 28 tasks and 390 h were needed, resulting in 

an average of 14 h for each task.  

For the web application, PHP was used for the back end, whereas the front 

end was developed with HTML, Bootstrap, and the JavaScript language. Bootstrap 

is a library for web applications that offer multiple tools to easily customize a 

website with free templates, a responsive design and maintaining browser 

compatibility. In addition, the following software tools were used: phpMyAdmin 

(MySQL administration), Visual Studio Code (source code editor), and XAMPP to 

manage the Apache web server and the database. The Python programming 

language was used for the predictor module. 

3.7. WEIGHT PREDICTION METHOD 

Another key feature of the proposed system is the prediction of the weight of 

the plastic waste in each bin (see Figure 4). The three-step procedure applied to this 

end is explained next. 

First, we identify the meaningful variations in the weight of the bin through 

an online analysis of the measurements from the scale. In brief, each new 

measurement 𝑤𝑖 reported by the scale at a time instant 𝑡𝑖 is considered a 

meaningful weight variation (MWV) 𝑤𝑖
𝑚 if the following three conditions are 

fulfilled: 

1. 𝑤𝑖- 𝑤𝑗
𝑚 ≥ 𝛥𝑚, 𝑗 < 𝑖 

2. 𝑡𝑖- 𝑡𝑗 ≥ 𝛥𝑡 , 𝑗 < 𝑖 

3. 𝑤𝑖 ≥ 𝑤𝑖+1  

 

The first condition ensures that the difference between a new value 𝑤𝑖 and 

the most recent MWV 𝑤𝑗
𝑚 is actually meaningful. The second one ensures that the 

time difference between such a previous 𝑤𝑗
𝑚 and the new value is larger than a 

certain threshold 𝛥𝑡. Please note that a time instant t in this setting refers to the time 

in seconds after the experiment under consideration began. The third condition 

ensures that the following weight value 𝑤𝑖+1 does not indicate a higher value than 

the current one, and therefore 𝑤𝑖 can be considered a MWV 𝑤𝑖
𝑚. It should be noted 

that all the measurements come from the smooth version of the data collected from 

the weight sensor according to the data cleaning stage described in subsection 3.3.4.  
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In the second step, each new meaningful variation 𝑤𝑖
𝑚  is stored in a set 𝑊. 

This set comprises all the meaningful weight changes in the bin detected so far in 

an experiment. It is used to feed a linear regression model whose goal is to predict 

the weight of the bin given a future time instant 𝑡,𝑤𝑡, expressed as 

 

𝑤𝑡 = 𝛽0 + 𝛽1  ×  𝑡            (a) 

 

Note that this model is re-trained each time 𝑊 is enlarged with a new 

measurement. 

In the third and final step, the linear regression model is used to estimate how 

long it will take to fill the bin. Assuming that the maximum weight of the bin is 

defined by 𝑤𝑚𝑎𝑥 ,such a time instant 𝑡𝑚𝑎𝑥 can be estimated from the original model 

as  

   𝑡̂𝑚𝑎𝑥 =  
𝑤𝑚𝑎𝑥− 𝛽0

𝛽1
                                           (b) 

 

Therefore, the time horizon to fill, the bin will eventually be 𝑡̂𝑚𝑎𝑥- 𝑡𝑛𝑜𝑤 where 

𝑡𝑛𝑜𝑤  is the current time instant. 

All in all, this approach defines a particular regression model for each 

experiment. In that sense, the complexity of the adopted model is quite low, as it 

takes the form of a univariate linear regression. This will ease the actual scalability 

of the proposal by instantiating numerous ad-hoc models without requiring an 

expensive computational infrastructure. 

For the sake of clarity, Figure 7 depicts an illustrative example of the 

aforementioned mechanism given three different time instants of a particular 

experiment. In the first moment (Figure 7a), two different MWVs have been 

identified at timestamps 0 and 2100. Therefore, the set 𝑊 comprises such variations 

𝑚0 and 𝑚2100 giving rise to a regression line whose projection is depicted as a dotted 

green line. As it can be observed, this projection line reaches the 𝑤𝑚𝑎𝑥value 

(horizontal dotted red line in Figure 7a) at a time instant rather far to the actual one, 

giving rise to a quite large prediction error (~5000s). 

After that, a new MWV is detected at time instant 8000 which gives rise to a 

new linear-regression line based on the new set𝑊(Figure 7b). With this new point, 

the regression line approximates better to the filling instant as its projection reaches 

the maximum weight closer to the actual time instant with an error below 2000 s. 

Finally, a fourth MWV (𝑚𝑣1100) is added to compose a new regression line (Figure 

7c). Again, it can be seen that the new projection can predict the filling instant even 
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better than the other two regression lines with an error below 1000s. 

Unsurprisingly, adding more MWVs to the model improves its prediction 

capabilities.  

It is worth mentioning that changing the order of the items when they are 

introduced in the bin might slightly affect the accuracy of the predictor. However, 

the weight range of the plastic items that are introduced in the bin is quite limited 

because, for example, the weight difference between a small plastic bottle and a big 

one is within the range of a few grams. Consequently, the MWVs that give rise to 

the regression line usually involve similar weight increments. As a result, the order 

in which such increments occur does not meaningfully change the actual slope of 

the regression line and its associated prediction. Figure 8d shows the prediction of 

the model when the same plastic items are introduced in the bin in reverse order. 

As observed, the projection of the regression line reaches the 𝑤𝑚𝑎𝑥 level with a 

similar error to the one obtained with the original order.  

(a)Regression line when two MWVs are detected 

      (b)Regression line when three MWVs are detected 

 
(c) Regression line when four MWVs are detected                 (d) Prediction with four MWVs when the same 

items are introduced in reverse order in the bin 
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Figure 7: Example of the prediction mechanism for an experiment. The blue 

squares represent MWVs. The horizontal dotted red line indicates the maximum 

weight of the bin. 
 

3.8. COMPOSITION OF THE ROUTES FOR WASTE-PICKERS 

 

The weight predictions described above feed the module in charge of 

composing the routes for the set of registered waste-pickers (WP) (see Figure 4). 

This module executes the following approach to create the set of routes for these 

waste-pickers. First, each waste-picker wp ∈ WP is required to indicate the hours of 

the day   𝐻𝑤𝑝 = < ℎ𝑤𝑝
𝑚𝑖𝑛, ℎ𝑤𝑝

𝑚𝑎𝑥 >  that he/she is available to perform a collection 

route. Next, every day at the beginning of each time range 𝐻𝑤𝑝, the system collects 

the set of pick-up points to be covered 𝑃 =< 𝑝1, 𝑝2, . . . , 𝑝𝑁 > where N is the total 

number of bins under control. Each pick-up point 𝑝1 is defined by a tuple (𝑙𝑖 , 𝑡̂𝑚𝑎𝑥,𝑖 ) 

where 𝑙𝑖 is the location of the house for the i-th bin and 𝑡̂𝑚𝑎𝑥,𝑖 is the estimated filling 

hour returned by its associated predictor (subsection 3.3.7.). 

Therefore, the definition of a personal collection route for a waste-picker wp 

∈ WP can be formulated as the following problem: 

Given a set of pickup points P and an hour range 𝐻𝑤𝑝, Find an ordered 

sequence 𝑆𝑤𝑝 =< (𝑝1, ℎ1)  → (𝑝2, ℎ2) →. . . → (𝑝5, ℎ5) > where each tuple (𝑝1, ℎ1) 

indicates that the pickup point 𝑝𝑖 ∈ 𝑃 should be visited at the ℎ 𝑗  hour of the day  

(ℎ 𝑗 < ℎ
 𝑘, ∀𝑘 > 𝑗).  

 To obtain a set of suitable sequences, the following restrictions must apply 

in the generation process:  

1. 𝒉𝟏 ≥ 𝒉𝒘𝒑
𝒎𝒊𝒏and 𝒉𝟓 ≤ 𝒉𝒘𝒑

𝒎𝒂𝒙;and 

2. ∀(𝒑 𝒋, 𝒉 𝒋), 𝒉 𝒋 ≤ 𝑡̂𝑚𝑎𝑥,𝑗, 𝑗 ∈ [1, 𝑠]  

The first condition ensures that the time duration of the calculated route fits 

into the hour range defined by the waste-picker. The second one ensures that the 

waste picker will collect the plastic waste at the j-th point of the sequence before its 

estimated filling hour 𝑡̂𝑚𝑎𝑥,𝑗. It is worth mentioning that the set of pick-up points 

not included in a route 𝑺𝒘𝒑 gives rise to a new set P’ of pick-up points. This new 

set will be used to compose the route of other waste-pickers by following the same 

approach. This process is repeated until no waste-pickers are left or all the bins are 

covered. 

To conclude, note that this problem fits into the category of vehicle routing 

problems with time windows. Thus, we have used the ILOG solver, a well-known 

constrained programming system, to generate the collection routes of the waste-

pickers by considering the definitions and restrictions described above. In brief, 
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this algorithm follows a tree-based search on the solution space to find routes that 

accomplish all the listed restrictions (Li, et al., 2020; Shaw, Furnon, & De Backer, 

2003). The results of the above-mentioned proposed system are described in Section 

5. 
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  IV - URBAN PLASTIC WASTE PLANNING APPROACH: A CASE 

STUDY FOR INDIA AND THE PHILIPPINES 

With the sheer number of plastics in use around the world today, and with 

enough knowledge about how they affect our environment, in-depth population 

awareness of the different types of plastics and how they must be disposed of is 

needed (Medvedev et al., 2015).  Accumulation of plastics and the strategies for 

their disposal vary due to several factors, such as cultural norms and types of urban 

settlements (e.g., small cities vs. megalopolis). According to Sivaramanam (2016), 

it is paramount to elaborate strategies to properly manage plastic waste in cities, 

Polyethylene Terephthalate (PET) being the most dangerous type of plastic to 

control. PET plastic is commonly used for water bottles, oil containers, cosmetics, 

projector films or balloons, among others. This type of plastic is one-time use only 

because of the toxic chemicals that could come out when exposed to solar heat, and 

therefore they should be placed in the proper containers for their management. 

While this type of plastic waste is usually controlled in developed countries 

by means of efficient distribution of specific bins and recycling strategies, it is not 

the case for some Eastern countries such as India and the Philippines (Ferronato & 

Torretta, 2019; Di Maria, Lovat, & Caniato, 2017). One example is Quezon City in 

the Philippines, where the Payatas dumpsite, one of the largest former dumpsites 

in the country, is located (see Figure 8(a)). To the best of our knowledge, there is no 

official implemented policies to control and reduce plastic waste in the entire 

country yet4. Regarding India, there are two states which show completely opposite 

strategies. The first one is Punjab, where there is no management of plastic waste. 

Here, the local government provides a piece of land to each house to be their 

personal dumpsite. These dumpsites are in the open containing mixed waste and 

no official organization is responsible for collecting them. They wait for 3-5 years 

to let it decompose and then they use the waste as fertilizers for the farm, and the 

remaining as a substitute for wood to make fire (see Figure 8(b)).  The other state is 

Gujarat, which has complete support from the government to segregate waste. 

Indeed, a project is currently underway to test a waste management policy until 

 
4 Department of Environment and Natural Resources: https://faspselib.denr.gov.ph/taxonomy/ 

term/1699  accessed on: May 8, 2021 

https://faspselib.denr.gov.ph/taxonomy/term/1699
https://faspselib.denr.gov.ph/taxonomy/term/1699
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2023, showing that a real interest in controlling plastic waste is emerging in this 

country5. 

 
Figure 8: (a) Payatas Dumpsite; (b) Open dumpsite in Dhaner, India 

 

An alternative to tackle the plastic waste problem in these cities is to design 

customized urban planning for managing plastic waste in each target city based on 

efficient strategies already implemented in some Western cities. To do this, our 

proposal is to rely on the use of open data related to the plastic management 

available from such Western cities along with other relevant data such as 

population density, venue distribution and even shape of the cities regarding the 

distribution of the streets. The Open Data movement in smart cities fosters the 

collection and sharing of data amongst individuals, industries, and countries 

(Ahlgren, Hidell & Ngai, 2016). Thus, the use of open data in this work is included 

in the third data revolution for urban planning in the smart city framework as defined 

elsewhere (Kourtit, Elmlund, & Nijkamp, 2020), which allows the use, re-use and 

distribution of data without legal, social or technological restrictions. 

This chapter explains the retrieval of open data in order to statistically 

analyze the distribution and placement of municipal plastic waste bins in a city. As 

figure 9 shows, the urban features of four specific Western cities related to plastic 

management (namely New York (USA), Stavanger (Norway), Madrid and Malaga 

(Spain)) were explored where results are applied to three different city areas 

suffering from dumpsite problems in the two aforementioned countries, namely 

India and the Philippines. Through statistical methods in mapping the target and 

reference cities, this urban planning method may help develop countries to devise 

a custom-built, low-cost strategy to deal with plastic waste management by 

adapting successful experiences in other countries (See Figure 9). 

 
5 Swachh Bharat India: https://swachhindia.ndtv.com/category/environment/ Accessed on May 8, 

2021 

https://swachhindia.ndtv.com/category/environment/
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Figure 9: Urban Planning overview  

4.1.  DESCRIPTION OF THE REFERENCE CITIES 

In order to define a bin allocation policy for the target urban areas in the 

Eastern countries of this study, we have used as a reference several socio-economic 

factors from four different cities, namely New York, Madrid, Malaga, and 

Stavanger. The locations of these four cities are shown in Figure 10. There are 

several reasons for the selection of these cities as reference ones. In that sense, they 

offer a rich ecosystem of open-data platforms to extract different features of their 

urban life. Moreover, they have different demographic profiles, urban topologies 

and social life as explained in the following subsections. This heterogeneity of the 

reference cities is pursued to avoid potential overfitting of the proposal towards a 

particular type of urban topology. Next, the stages for the data extraction for each 

city are described. 



66  NAVJOT SIDHU 

 

          Figure 10: Location of the four reference cities 

4.1.1.  Extracted urban contextual data  

For each reference city, we have taken into account four different dimensions 

that might have an impact in the amount of plastics generated in a particular urban 

area:  

 

● First, the demographics of each city and its distribution per each of its 

districts. This feature allows estimating the volume of stationary human 

presence in each of the areas of the cities. 

● Secondly, the number of venues covering different categories in each city 

and their distribution per district. In this case, the venue distribution allows 

capturing the underlying types of human activities. 

● Third, the number of street segments in each city district. This data is a 

latent feature of the underlying urban topology of the districts. Such a 

topology may be a quite relevant feature for the definition of a proper bin 

allocation policy. Indeed, districts with different numbers of street 

segments would probably have different patterns of human movement and, 

thus, very different activity behaviours. In that sense, a region with many 
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recreational areas and big building blocks would comprise less street 

segments than a residential area composed of single-family homes and, 

hence, both regions might have completely different patterns of waste 

generation. 

● Finally, we have also collected the location of the bins in each of these cities. 

This allows us to calculate statistics such as the total number of bins and the 

average distance among pairs of bins in each district of the four cities. 

 

At this point, we should clarify that both the venues and the number of streets 

features of the four cities have been collected from the public spatial repository 

OpenStreetMap (OSM) platform6. The other two features, namely the 

demographics and the bins’ locations, have been accessed through the 

corresponding open-data portals of each of the cities. Table 3 summarizes the urban 

dimensions extracted from each reference city and their associated sources. 

 

Table 3. Contextual features extracted for each reference city and its associate data 

source. 

Urban contextual features Data source 

City demographics (CD) City's Open Data portal 

Number and type of venues (NV) OSM 

Number of street segments (NSG) OSM 

Bins location (BL) City's Open Data portal 

 

More in detail, the NV and NSG data have been extracted from OSM by 

considering the spatial polygons that define the geographical area of each city 

stored in the OSM repository. Then, the venues (defined as point-based spatial 

objects) and street segments (defined as line-based spatial objects) that spatially fit 

into such polygons are retrieved from the platform. For that goal, we make use of 

the Overpass Application Programming Interface (API)7. This is a built-in interface 

provided by OSM to easily and programmatically retrieve spatial objects from its 

repository. 

 

 
6 Open Street Map: OpenStreetMap 
7 https://wiki.openstreetmap.org/wiki/Overpass_API 

https://www.openstreetmap.org/#map=2/71.3/-96.8
https://wiki.openstreetmap.org/wiki/Overpass_API
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4.1.2.  New York City, U.S.A. 

The first reference city is New York City (NYC), in the United States of 

America. This city has five boroughs, namely Manhattan, Brooklyn, the Bronx, 

Queens, and Staten Island. 

According to Table 4, all the NYC districts but Staten Island comprise very 

large populations above 2 million people. In terms of population density, 

Manhattan is the densest one with more than 52,000 people per km2. Besides, it is 

possible to observe meaningful differences in the distribution of bins in each 

district. More in detail, Queens exhibits a much less dense distribution of bins as 

its average pairwise distance between bins is 8.63 km. This is a much larger distance 

than the ones observed in the other four districts, with distances ranging from 4 to 

6 km.  

 

Table 4: Overview of the demographics and number of bins in New York City. 

NEW YORK Population Area (km2) 

Population 

Density 

Number 

of bins 

Average distance 

of bins (km) 

Num. of street 

segments 

Bronx 2,717,758 110 24,707 108 4.78 17,338 

Manhattan 3,123,068 59.1 52,844 184 5.82 9,702 

Queens 4,460,101 280 15,929 117 8.63 55,192 

Brooklyn 4,970,026 180 27,611 94 6.35 22,709 

Staten Island 912,458 152 6,003 42 6.71 16,060 

Sources 

NYC OpenData Portal (NYC OpenData, n.d, NYC OpenData, n.d-2), 

OpenStreetMap (Openstreetmap. (n.d.)) 

 

Regarding the venue's data, Figure 11 shows its distribution in NYC. As 

observed, a high percentage of venues are restaurants, followed by places of 

worship and parks areas. All of them are above the 10% of the total venues of the 

cities. This indicates that NYC has a quite important catering sector. This is an 

important detail as this economic sector might be an important factor in the total 

generation of plastics within the city. A report by the Department of Environmental 

Conservation mentioned that 20% of waste generation (the second highest in terms 

of waste generation) came from restaurants and the catering industry (“Waste 

generation in New York City and the State of New York”, n.d.).  
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Figure 11: Number of establishments in terms of percentage in NYC 

 

Finally, the number of streets is depicted in Figure 12. It is important to note 

that this figure indicates the number of street segments in each district. In that 

sense, a street might be split into different segments if it is crossed, for example, by 

other streets. Thus, Queens is the district with the densest network with 124,001 

street segments. This is a volume of segments much larger than in other districts 

like Queens (55,192 streets), Brooklyn (22,709), The Bronx (17,338) or Staten Island 

(16,060). Finally, the Manhattan district is the only one comprising less than 10,000 

roads. Unsurprisingly, there is a strong correlation between the total geographical 

area of a district and its total number of streets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Distribution of number of streets in each of the five NYC boroughs.  

 



70  NAVJOT SIDHU 

4.1.3.  Madrid, Spain 

The second reference city is Madrid, the capital of Spain. It has a total of 21 

districts, and this study focuses on only 9 representing the downtown, namely 

Salamanca, Chamartin, Moratalaza, Ciudad-Lineal, Hortaleza, Vicalvaro, San Blas-

Canillejas, Barajas and Retiro. 

 

Table 5: Overview of the demographics and number of bins in Madrid. 

MADRID Population Area (km2) 

Population  

Density 

Number of 

bins 

Average distance 

of bins (km) 

Num. of 

street 

segments 

Salamanca 145344 5.41 26,865 736 1.22 2,050 

Chamartín 141527 9.19 15,400 1095 1.83 2,935 

Moratalaz 92958 6.34 14,662 1933 1.08 1,728 

Ciudad-

Lineal 212565 11.36 18,711 2258 2.02 4,201 

Hortaleza 185738 28 6,633 2838 1.9 7,294 

Vicálvaro 72213 32.7 2,208 1547 1.32 3,498 

San Blas-

Canillejas 155825 21.81 7,144 2218 2.12 4,545 

Barajas 48315 42.66 1,132 1003 1.21 4,478 

Retiro 118252 5.37 22,020 495 1.13 2,493 

Sources 
Madrid city council website (n.d.), Madrid Open Data Portal (n.d.), OpenStreetMap 

(Openstreetmap. (n.d.)) 

 

Table 5 shows the different population with Ciudad-Lineal as the city with 

the highest population. The densest district with 26,865 people per km2 is 

Salamanca. As the district with the highest population, Ciudad-Lineal also has the 

highest number of bins, with an average distance between the bins at 2.02 km2. The 

other districts namely San Blas-Canillejas and Moratalaza also have a significantly 

high amount of bins, while the district with the lowest amount of bins is Retiro 

even though it has a population of more than 100,000.  
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Figure 13: Number of establishments in terms of percentage in Madrid 

 

Additionally, Figure 13 shows the percentage of different venues in Madrid. 

The highest number of venues are restaurants followed by parks and others, which 

consist of museums, libraries, and gas stations, among others. This stipulates that, 

like New York City, Madrid too, has a large percentage belonging to the catering 

sector. Indeed, from 2010 to 2018, municipal waste generated in Madrid ranged 

from 20,000 to 23,000 tons (“Eurostat Report Spain”, n.d.). It was also reported that 

21.8 kilogram per capita of plastic waste was effectively recycled in 2017.  

 
Figure 14: Distribution of the number of streets in Madrid 
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Lastly, in the 9 districts, the total number of street segments are 33,222 as is 

shown in Figure 14. Hortaleza has the most roads with 7,294, followed by San Blas-

Canillejas with 4,545 and Barajas with 4,478. The number of streets can show a 

significant relation to the area, or population of the district. But in the case of 

Madrid, Ciudad-Lineal, which has the highest population, has the fourth-highest 

number of street segments, while Barajas, which has the largest area, has the least 

number of streets.  

4.1.4.  Malaga, Spain 

The third reference city is Malaga, located in the Andalucía region of 

Southern Spain. This city has 11 districts, as listed in Table 6. As shown in this table, 

the district Carretera de Cadiz has the highest population and is the only district with 

over 100,000 people. It is also the densest district with 20,254 people per km2, while 

Este is the district with the largest area (126 km2) in the entire city. Churriana is the 

district with the greatest number of bins with an average distance of bins at 3.96 

kms.  

 

Table 6: Overview of the demographics and number of bins in Malaga. 

MÁLAGA Population 

Area 

(km2) 

Population 

Density 

Number of 

bins 

Average 

distance of 

bins (km) 

Num. of 

street 

segments 

Centro 84,988 5.87 14,478 20 0.36 3,502 

Este 67,289 126.63 531 285 3.42 2,860 

Ciudad Jardin 37,769 76.21 495 2 0.07 2,693 

Bailen-Miraflores 62,834 6.39 9,066 31 0.51 1,429 

Palma-Palmilla 29,862 25.37 1,177 6 0.33 967 

Cruz de Humilladero 93,955 9.91 9,480 142 1.81 3,383 

Carretera de Cádiz 113,424 5.6 20,254 265 2.62 3,743 

Churriana 20,449 37.32 547 409 3.97 3,223 

Campanillas 17,472 59.77 292 202 1.03 1,335 

Puerto de la Torre 49,442 42.26 1,169 233 1.14 1,556 

Teatinos-Universidad 34,405 - - 100 2.43 2,191 

Sources  
City Population Website (2020), Malaga Open data Portal (n.d.), OpenStreetMap (Openstreetmap. 

(n.d.)) 
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Figure 15 shows the distribution of venues in the city of Malaga. The highest 

percentage are other venues which consist of sports centres, clubs and bars, 

government offices, hotels, convenience stores, etc. They are followed by 

restaurants and schools. This shows that, unlike NYC and Madrid, the catering and 

education sector are almost equally important even though the other 

establishments are higher in total collectively. Indeed, in 2018, with a total of 

301,000 tons of waste collected in Malaga city, 8,700 tons were plastic waste (“Waste 

collection in Malaga”, 2013). Although catering is an evident industry that 

generates tons of waste, the education industry should not be disregarded when it 

comes to plastic waste generation, as it is also shown elsewhere (Smyth, Fredeen, 

& Booth, 2010).  

 
Figure 15: Number of establishments in terms of percentage in Malaga 

 

Regarding the number of streets, as shown in Figure 16, Malaga has a total of 

26,882 roads with the district of Carretera de Cadiz with 3,743 roads, Centro with 

3,502, Cruz de Humilladero with 3,383, Churriana with 3,223 and the other 

districts, Bailen Miraflores, Campanillas, Ciudad Jardin, Este, Palma-Palmilla, 

Puerto de la Torre and Teatinos Universidad with less than 3,000 roads. 
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Figure 16: Distribution of the number of streets in Malaga  

 

4.1.5.  Stavanger, Norway 

The fourth and last reference city is Stavanger located in the Southwestern 

part of Norway. This city has 6 districts which are listed in Table 7. Almost all the 

districts, except for Rennesoy, have a population of over 10,000. Not only does the 

district of Eiganes og Valand have the highest population of 23,616, but also it is 

the densest one with 3,368 people per km2. Furthermore, even though Rennesoy 

has the lowest population, it is the district with the largest area in Stavanger. 

Hillevag, a district with 19,681 people and an area of 8.08 km2 has the most number 

of bins with an average distance of 1.45, between the bins.  

 

 

 

 

 

 

 

 



CHAPTER IV: URBAN PLANNING 75 

Table 7: Overview of the demographics and number of bins in Stavanger. 

 

STAVANGER Population 

Area 

(km2) 

Population 

Density 

Number 

of bins 

Average 

distance of bins 

(km) 

Num. of 

street 

segments 

Madla 21,236 13.87 1,530.90 136 2.35 2,118 

Hundvåg 13,217 6.41 2,061.90 74 1.40 2,026 

Hillevåg 19,681 8.08 2,435.70 212 1.45 3,892 

Storhaug 16,544 6.43 2,571.90 188 0.86 1,793 

Hinna 22,581 15 1,505.40 187 1.65 777 

Eiganes og 

Våland 23,616 7.01 3,368.90 181 1.39 3,443 

Tasta 15,319 10.87 1,409.20 98 0.74 1,943 

Rennesøy 4,755 65.51 72.58 27 3.12 38 

Sources  

City Population Website (n.d.), Stavanger Open Data portal (n.d.), 

OpenStreetMap (Openstreetmap. (n.d.)) 

 

Figure 17 shows the distribution of venues which indicates that the highest 

percentage of venues are parks, followed by other venues such as gas stations, 

museums, government offices, convenience stores, shopping centres and hotels, 

among others, and restaurants. This indicates that the generation of plastic waste 

might be from these venues as these are established more in the city. In one of the 

main waste facilities in Stavanger in 2019, it was noted the arrival of waste from 

households, parks, shopping centres, offices and other stores containing 15,973 tons 

of plastics out of 66,250 total tons of waste (Ivar Iks, n.d.). Finally, as shown in 

Figure 18, Stavanger has a total of 15,992 streets. The rest of the districts have less 

than 3,000 streets.  
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Figure 17: Number of establishments in terms of percentage in Stavanger 

 
Figure 18: Distribution of the number of streets in Stavanger 

4.1.6.  Selection criteria for the reference cities 

Bearing in mind the extracted urban features, it can be seen that the four 

reference cities actually reflect different urban scenarios. To start with, they cover 

quite different population densities, ranging from roughly 300 in Malaga to more 

than 52,000 people per km2 in New York City. In terms of geographical size, there 

is also a large variation of the target neighbourhoods with quite small ones like 

Salamanca in Madrid (5.41 km2) to much wider ones like Manhattan in New York 

City (52,844 km2).  
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Furthermore, clear differences in the distribution of bins are found between 

the European cities and the American ones, since New York City has a sparser 

distribution with distances among bins above 5 km than the other three cities with 

distances below 4 km in all the cases.  

Finally, the latent human activity reflected in the distribution of venues also 

suggests some remarkable differences among the selected cities. Whilst Madrid, 

New York City and Malaga seem to have quite an active nightlife with many 

different venues related to restaurants, coffee shops and nightclubs, Stavanger 

seems to be a more family-friendly environment where parks and supermarkets 

are much more relevant. 

4.2.  DESCRIPTION OF THE TARGET CITIES 

This section describes the target areas of the developing countries, namely 

the Philippines and India, where we apply our method to estimate the number of 

plastic recycling bins. These areas are selected based on their different urban 

features with respect to the size of the areas, population density and venue 

distribution, as explained below. 

4.2.1. Quezon City, Philippines 

For many years, the Philippines has been a centre of natural disasters such as 

floods due to the blockage of drainage because of plastic waste. According to 

Atienza,V. (2020), the Philippines produce approximately 2.7 million metric tonnes 

of waste each year, as of June 2020. Not only do they handle the waste people of 

the Philippines produce, but also for many years, it has been reported that countries 

such as Canada, Hong Kong, South Korea and Australia have dumped their trash 

in the Philippines. (Pittiglio, Reganati, & Toschi, 2017). 
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Figure 19: Maps of areas in Quezon City. Quezon City is included in a bounding 

box with lat-long coordinates ((14.60, 121.00);(14.78, 121.12)) 

 

For the above reasons and due to the lack of plastic waste management 

policy, we have chosen Quezon City as one of the target cities for this study, 

divided into two groups (see Figure 19), Group 1, which is located at the border of 

the city of Manila and Quezon City (4th district), and Group 2 located close to the 

Payatas dumpsite (5th district). The reason for choosing these 2 areas is because of 

the difference in population and policies of collecting waste.  

4.2.1.1 Quezon City Group 1 

The 4th district of Quezon city has 32 neighbourhoods but for the purpose of 

the study, only seven were chosen. The total population of these seven 

neighbourhoods is 92,283, Tatalon with the highest population. Note that the areas 

of all these seven places are less than a square kilometre, thus for the purpose of 

computing the population density, the area has been converted to hectares.  
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Table 8: Overview of the Demographic in Quezon City. 

 

GROUP 1 Population (2015) Area (km2) 

Population density 

(hectares) 

Num. of street 

segments 

Don Manuel  3,753 0.238 157.689 33 

Doña Josefa 2,909 0.282 103.15 46 

Doña Aurora 5,636 0.128 440 37 

Doña Imelda 16,915 0.929 182.077 138 

San Isidro  8,578 0.132 649 173 

Santo Nino 10,278 0.193 532.5 299 

Tatalon 63,129 0.925 682.4 152 

Sources City Population Website (n.d.-2), OpenStreetMap (Openstreetmap. (n.d.)) 

 

 
Figure 20: Number of establishments in terms of percentage in Quezon City 

Group 1. 

 

Figure 20 shows the distribution of venues in this first group of Quezon 

City. Restaurants have the highest percentage, followed by a group of other 

venues such as hospitals, shopping centres, cinemas, parks and coffee shops, 

whereas the third highest are private clinics.  
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4.2.1.2 Quezon City Group 2 

Out of 14 neighbourhoods under the 5th district, for this study only seven of 

them were chosen. The neighbourhood of Kaligayahan has the greatest population, 

while Pasong Putik Proper has the biggest area. Moreover, Santa Lucia has the 

smallest population and also the least area (see Table 9).  

Table 9: Overview of the Demographics in Quezon City group 2. 

GROUP 2 Population (2015) Area(km2) Population density 

Num. of street 

segments 

Fairview 53,151 3.12 17,035 430 

North Fairview 41,154 2.01 20,474 200 

Greater Lagro 22,764 4.24 5,368.86 427 

Pasong Putik 

Proper 35,135 27.5 1,278.29 325 

Kaligayahan 54,576 2.46 22,185 415 

Santa Monica 46,553 1.65 28,214 309 

Santa Lucia 25,577 0.642 39,839 (per hectare) 106 

Sources City Population Website (n.d.-2), OpenStreetMap (Openstreetmap. (n.d.)) 

 

Figure 21 shows that the highest percentage distribution of venues is those 

grouped as “Others”, which is the total of the venues less than 5% such as 

supermarkets, hospitals, train and bus stations, private clinics, and sports centres, 

among others. It is followed by restaurants, schools, and gas stations.  
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Figure 21: Number of establishments in terms of percentage in Quezon City 

Group 2 

 

 Lastly, Figure 22 shows the distribution of streets in the selected groups in 

Quezon City. The map further indicates that group 1, with a total of 878 streets, has 

fewer than group 2, which has a total of 2,212 streets. Furthermore, while in group 

2 the neighbourhood with the highest number of roads is Fairview which is also 

the 3rd largest area, in group 1 the neighbourhood of Santo Nino has the greatest 

number of streets, even though it is one of the smallest in terms of area. 

 

   
Figure 22: Distribution of the number of streets in the two groups in Quezon City, 

Philippines 

4.2.2. India 

Similar to the Philippines, we have divided the study of Indian cities into two 

groups: Group 1 located in the state of Punjab, where most of the cities still follow 

an open-air dumping policy, and group 2 located in the state of Gujarat, where they 

have already started with the trials of the waste management policy, and where 

they have the Pirana dumpsite, one of the main open dumping sites controlled by 

the state government. The map below shows India group 1 (see Figure 23(a)) and 

group 2 (Figure 23(b)). The cities in group 1 are Barnala (square 1.1), Dhaner (1.2) 

(both belonging to the district of Barnala) Moga (1.3) and Ludhiana (1.4), the latter 
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two being city centre districts. Regarding group 2, Figure 23(b) shows the cities of 

Jamnagar (2.1), Ahmedabad (2.2), Gandhinagar (2.3) and Surat (2.4). 

 
 

Figure 23: (a) Map of the cities in the state of Punjab; (b) Map of the cities in the 

state of Gujarat. Region (a) is included in the bounding box with lat-long 

coordinates ((29.63, 74.12); (32.34, 76,94)) and region (b) with lat-long coordinates 

((20.63, 68.55); (24.61, 74.46)).  

4.2.2.1 India Group 1 

 

Table 10 shows the data for the four selected cities in the state of Punjab. The 

city with the largest population is Ludhiana followed by Moga. The biggest city in 

terms of area is Moga. However, Barnala has the highest population density.  Also, 

there is insufficient data for the venues in Dhaner.  
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Table 10: Overview of Demographics in India group 1. 

GROUP 1 Population Area (km2) 

Population 

Density 

Num. of street 

segments 

Barnala 190,619 11 17,329 134 

Dhaner 2,140 10.09 212 4 

Ludhiana 1,618,879 159 10,182 5,145 

Moga 298,432 2,230 134 156 

Sources 
City Population Website (n.d.-3), OpenStreetMap (Openstreetmap. 

(n.d.)) 

 

The distribution of venues in this group can be seen in Figure 24. The highest 

percentage of venues are hospitals followed by parks and by a group of other 

venues such as gas stations, restaurants, sports centres, cinemas, supermarkets, and 

private clinics, among others.  

 
Figure 24: Number of establishments in terms of percentage in India Group 1 

 

For this first group of Indian cities, it is worth mentioning that OSM does not 

comprise the administrative boundaries of these cities. For that reason, we needed 

to manually define the geographical boundaries of each of these cities by means of 

a rectangular bounding box as Figure 23(a) indicates. Then, we extracted the 

number of street segments included in each of these rectangular bounding boxes 

as shown in Table 9. 
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4.2.2.2 India Group 2 

 

Group 2 is in the state of Gujarat, India. Out of 18 cities in this state, we have 

chosen the capital of the state, Gandhinagar, and three of the biggest cities in the 

state, Ahmedabad, Surat, and Jamnagar. Table 11 shows that the city with the 

greatest population and area is Ahmedabad, while Surat is the densest city.  

 

Table 11: Overview of the Demographics in India, group 2. 

INDIA 

GROUP 2 Population Area (km2) Population density 

Num. of street 

segments 

Gandhinagar 1,391,753 2,140 650 3,760 

Ahmedabad 7,045,313 6,968 1,011 17,275 

Surat 6,081,322 4,549 1,336 4,472 

Jamnagar 1,047,635 6,607 159 1,060 

Sources 
City Population Website (n.d.-4), OpenStreetMap (Openstreetmap. 

(n.d.)) 

 

Figure 25 shows the distribution of venues in the second Indian group. 

Hospitals have the highest percentage of venues (more than 50%), followed by 

parks and other venues such as restaurants, gas stations, schools, supermarkets and 

coffee shops, being similar to the first group in the rank of venues.  

 
Figure 25: Number of establishments in terms of percentage in India Group 2 
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4.2.3. Selection criteria for the target cities 

The target areas for this study lack a plastic waste management policy. They 

have been selected according to different values of size areas, population density 

and venue distribution. Whilst the areas in Group 1 of both countries represent 

small areas with different levels of population density, the areas in Group 2 allow 

us to study bigger areas for a range of population density values. Moreover, the 

venue distribution is also different among the target areas of both countries, being 

hospitals and parks the most relevant for Indian areas whereas restaurants and 

supermarkets are identified as the most frequent for Quezon city. It is worth noting 

that these two different distributions of top venues are similar to the venue 

distribution of the reference cities since the Indian areas seem more family friendly 

as in the Stavanger city whereas the Quezon City areas are more alike to the activity 

in New York, Madrid, and Malaga.  

4.3.  STATISTICAL ANALYSIS  

Certain methodological and statistical models have been used to develop the 

final mechanisms in order to infer the number of bins in the above-mentioned 

target cities (Figure 9). This chapter discusses said methods and explains how it is 

essential to the study.  

Regression analysis focuses on modelling techniques for the relationship 

between one or more independent variables and a dependent variable. Dependent 

variables are response variables that are a function of the independent variable 

while independent variables are predictors. In linear regression, parameters are 

often set and estimated to give the model the best fit and the dependent variable is 

used to set regression parameters and a random error. Simple linear regression 

analysis can be written in the following form:  

 

                                      𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀                                                   (c) 

 

where: y - dependent variable,    x - independent variable,  

 𝛽0 - y intercept,     𝜀 - random error,  

 𝛽1 - the slope of the regression line  

 

 The dependent variable in this study is the number of bins in the target 

city’s neighbourhood while the independent variables are some of the urban 

features of the target cities further discussed in Chapter 5.  
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In this study, weighted least squares (WLS) was used to calculate the actual 

values of the intercept and slope parameters of the linear regression formula. In 

order to understand this principle, a discussion of least square estimation is 

necessary. Least squares estimation finds the estimates of 𝑏0and 𝑏1 so that the sum 

of the independent variable and predicted response reaches the regression 

coefficients. The aim of this method is to determine parameter estimates by looking 

at the line closest to data points of the regression. Mathematically, the least square 

formula (d) and the least square estimates (e) can be written as:  

(𝑏0, 𝑏1)  =  𝑎𝑟𝑔 min
(𝛽0,𝛽1)

∑ [ 𝑦1 − (𝛽0 + 𝛽1𝑥𝑖)]𝑛
𝑖 = 1   2                             (d) 

 

  
𝜕

𝜕𝛽0
∑ [ 𝑦1 − (𝛽0 + 𝛽1𝑥𝑖)]𝑛

𝑖 = 1
2

 =  0                             (e1) 

  
𝜕

𝜕𝛽1
∑ [ 𝑦1 − (𝛽0 + 𝛽1𝑥𝑖)]𝑛

𝑖 = 1
2

 =  0                  (e2) 

 
Weights are necessary in order to make sure that the acquired or used data 

fits the model and it is used when there is a higher chance of uncertainty of values 

due to the fact that there is a larger number of experiments, or the distribution is 

wider but datasets are lesser. Ordinary least squares (OLS) focus on the constant 

variance of errors (homoscedasticity), while WLS is used when the OLS assumption 

of constant variance of the errors is broken (heteroscedasticity). The simplest 

description of the formula is  

 

                    𝑤𝑖 =  
1

𝜎𝑖
2                                         (f)  

 

where 𝜎is the reciprocal of each variance transformed into weight. 

Additionally, we can now change equation (d) into a weighted least squares 

estimate equation as (Seber & Lee, 2012; Yan & Su, 2009):  

 

      𝛽̂ 𝑊𝐿𝑆 =  𝑎𝑟𝑔 min
(𝛽0,𝛽1)

∑ 𝜖𝑖
∗2𝑛

𝑖 = 1                                    (g) 

 

The principal component analysis (PCA) which finds linear combinations of 

independent variables in order to prove the variations of the variables, was also 

used in this study (Yan & Su, 2009). The collection of different urban features from 

the reference cities is not efficient to fit the linear regression model with all features. 

Thus, for the reduction of the dimensionality of these independent features, PCA 

was used. In the simplest explanation of PCA, it can be expressed as the 

reformulation of the maximum likelihood solution of a latent model. In theory, if 
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we let a dataset be X= [𝑥1. . . . . . . . . 𝑥𝑁], then the sample vector and sample covariance 

matrix, 𝑥̅ and 𝛴respectively, can be written as: 

 

                𝑥̅ =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1                                                (h) 

and        𝛴 =
1

𝑁
∑ (𝑥𝑖 −  𝑥)̅̅ ̅(𝑥𝑖 −  𝑥̅)𝑇 =

1

𝑁
𝑋̃𝑋̃ 𝑇𝑁

𝑖=1                                (i) 

Lastly, to extract the PCA linear combinations of the variables, we can write 

it as (Kurita, 2019): 

𝑦1𝑖 = 𝑎1
𝑇(𝑥𝑖 − 𝑥̅), (𝑖 = 1, . . . . . . 𝑁)                                           (j) 

Further use in this study and results are explained in section 5.
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V - RESULTS 

 This chapter includes a discussion on the most relevant results of the main 

two components of the framework proposed in this thesis for the intelligent 

management of plastic waste, namely the smart bin system and the module for the 

urban planning of waste containers. It includes the combination of the analysis and 

outputs of chapters 3 and 4.  

5.1. ANALYSIS OF THE SMART BIN SYSTEM 

 The following subsections explain the process involved in the smart bin 

component of the study. It includes the discussion on data collection and curation 

and displaying the analysis of forecasting the generation of plastics in household 

settings.  

5.1.1 Evaluation Setting 

The performance of the proposed smart-collaborative plastic-waste 

management system (described in Sec. 3) has been simulated in the city of Quezon, 

Philippines. The Philippines as a country has not completely managed the plastic-

waste problem yet. The country is plagued with drainage blockages due to plastics 

that usually occur during floods (Atienza, 2020), posing a serious hazard to the 

population. Quezon City is the largest and most populous city in the Philippines, 

producing 262 tons of plastic waste per day. With 3,085,227 people and an area of 

161.126 𝑘𝑚2. Multiple waste management plans have been tried and tested until 

today with different results (Premakumara, et al., 2018), showing that there is still 

a need for ideas and projects to improve waste management. 

With the aim of assisting the management of plastics through household 

smart bins for people with disabilities, senior citizens, and COVID-19 affected 

residents, we have focused on data mainly about these profiles in the 

neighbourhoods of Quezon City. In an Ecological Profile report made by the 

government office of Quezon City in 20158 34.92% of the total population are people 

 
8Ecological Profile: https://quezoncity.gov.ph/wp-content/uploads/2020/12/QC-Ecological-Profile-2015.pdf 

https://quezoncity.gov.ph/wp-content/uploads/2020/12/QC-Ecological-Profile-2015.pdf
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with mental, speech, orthopaedic, visual, or hearing disabilities, among others. 

According to the report, senior citizens are also included in this vulnerable group. 

In 2015, the estimated total number of people over 60 years old was 162,158. 

In this study, three neighbourhoods (known as barangays) of three different 

districts in Quezon are involved in a simulation scenario: Don Manuel under 

districts Galas, Commonwealth under the district with the same name and Mariana 

in New Manila (See Figure 26). These neighbourhoods represent 0.13%, 6.75%, and 

0.38% of the total population, respectively9. 

 

 

 

 

 

 

 

 

Figure 26: Location of the three neighbourhoods (Barangays) in Quezon City 

 We have used this setting to allocate the different households simulated in 

the study and thus calculate the real distances for the route-planning algorithm 

described earlier in the paper.  In terms of the socio-demographic profile of each 

neighbourhood, in Don Manuel, the computed age dependency ratio is 22 youth 

dependents to every 100 working-age population. Commonwealth's ratio is 43 and 

in Mariana, it is 17 to every 100 working-age population, respectively. Regarding 

 
9Don Manuel, Quezon City:  https://www.philatlas.com/luzon/ncr/quezon-city.htmlsectionBrgys 

https://www.philatlas.com/luzon/ncr/quezon-city.htmlsectionBrgys
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the old-age-dependency ratio in these 3 neighbourhoods, Mariana has the highest 

ratio of 11 to every 100. In terms of COVID-19, the city with the highest cases is 

Quezon City as of May 2021, with more than 150 active COVID-19 cases only in 

Barangay Commonwealth10  

5.1.2. Data Collection 

During the data collection stage, 176 different experiments, executed to 

collect data from the smart bin as described in section 3.2., were performed from 19 

October 2019 to 30 January 2021. The average time length of each experiment was 

235.18 min with a standard deviation of 65.48 min. Figure 27 shows the distribution 

of the start and end hours of the experiments. As observed, most of the experiments 

were taken during afternoons and evenings.  

 

(a) Distribution of experiments based           (b) Distribution of experiments based 

     on the starting hour        on the end hour 

 

Figure 27: Distribution of the experiments based on their initial and end hour 

 

 
10 Commonwealth, Quezon City: https://quezoncity.gov.ph/covid19counts/qc-covid-19-update-as-of-may-11-2021-8am/ 

https://quezoncity.gov.ph/covid19counts/qc-covid-19-update-as-of-may-11-2021-8am/
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5.1.3. Data Curation 

As an illustrative example of the data filtering process described in section 

3.4., Figure 28(a) shows the time series of weights captured by the scale sensor 

during one of the experiments. As observed, the series is defined by a set of sharp 

weight increments. These moments indicate the time instant at which a user put 

one or more plastic items in the bin. Hence, the time series in Figure 28(a) reflects 

that the bin was used two times during the experiment since two sudden 

increments can be observed at different moments of the experiment. Apart from 

these increments, it is possible to observe some noisy points at the tail of the time 

series. This is because of the fluctuation given the high sensitivity of the weight 

sensor. The seasonal decomposition of the time series is depicted in Figure 28(b). 

As it can be seen, the time series is mainly defined by its trend dimension. This part 

of the time series indicates the clear evolution of the sensor values throughout the 

experiment, as it does not include the aforementioned noisy parts of raw values.  

Consequently, we were able to perform lightweight filtering of this time series by 

just keeping its trend component (Figure 28(c)). Please note that this trend does not 

suffer from the noise observed in the raw time series. Finally, the set of the 176 

filtered time series was used for the next steps in the system, namely clustering and 

prediction.  

 

 (a) Raw time series of weights captured by    (b) Seasonal decomposition of the time series 

    the weight sensors in one of the           following additive approaches 

    experiments  
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(c) Smooth version of the time series (trend component) 

 

Figure 28: Data cleaning example 

5.1.4. Generated Clusters 

Regarding the clusters obtained from the filtered time series and based on the 

features described in Section 3.1.5, Figure 29 shows the silhouette score of the K-

means algorithm for different values of clusters k. As observed, the elbow point of 

the plot occurs when k is set to three. This indicates that such several clusters 

provide the best fit regarding the similarity of the entities within each cluster and 

the dissimilarity among different clusters. The centroids defining each cluster 

based on the five input features as explained in Section 3.1.5 are shown in Table 12.  

Table 12: Values of the descriptive features for the three clusters extracted from the 

experiments 

Cluster m 𝒒𝟐𝟓 𝒒𝟕𝟓 u i 

𝑐1 47.37 22.38 72.39 2.45 8.77 

𝑐2 129.64 74.83 188.94 4.09 21.51 

𝑐3 274.40 188.86 398.44 4.38 38.92 

In our simulation scenario, these centroids are representing a particular user 

profile in terms of generating plastic waste when using the smart bin. As a result, 

each centroid could be mapped to a particular behaviour as follows: 
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● 𝑐1: Family of two. One person with a disability who is working from home 

as an online teacher and another who works from home as a private money 

lender to small business owners. Both live in a one-bedroom flat in 

Barangay Don Manuel. 

● 𝑐2: Family of four. COVID-19 lockdown affected residents. One person is an 

essential worker, works as a jeepney/public transport driver, one person 

runs a small bakery business from home. Two kids who are studying from 

home. All living in a two-bedroom house in Barangay Commonwealth.  

● 𝑐3:  Family of four with a caretaker. Husband and wife are working as 

doctors and nurses. Two kids who are in high school, and grandparents 

who stay at home. A caretaker comes to order/cook for the senior citizens. 

All living in a three-bedroom house in Barangay Mariana.   

The rationale behind the assignment of these behaviours to each cluster is 

based on the actual information about these Barangays: Cluster 𝑐1 in Don Manuel 

has one of the smallest areas in Quezon City with 0.238 𝑘𝑚2. Additionally, the 

highest age group percentage is 12.50% for 20 to 24 years old, and the generation 

of plastic waste is significantly low11. Cluster 𝑐2 in Commonwealth has an area of 

3.570 𝑘𝑚2. Additionally, the age group of 15 to 64 years old have the highest 

distribution by percentage at 67.74% and the average daily plastic-waste 

production amounts to 330 cubic meters per day1213. Finally, the cluster 𝑐3 in 

Mariana has an area of 1.664 𝑘𝑚2. The age group with the highest percentage is 25 

to 29 with 10.86 and the average daily plastic waste amounts to 1.65 cubic meters 

per day14(Asian Development Bank, 2016).  

 
11 Don Manuel, Quezon City:  https://www.philatlas.com/luzon/ncr/quezon-city.htmlsectionBrgys 
12 Philippine Atlas: https://www.philatlas.com/luzon/ncr/quezon-city/commonwealth.html 
13 Barangay Population Statistics: citypopulation.de/en/philippines/quezoncity/ 
14 Quezon City Statistics: Quezon City (Philippines): Barangays - Population Statistics, Charts and Map 

https://www.philatlas.com/luzon/ncr/quezon-city.htmlsectionBrgys
https://www.philatlas.com/luzon/ncr/quezon-city/commonwealth.html
http://citypopulation.de/en/philippines/quezoncity/
https://www.citypopulation.de/en/philippines/quezoncity/
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Figure 29: Silhouette score for different number of clusters (k) 

5.1.5. Prediction Results 

Given the predictor model in Section 3.1.7 aimed at forecasting the time when 

a bin is likely to be completely filled, we set 𝛥𝑚 it to 5 g and 𝛥𝑡to 200 s. This 

configuration was calculated by means of a grid search in the input space of both 

parameters. For this configuration, the solution had an average residual error of 

2167 s (~36 min) ±1390 s (~23 min). Figure 30 shows the residual error 

(|𝑡𝑚𝑎𝑥 − 𝑡̂𝑚𝑎𝑥|)  of this model for different time horizons. For instance, for a time 

horizon below 2000 s (~33 min), the error of the model was 1320 s (~22 min) on 

average. It is observed that the accuracy of the model degrades as long as the 

prediction horizon increases.  

However, a meaningful drop in the residual error occurs for very long-time 

horizons between 12,000 and 14,000 s. The predictions for such horizons are 

provided by models fitted with W sets comprising the very first meaningful 

variations of an experiment (that is, the very first plastic items placed inside the 

bin). This might suggest that the initial set of plastic items inserted in a bin might 

actually define the whole waste behaviour of the target users to a high degree. 

Figure 31 shows the distribution of the residual error for each of the user profiles 

defined in Section 5.1.4. It is observed that the accuracy of the predictor was lower 

for the experiments with cluster 𝑐3, with a residual error of 3352 s (~55 min.) on 

average. For the other two clusters, the error was around 2000 s (~33 min.). 
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Figure 30: Residual error of the 

prediction model for different time 

horizons. 

 

 

Figure 31: Residual error of the 

prediction mechanism given the 

identified clusters 

 

 

 

From Figures 30 and 31, it is observed that the predictor error ranges between 

1200 and 4600 s (20 and 76 min). These predictions are used by the route generation 

algorithm to compute the pick-up hour for each bin as stated in Section 3.8. We 

believe that this error range is small enough to generate a pick-up hour close 

enough to the actual moment when the bin is full. In the worst case, users will have 

their bin completely full for around 76 min before a waste-picker arrives at their 

home. This seems a sensible time period to wait given the benefit that the system 

would bring to the user. 

Finally, the web application included in our proposal (Section 3.6) displays 

the time series of each experiment along with its associated prediction as shown in 

Figure 32. This allows the timely control and validation of the state of each bin in a 

real-world deployment. 
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Figure 32: Main view of the web application. The upper section displays the list of 

experiments whereas the bottom one shows the time series of one of them 

5.1.6. Composition of the Collection Routes 

The evaluation of the route generation algorithm is explained in Section 3.1.8 

has been performed in a simulated test-bed scenario within Quezon City for the 

clusters defined in Section 5.1.4.  

To run the simulation, eight household smart bins and two waste-picker 

locations were defined within the city area. Then, each bin location was linked to a 

particular cluster for plastic-waste behaviour. As shown in Figure 33, six smart bin 

locations in the south of the city were assigned to clusters 𝑐1 (locations 𝑙1, 𝑙2,   𝑙3) 

and 𝑐2(𝑙4, 𝑙5, 𝑙6), respectively, and two more in the north to 𝑐3 (𝑙7, 𝑙8). The set of waste-

pickers was defined as WP= ≼ 𝑤𝑝1 , 𝑤𝑝2 ≻ . Furthermore, we also considered the 

location of three municipal dumpsites at Quezon City. They are depicted as green 

dots in Figure 33(a). Please note that these dumpsites are an important contextual 

factor to be considered. This is because waste-pickers need to deposit the plastic 



100  NAVJOT SIDHU 

 

waste from the target houses in any of these dumpsites during their collection 

routes. 

 

 

(a) Overview of the city. The black solid 

lines indicate the boundaries of the 

neighbourhoods.  

 

 

 

 

 

 

 

 

 

(b) Location of the smart bins for cluster    (c) Location of the smart bins for cluster 

𝑐1and for waste-picker 𝑤𝑝1            𝑐2and for waste-picker 𝑤𝑝2 
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(d) Location of the smart bins for 

cluster 𝑐3 

 

 

Figure 33: Quezon City showing the location of the houses with smart bins and 

waste pickers homes. Each coloured dot indicates a particular location. The red 

dots belong to the cluster 𝑐1, the dark red ones belong to the cluster 𝑐2and the blue 

ones belong to 𝑐3.The waste-picker houses are shown as yellow dots and the 

dumpsites are depicted as green dots.  

Once the scenario was set, each smart bin location 𝑙𝑖 was associated with a 

subset 𝜀𝑖 of the data collection experiments (out of 176) by considering its cluster 

(Section 5.2.2.). For example, 𝜀7  comprised  experiments related to the cluster 𝑐3. In 

this manner, we simulate a real-time behaviour of the use of the household smart 

bins by means of an iterative approach. For each day in the study period (from 19 

October 2019 to 30 January 2021 according to Section 5.1.2., we extracted a 

particular experiment related to that day, if any, from each set𝜀𝑖.  Next, for each 

experiment, we kept the weight evolution of its first k items. A particular 

experiment gave rise to as many sub-experiments as its total number of items (see 

Table 13). Then, a prediction for the target sub-experiment of each location was 

generated giving rise to a set or pick-up points 𝑃 = ≼ (𝑙1, 𝑡̂𝑚𝑎𝑥,1), . . , (𝑙𝑛, 𝑡̂𝑚𝑎𝑥,𝑛) ≻ (n 

≤ 8).  Moreover, the two waste-pickers had the following range of available hours, 

𝐻𝑤𝑝1 = (16:00, 23:00), 𝐻𝑤𝑝2 = (20:00, 02:00). Consequently, the simulated real-time 

behaviour can be regarded as a two-level loop, one moving across the days and a 

nested one moving across the number of items of the experiments.  
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Table 13: Number of sub-experiments for each location used across the simulation 

Location Num. of Sub-Experiments 

𝑙1 369 

𝑙2 233 

𝑙3 151 

𝑙4 379 

𝑙5 217 

𝑙6 109 

𝑙7 223 

𝑙8 124 

The set of pick-up points along with the range hours of the waste-pickers fed 

the ILOG solver to compose the required collecting routes. To do so, we made use 

of the implementation provided by the OR-tools suite15, open-source software for 

optimization. This suite requires the time distances among the target locations to 

compose the final routes. To study the impact of the means of transport used by 

the waste-pickers to cover the routes, we defined distance matrices based on three 

means of transport, namely bike, car and on foot. The travel times were calculated 

by means of the Google Maps web service16. For completeness, Appendix A shows 

the travel time matrices for each means of transport (see Table A1 for bike, Table 

A2 for on foot and Table A3 for car). Furthermore, we also considered that the 

number of plastic-waste bags that a waste-picker can carry at the same time 

depends on the specific means of transport. It was assumed that a waste-picker can 

carry only two bags at the same time when moving on foot or by bike and eight 

when moving by car. This was done by forcing the route composer to include a 

visit to the closest dumpsite when several bags are reached. 

 
15 OR-tools suite https://developers.google.com/optimization 
16  Google Maps: https://www.google.com/maps 

https://developers.google.com/optimization
https://www.google.com/maps
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For each route, its collection rate was calculated. This metric indicates the 

percentage of bins included in the route that would have been eventually collected 

by the waste picker before they were filled. This is possible to calculate because 

each route comprises the collection hour for each bin and the actual filling hour of 

the bin, which is available through the original experiment. Figure 33 shows the 

collection rate for the three means of transport. This rate is shown taking into 

account the number of items that were already inserted in the bin when the route 

composition algorithm was performed. For example, the leftmost blue column 

shows that the average collection rate for routes based on predictions generated 

when there were two plastic items in the bin and the waste-pickers moved on foot 

was 0.18 (i.e., 18% of the bins were collected before they were filled).  

Figure 34: Collection rate per means of transport and number of items in the bin 

According to Figure 34, the solution achieved a collection rate of around 0.8 

on average when bikes or cars were used as means of transport. However, this rate 

remarkably dropped when waste-pickers moved on foot (see the last Avg. column 

in Figure 34). This is because this means of transport required very long walks to 

the dumpsites, requiring extra time with respect to the other means of transport. 

Another interesting finding is that the collection rate when using bikes and cars 

increases as long as the predictions are based on a larger number of items. As a 

matter of fact, their rate equals 1 (i.e., all the bins are collected before they are 

actually filled) when the predictions used by the ILOG solver rely on 8 or more 

items regardless of the means of transport. The reason for this behaviour is that the 

predictions based on a low number of items have a larger variability than those 



104  NAVJOT SIDHU 

 

based on a high number. This high variability makes the route composer receive 

input pick-up points with very different filling hours, and therefore it is not able to 

find a suitable route covering all the locations in most situations. However, if the 

estimated filing hours rely on predictions based on a larger number of items, they 

tend to be more homogeneous covering a smaller range of hours within a day. This 

makes it easier for the solver to find a feasible pick-up sequence. Regarding the 

predictions based on a lower number of items, the rate is usually higher when the 

waste-pickers use cars or bikes. 

Regarding the results when waste-pickers move on foot, it is observed a 

different behaviour than for the other two means of transport. Although the system 

achieved collection rates from 0.18 to 0.59 when predictions were based on seven 

or fewer items (see Figure 34), it was not able to compose collection routes when a 

larger number of items were included in the prediction step. This is strongly related 

to the homogeneity of the predictions explained in the previous paragraph. Since 

the range of hours is smaller in this case, the route composer is not able to find a 

route that covers all the houses along with the required visits to the dumpsites. 

Furthermore, Figure 35 shows the collection rate for each of the days under study. 

As observed, the rate fluctuations for the routes covered on foot and by bike were 

higher than for the routes covered by a car. Those walking and biking routes had a 

rate of 0 in several days indicating that it was not possible to compose a route able 

to visit any of the bins' houses before the filling hour. However, the car-based 

routes exhibited higher stability with rates above 0.7 on most of the days. 

As an illustrative example of a specific route, given the following pick-up 

points P= ≼ (𝑙1, 20), (𝑙2, 20), (𝑙3, 19), (𝑙4, 23), (𝑙5, 22), (𝑙6, 21), (𝑙7, 18) ≻, the route solver 

is able to compose the following route for 𝑤𝑝1 when she moves by bike,  
𝑆𝑤𝑝1−≼ (𝑙7, 18) → (𝑙3, 19) → (𝐷𝑆2, 19) → (𝑙1, 20) → (𝑙2, 20) → 

         → (𝐷𝑆2, 20) → (𝑙6, 21)  → (𝑙5, 22) → (𝐷𝑆
3
, 23) →  (𝑙4, 23) ≻ 

As a result, the waste-picker would be able to reach bins at 𝑙1 and 𝑙2 and leave 

their bags at dumpsite 𝐷𝑆2 during the same hour range, since it only takes 4 min to 

go from 𝑙1 to 𝑙2and 15 min to go from 𝑙2 to 𝐷𝑆2 according to the time matrix for bike 

routes Table A1. The same occurs for 𝑙4 and 𝐷𝑆3 because it takes 49 min to moves 

from one location to the other. 
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Figure 35: Collection rate per means of transport and day.  

5.2. RESULTS OF THE URBAN PLANNING ANALYSIS FOR PLACING WASTE 

CONTAINERS  

In this section, we used the reference city data (chapter 4.1.) to infer the 

number of bins in the target cities (chapter 4.2). To this end, we performed a 

statistical analysis in which the number of bins was identified as the output variable 

whereas the rest of the variables described in the previous sections (population, 

area, population density, number of street segments, average distance of bins and 

types of venues) were identified as the independent variables. The IBM SPSS 

statistics software (version 27.0) was used to perform the statistical analysis 

described below on the data collected from the reference cites comprising a total of 

32 instances, namely the boroughs/districts of the 4 reference cities. Then, the 

resulting model was applied to the target cities to estimate the number of bins in 

these cities, as shown at the end of the section. 

The steps followed in the statistical analysis are described next. In the first 

place, a linear regression analysis was performed on the reference city data to 

identify the most relevant variables to estimate the number of bins, excluding the 

variable “types of venues” due to its large range of values (it was included in the 

next step). Through this analysis, we obtained the linear regression models 

including the most relevant variables along with the coefficient of determination   

(𝑅2) which measures the confidence in the obtained models. This coefficient ranges 
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from 0 to 1, the higher the 𝑅2 value, the better the model predicts new values. By 

applying the SPSS automatic linear modelling stating as a goal the improvement of 

the model accuracy, the results yielded a linear regression model with an𝑅2 of 0.45, 

identifying the population density and the number of street segments (NSS) as the 

most significant variables, with an influence in the calculation of the number of bins 

of 41% and 17%, respectively (see Figure 36). It is worth mentioning that the 

importance of the population and area size for calculating the number of bins is 

captured thanks to the population density variable. 

 
Figure 36: Relevance of the input variables in the linear regression model for 

estimating the number of bins.  

 

 Next, we focused on enriching the model with the venue data extracted 

from the reference cities. Since the number of venue types was rather high (27 

different categories were extracted from OSM), they could not be integrated 

directly into the regression model as input variables as it would enlarge too much 

the input dimension of the model. As a result, we performed a feature selection 

process to filter the most relevant types of venues for bin allocation. To do so, the 

Principal Component Analysis (PCA) algorithm was applied (Wol, Esbensen, 

Geladi. 1987). In brief, this algorithm is able to detect the axis comprising the largest 

amount of variance in a dataset. PCA can be used for feature selection on the basis 

of the variable coefficients on the uncovered axis. Hence, we firstly represented 

these venues following a binary representation. This way, we composed a new 

matrix V with rows representing the reference neighbourhoods and 27 columns 

(each one representing a type of venue). A feature took 1 or 0 as a value depending 

on whether the latent type of venue is present in the neighbourhood or not. Then, 
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a PCA instance was fed with this matrix. After that, we just kept the top 4 features 

with the highest coefficients in the first PCA axis. These features correspond to the 

following pairs of types of activity/venue: 

 

● amenity/restaurants (coeff. 0.2479) 

● leisure/parks (coeff. 0.2442) 

● buildings/schools (coeff. 0.2439) 

● shop/supermarkets (coeff. 0.2438) 

 

 
Figure 37: Venues’ weights given the first four components of PCA.  

 

For the sake of completeness, Fig. 37 shows the weights of each venue given 

the first four components extracted by the PCA. In that sense, the venues in the x-

axis are sorted by their weight in the first component in descending order. This set 

of relevant venues can be regarded as dimensions of the latent predominant land 

use of a region from the point of view of bin allocation. Finally, the matrix V’⊂V 

comprising the columns of these four features was integrated in the initial dataset 

as new independent variables to feed and evaluate the models. This way, we were 

able to enrich the analysis with a simplified view of the distribution of venues in 

each of the regions. 
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Table 14: Model Summary of WLS  

 

Multiple R  0.849 

R square 0.721 

Adjusted R square  0.667 

Standard Error  0.164 

Finally, applying the Weighted Least Square (WLS) analysis to the variables 

obtained in the two previous steps (i.e., population density, NSS and the four 

predominant land use categories represented as binary values 0/1), it was obtained 

an R-squared value of 0.721 (see Table 12) using NSS as the weight variable. In a 

nutshell, for small data sets, it is more efficient to use WLS to add weight to precise 

measurements. It is also used for data sets intended for prediction, estimation, and 

calibration (Sulaimon, 2015). The coefficients for the rest of the variables were 

weighted with the NSS by the following formula: 

𝑊𝑒𝑖𝑔ℎ𝑡 =   1  
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑆𝑡𝑟𝑒𝑒𝑡𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠(𝑁𝑆𝑆)

2             (k) 

Table 15: Coefficients and standard error obtained from the Weighted Least 

Squares analysis 

 B Standard Error 

Number of bins 1456.921 301.459 

PopulationDensity -0.01 0.013 

ShopSupermarkets -1344.143 428.79 

LeisureParks -537.667 373.329 

AmenityRestaurants -1429 300.669 

BuildingSchool -1306.106 284.667 
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As a result, it was obtained the following formula (see Table 13 for variables’ 

coefficients) to estimate the number of bins of an area: 

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐵𝑖𝑛 = 1456.921 −  (0.010𝑋0) − (1429𝑋1)     
  − (537.667𝑋2)  −  (1306.106𝑋3) − (1344.143𝑋4)           

(l) 

where:  

 𝑋0 − 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦  

𝑋1 − 𝐴𝑚𝑒𝑛𝑖𝑡𝑦𝑅𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡𝑠  

𝑋2 − 𝐿𝑒𝑖𝑠𝑢𝑟𝑒𝑃𝑎𝑟𝑘𝑠  

𝑋3 − 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑆𝑐ℎ𝑜𝑜𝑙𝑠  

𝑋4 − 𝑆ℎ𝑜𝑝𝑆𝑢𝑝𝑒𝑟𝑚𝑎𝑟𝑘𝑒𝑡𝑠  

Table 16 shows the numbers of bins estimated for the target areas after 

applying this result (the predominant land use for each target area indicates which 

of the four dimensions identified by PCA algorithm takes value 1 in the area). As 

can be seen, for areas in Quezon City Group 1 and India Group 2, the number of 

bins corresponds with their population density and number of street segments as 

for similar reference cities. However, some values are unexpectedly high for some 

specific areas, as for example in Dhaner, with an area of 10 square kilometres but 

with a small population of 2,140, has a number of bins of 1,454. These improbable 

values could be due to the lack of information about the predominant land use in 

(k) when it is different from restaurants, schools, supermarkets, and parks in those 

areas, or due to an imbalance of data in terms of population or area.  

Table 16: Weighted Least Squares equation results for target cities 

Group 1 Quezon City, 

Philippines 

Predominant Land 

Use 

Proposed Number of bins 

Don Manuel  amenity/restaurants 26.34 

Doña Josefa amenity/restaurants 26.88 

Doña Aurora building/schools 146.41 

Doña Imelda amenity/restaurants 26.10 
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San Isidro building/schools 114.32 

Santo Nino amenity/restaurants 22.59 

Tatalon building/schools 143.99 

Group 2 Quezon City, 

Philippines 

  

Fairview leisure/parks 748.90 

North Fairview amenity/fuel 1252.18 

Greater Lagro  leisure/parks 865.56 

Pasong Putik Proper amenity/restaurants 15.13 

Kaligayahan  amenity/place of 

worship 

1235.07 

Santa Monica amenity/place of 

worship 

1174.78 

Santa Lucia shop/convenience 1058.53 

Group 1 Punjab, India   

Barnala amenity/hospital 1283.63 

Dhaner - 1454.80 

Ludhiana leisure/parks 817.43 

Moga amenity/place of 

worship 

1455.58 

Group 2 Gujarat, India    

 Gandhinagar leisure/parks 912.75 

Ahmedabad amenity/hospital 1446.81 
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Surat amenity/hospital 1443.56 

Jamnagar amenity/hospital 1455.33 
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VI - INTEGRATION OF THE HOUSEHOLD SMART BIN SYSTEM 

AND URBAN PLASTIC WASTE PLANNING APPROACH: A CASE 

STUDY FOR QUEZON CITY, PHILIPPINES 

 

This chapter shows a proof of concept on the functioning of the holistic plastic 

waste management framework proposed in this thesis. To this end, we focused on 

the neighbourhood of Don Manuel, Quezon City, Philippines as the scenario where 

both the household smart bins are used and the urban planning for the waste 

containers is taken into consideration for creating routes for waste pickers. The 

number of bins used in this chapter is computed from the urban planning module 

and the composition of routes are from the household smart bin module.  

As described in Chapter 5, Quezon city is considered the most populous city 

in the Philippines, which also had the most number of COVID-19 cases and with 

34.92% of the population with disabilities and senior citizens. Additionally, based 

on the results of the Weighted Least Squares model to determine the total number 

of bins in the city (section 5.2), the number of municipal bins needed in Don Manuel 

is 26. 

6.1 SETTING DESCRIPTION 

The present study focuses on the neighbourhood of Don Manuel, Quezon 

City, Philippines, as the common neighbourhood presented in the household smart 

bin framework (section 5.1.1 and 5.1.6) and urban plastic waste planning approach 

(5.2). The evaluation of the smart bin framework included 3 household smart bins 

and 1 waste-picker. Table 15 shows the exact location of these household smart bins 

and the waste picker in the neighbourhood.  In order to be consistent with chapter 

3, the neighbourhood of Don Manuel and these locations are listed in cluster 1 of 

the user profiles explained in section 5.1.4.   
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Table 17: Locations of the smart bins and waste-picker in Don Manuel, Quezon City 

(See Figure 33(b)).  

 

Don Manuel Address 

Smart bin 1  21 Matimyas Street 

Smart bin 2  89 Nicanor Ramirez Street 

Smart bin 3  27 Data Street 

Waste-picker 1 51 Cordillera Street 

 

Figure 38 shows the proposed locations of these 26 municipal bins including 

the household bins around Don Manuel. Since the urban planning module does 

not specify the location of the 26 bins, we manually set the location of each bin. In 

that sense, all bins are equally distributed in the geographical map of Don Manuel. 

The locations of these bins are within the range of 100-250 meters from each other, 

which is estimated by computing the minimum distance of bins by dividing the 

area in hectares (23.8 hectares) with the proposed number of bins (26).  These bins 

are going to be used by the waste pickers to throw the plastic bags collected from 

the household bins.  
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Figure 38: Visual representation of the municipal waste bin (in blue dots) and 

household smart bin (in green dots) locations. 

 

6.2. RESULTS 

Given the aforementioned configuration of on-street containers, we 

evaluated the performance of the smart bin framework as presented in chapter 

5.1.6. The collection rate which indicates the percentage of bins including the route 

composition for the waste pickers is presented in this subchapter.   

 
Figure 39: Collection rate per means of transport and number of items in the bin 

 

Figure 39 shows that the solution achieved an average collection rate of over 

80% for bikes, cars and on foot as a means of transport. The rate of collection for 

bikes and on foot collection is greater than 60%, which in conclusion suggests that 

the proposed system with the use of waste pickers and municipal plastic bins will 

be a sustainable system that supports the use of bicycles and going from one place 

to another on foot rather than by car. An additional interesting finding is that when 

the predictions are based on more items, the collection rate also increases. This is 

contrary to the findings included in chapter 5 (figure 34) which achieved a 

collection rate of 0.8 with bikes or cars as means of transport, while on foot the rate 

significantly drops. Additionally, in figure 34, the collection rate per means of 

transport for on foot transport never reached 0.6 and the average is at the rate of 

0.2, while in figure 39, transport on foot and by bike are always at 0.6 and higher 

with an average of higher than 0.8 for both means.  
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Figure 40: Collection rate per means of transport and day.  

 

Furthermore, Figure 40 also shows the collection rate for each of the different 

days of the study. The rate fluctuations for the routes covered on foot is higher than 

the routes covered by car and by bike. In comparison to figure 35, car-based routes 

showed higher stability where they had rates above 70% most of the days and foot-

based routes had a rate of 0 on normal days, while in figure 40, walking and biking 

routes never reached the rate of zero.  

 

6.3. EVIDENCE OF THE IMPORTANCE OF WASTE PICKERS AND MUNICIPAL 

WASTE BINS IN DON MANUEL 

 

This evaluation comprises the comparison among the existing dumpsite 

locations in the neighbourhood of Don Manuel and the 26 on-street containers 

computed through statistical analysis, both presented in Chapter 5. This 

differentiation also involves the waste pickers and household smart bins presented 

in chapter 3. The waste pickers from each cluster will be able to put collected plastic 

waste from the household to the municipal waste bins instead of the dumpsites 

closest to them. The most significant change seen while comparing figure 34 and 

41 is the average rate of collection on foot, which is less than 20% and more than 

80%, respectively.  

The inclusion of dumpsites in the matrices and collection time series can 

make a huge difference in terms of the collection rate of the more sustainable means 

of transport such as by bike and on foot (Figure 41). Collection rates by car have 

increased since the dumpsite is farther from the household bins, waste pickers and 
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the location of municipal bins. This proves that the concept of municipal plastic 

bins will gradually help the environment not only with the proper disposal of 

plastics but also with the environmental friendliness of the means of transport 

collection.  

 

 
Figure 41: Collection rate of bins per means of transport with the inclusion of 

municipal bins and dumpsites.  

  

Additionally, unlike figure 40, the rate of fluctuation for the transport of bikes 

and on foot is higher than figure 42 where the rate actually reaches zero during 

some days which indicates that it was not possible to compose a route able to visit 

any of the bins. With the dumpsites, the rate of fluctuations of the routes covered 

by a car is higher or more stable than the other two.   
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Figure 42: Collection rate per means of transport and day for route composition 

 

 All in all, with the integration of the household smart bin system which 

includes the route composition mechanism and the urban plastic waste planning 

approach, the combination of having waste pickers and municipal plastic waste 

bins in one neighbourhood is sustainable and efficient in terms of collecting plastic 

waste and management of plastic waste in a municipal level. The best and most 

efficient collection showed an average rate of 80% for bikes, on foot and cars as 

means of transport based on the number of items in the bins. In conclusion, the 

waste pickers’ collection rate from household bins to the municipal bins 

implemented by the urban plastic waste planning module is more competent than 

having waste pickers’ routes from household bins to dumpsites. 
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VII. CONCLUSIONS 

The control of plastic waste in urban settlements represents a major challenge 

in many Eastern countries. As stated elsewhere (Chung, 2012), the impact of visual 

pollution of plastic waste could eventually damage the residents’ abilities to enjoy 

a view, which can further lead to a negative perception regarding comfort, 

psychologically and visually. Improper disposal of plastics resulting in 

microplastics is also harmful to the environment, wildlife ecosystem and also 

human health (Vethaak & Legler, 2021).  Furthermore, plastic production has 

significantly increased during the COVID-19 pandemic. Disposable products such 

as masks, PPE kits, and gloves have doubled the plastic waste, which makes 

communities and countries in need of new and creative waste-management 

solutions including the installation of plastic bins in urban areas. Additionally, 

citizens with disabilities, seniors and those in COVID-19 quarantine may have 

difficulties throwing the plastic waste on a daily basis.  

 Overall, a collaborative solution for a household plastic waste collection 

focused on different groups was achieved through this thesis. This solution was 

composed of a lightweight smart bin used to collect and forecast the amount of 

plastic waste in each bin. The results from the predictor model were forwarded to 

an algorithm to generate optimum routes for waste-pickers or residential garbage 

collectors that allows them to maximize plastic waste collection efficiency within 

minimal time. Additionally, an urban planning method based on the use of open 

data to estimate the number of plastic bins in developing cities that are struggling 

with plastic waste management was also proposed. Thus, a set of variables and 

data related to the management of plastic bins in several Western cities available in 

their open-data web portals were collected, with the aim to infer the number of bins 

in the cities of two Eastern countries.  

The specific objectives proposed in this thesis were achieved in the course of 

the work. Thus, the first specific objective “planning locations of the municipal plastic 

waste containers through open data and statistical analysis for developing countries with 

zero to a limited number of plastic bins”(chapter 4) in which demographics, number of 

venues, number of street segments and bin location from New York City, Malaga, 

Madrid, and Stavanger were used to execute a linear regression and weighted least 

square regression analysis to determine the total number of bins needed in two 

different groups of Quezon City, Philippines, and some cities in the states of Punjab 
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and Gujarat, India. The venue distribution of each district was weighted with the 

number of street segments in order to obtain an R-squared value of over 0.7.  

 

 The second specific goal was “to develop a smart bin based on a low-cost sensor 

set to monitor the fill level of the bin in household environments” (chapter 3). A high-

sensitive Acaia weight scale was used as a sensor placed under the bin to weigh the 

plastic waste bin put inside the bin. Since plastic wastes usually have low weight, 

an accurate sensor was important to detect what plastic item was in the container. 

Additionally, predicting the weight of plastic bins and the number of plastic items in the 

bin through statistical analysis (chapter 3.7) was also achieved as explained in section 

3.2 with the use of a weight sensor.   

The results from the predictor model are forwarded to a route-planning 

algorithm to generate optimum routes for waste-pickers or residential garbage 

collectors that allows them to maximize the number of bins collected in the shortest 

time. This solves the next specific objective which is “composing a route for waste 

pickers through three different means of transport with the predicted weight of plastic bins 

and time of route from each registered waste picker from their point to the household and 

municipal bins” (chapter 3.8). This has been validated through a simulation in 

Quezon City (the Philippines) by identifying three user profiles related to plastic-

waste generation in eight different locations and with the collaboration of two 

waste-pickers using 3 different means of transport. The collection rate for this 

simulation resulted in an average of above 0.8, i.e., more than 80% of the household 

bins were collected before they were completely filled. The solution falls under the 

category of vehicle routing problems with time windows.  

The final specific objective is to “develop a framework that will store, analyze and 

display data acquired from the smart bin sensors for different purposes for instance, for the 

municipal authorities to analyze plastic waste trends in the region, for people with 

disabilities, senior citizens and Covid-19 affected residents to be able to call or request for 

waste pickers and for waste collection services and waste pickers to be able to know the 

location of the house where plastic waste needs to be collected and the location of the 

municipal bins where the plastic waste can be disposed of properly through optimal 

collection routes”(chapter 3.6). This is achieved through a web application that has a 

continuous data visualization of the weighted data for plastic waste in the smart 

bins. It also displays the time series of each bin with the associated prediction of 

weight and composition of routes.  

Finally, it is noteworthy that the results of this thesis could serve as a basis 

for the development of applications and the renovation of services related to plastic 

waste management in cities in developing countries with limited resources. The 
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use of maps that can track plastic waste bins is a recommendation. It will make it 

easier for garbage services or waste pickers to collect garbage as the map can 

determine the nearest garbage or bin from the user. Another future work can be 

giving out incentives to household smart bin users for plastic recycling. 

Collaboration with supermarkets can be essential as they can give or provide 

discount coupons based on the weight of plastic items in the bins accumulated in a 

month.  
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VIII –LIMITATIONS AND FUTURE LINES OF RESEARCH 

Although all the specific goals were achieved in the course of this thesis, some 

obstacles were encountered. One of the most relevant ones is the limited access of 

data in countries where open data is insufficient or not published such as the 

neighbourhoods mentioned in section 4.2.1. Additionally, there are no existing or 

former studies that focus on holistic plastic waste management or smart plastic 

waste management in India or the Philippines which are the two most relevant 

countries our research focused on.  

In this context, the results of the municipal bin placements in the target cities 

can be unpolished and incomplete as it only determines the number of bins. Future 

progress in terms of the inclusion of specific areas, for instance, street name or 

which part of the street the bins should be placed, should be further studied and 

indicated.  

Additionally, a smart bin solely relying on a weight sensor is crucial, 

especially in times of a sensor malfunction. However, additional sensors can be 

studied and incorporated while still pursuing one of the main goals, which is 

maintaining the low cost of the bin. Additionally, according to the Global Alliance 

of Waste Pickers17, most organizations of waste pickers are from South America 

and Asia, thus the availability of waste pickers in other countries can become a 

handicap. This service does not exist or is limited in other countries; however, 

volunteer service can be proposed where families or friends of users of the system 

can be notified at times of collection.  

The increase in the number of registered waste pickers can also change the 

generation of routes that at the moment was done for each waste pickers 

independently. In that instance, an advanced algorithm that considers overlapping 

routes can be developed.  A larger number of waste pickers would also generate an 

increase in the number of routes, which can help monitor the traffic state of a city 

by comparing the actual travel time required to move from one location to another.  

Also, the proactive waste collection developed in this thesis is reasonable only if 

the waste generation pace is followed by the users.  

Some other future research lines include the use of Open Data as an 

alternative of sharing analyzed data to the stakeholders and the local community 

 
17  Global Alliance of Waste Pickers website: https://globalrec.org/ 
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and augmenting knowledge about the accumulation and generation of plastic 

waste. The collected data from the smart bin can be used to analyze user behaviour 

such as the number of times they throw plastic waste, the total amount of plastic 

waste, and other related research fields such as analyzing consumer and recycling 

behaviour of different types of households. It also can be used for e-health 

applications as it can determine if the user has any health issues if they have not 

used the bin for a few days. For example, if the weight sensor is not connected with 

the application, and if any weight is not registered within a few days, the 

application can send push notifications in order to ask the user if they are having 

any issues or if they need any help. If the user does not respond within a few days, 

the app can send a prompt to the nearest family member or emergency services in 

order to check in on the user.  
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APPENDIX A: Time Distance Matrices in the Experiments. 

This section contains the matrices describing the travel time among the locations 

in the simulation scenario.  

 

A1: Time distance matrix based on bike displacements. A cell 𝑐𝑖𝑗 indicates the 

time required to move from location i to j in hours:minutes:seconds format. 

 

 𝒘𝒑𝟏 𝒘𝒑𝟐 𝒍𝟏 𝒍𝟐 𝒍𝟑 𝒍𝟒 𝒍𝟓 𝒍𝟔 𝒍𝟕 𝒍𝟖 𝑫𝑺𝟏 𝑫𝑺𝟐 𝑫𝑺𝟑 

𝒘𝒑𝟏 0:00:00 1:06:00 0:04:00 0:05:00 0:03:00 1:12:00 1:14:00 1:05:00 0:12:00 0:13:00 1:30:00 0:10:00 2:10:00 

𝒘𝒑𝟐 1:06:00 0:00:00 1:06:00 1:12:00 1:07:00 0:10:00 0:12:00 0:05:00 1:06:00 2:12:00 1:30:00 1:13:00 0:25:00 

𝒍𝟏 0:04:00 1:06:00 0:00:00 0:04:00 0:01:00 1:47:00 1:44:00 1:55:00 0:15:00 0:23:00 1:26:00 0:10:00 2:23:00 

𝒍𝟐 0:05:00 1:12:00 0:04:00 0:00:00 0:03:00 1:15:00 1:15:00 1:08:00 0:13:00 0:25:00 1:30:00 0:15:00 2:10:00 

𝒍𝟑 0:03:00 1:07:00 0:01:00 0:03:00 0:00:00 1:10:00 1:12:00 1:03:00 0:15:00 0:17:00 0:54:00 0:15:00 1:13:00 

𝒍𝟒 1:12:00 0:10:00 1:47:00 1:15:00 1:10:00 0:00:00 0:10:00 0:13:00 1:14:00 1:01:00 1:26:00 1:19:00 0:49:00 

𝒍𝟓 1:14:00 0:12:00 1:44:00 1:15:00 1:12:00 0:10:00 0:00:00 0:15:00 1:17:00 1:02:00 1:18:00 2:51:00 0:33:00 

𝒍𝟔 1:05:00 0:05:00 1:55:00 1:08:00 1:03:00 0:13:00 0:15:00 0:00:00 1:08:00 0:55:00 1:34:00 1:12:00 0:28:00 

𝒍𝟕 0:12:00 1:06:00 0:15:00 0:13:00 0:15:00 1:14:00 1:17:00 1:08:00 0:00:00 0:06:00 1:37:00 0:20:00 1:15:00 

𝒍𝟖 0:13:00 2:12:00 0:23:00 0:25:00 0:17:00 1:01:00 1:02:00 0:55:00 0:06:00 0:00:00 1:05:00 0:40:00 1:40:00 

𝑫𝑺𝟏 1:30:00 1:30:00 1:26:00 1:30:00 0:54:00 1:26:00 1:18:00 1:34:00 1:37:00 1:05:00 0:00:00 1:30:00 1:40:00 

𝑫𝑺𝟐 0:10:00 1:13:00 0:10:00 0:15:00 0:15:00 1:19:00 2:51:00 1:12:00 0:20:00 0:40:00 1:30:00 0:00:00 2:30:00 

𝑫𝑺𝟑 2:10:00 0:25:00 2:23:00 2:10:00 1:13:00 0:49:00 0:33:00 0:28:00 1:15:00 1:40:00 1:40:00 2:30:00 0:00:00 
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A2: Time distance matrix based on walking displacements. A cell 𝑐𝑖𝑗 indicates the 

time required to move from location i  to j in hours:minutes:seconds format. 

 

 

 𝒘𝒑𝟏 𝒘𝒑𝟐 𝒍𝟏 𝒍𝟐 𝒍𝟑 𝒍𝟒 𝒍𝟓 𝒍𝟔 𝒍𝟕 𝒍𝟖 𝑫𝑺𝟏 𝑫𝑺𝟐 𝑫𝑺𝟑 

𝒘𝒑𝟏 0:00:00 2:43:00 0:06:00 0:06:00 0:06:00 2:57:00 3:06:00 2:48:00 0:35:00 0:49:00 1:54:00 0:13:00 3:15:00 

𝒘𝒑𝟐 2:43:00 0:00:00 2:39:00 2:43:00 2:40:00 0:17:00 0:25:00 0:09:00 2:19:00 1:14:00 1:23:00 2:29:00 0:34:00 

𝒍𝟏 0:06:00 2:39:00 0:00:00 0:08:00 0:02:00 2:59:00 3:08:00 2:50:00 0:40:00 0:54:00 1:56:00 0:18:00 3:17:00 

𝒍𝟐 0:06:00 2:43:00 0:08:00 0:00:00 0:07:00 3:04:00 3:12:00 2:54:00 0:41:00 1:02:00 2:00:00 0:19:00 3:10:00 

𝒍𝟑 0:06:00 2:40:00 0:02:00 0:07:00 0:00:00 3:00:00 3:10:00 2:51:00 0:40:00 0:52:00 1:57:00 0:19:00 1:43:00 

𝒍𝟒 2:57:00 0:17:00 2:59:00 3:04:00 3:00:00 0:00:00 0:14:00 0:16:00 2:31:00 2:27:00 1:38:00 2:43:00 1:37:00 

𝒍𝟓 3:06:00 0:25:00 3:08:00 3:12:00 3:10:00 0:14:00 0:00:00 0:21:00 2:43:00 2:34:00 1:34:00 1:20:00 0:45:00 

𝒍𝟔 2:48:00 0:09:00 2:50:00 2:54:00 2:51:00 0:16:00 0:21:00 0:00:00 2:23:00 2:17:00 1:15:00 2:34:00 0:15:00 

𝒍𝟕 0:35:00 2:19:00 0:40:00 0:41:00 0:40:00 2:31:00 2:43:00 2:23:00 0:00:00 0:16:00 1:19:00 0:27:00 2:56:00 

𝒍𝟖 0:49:00 1:14:00 0:54:00 1:02:00 0:52:00 2:27:00 2:34:00 2:17:00 0:16:00 0:00:00 1:31:00 1:02:00 2:49:00 

𝑫𝑺𝟏 1:54:00 1:23:00 1:56:00 2:00:00 1:57:00 1:38:00 1:34:00 1:15:00 1:19:00 1:31:00 0:00:00 1:42:00 1:59:00 

𝑫𝑺𝟐 0:13:00 2:29:00 0:18:00 0:19:00 0:19:00 2:43:00 1:20:00 2:34:00 0:27:00 1:02:00 1:42:00 0:00:00 3:06:00 

𝑫𝑺𝟑 3:15:00 0:34:00 3:17:00 3:10:00 1:43:00 1:37:00 0:45:00 0:15:00 2:56:00 2:49:00 1:59:00 3:06:00 0:00:00 
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A3: Time distance matrix based on car displacements. A cell 𝑐𝑖𝑗 indicates the time 

required to move from location i  to j in hours:minutes:seconds format. 

 

 

 𝒘𝒑𝟏 𝒘𝒑𝟐 𝒍𝟏 𝒍𝟐 𝒍𝟑 𝒍𝟒 𝒍𝟓 𝒍𝟔 𝒍𝟕 𝒍𝟖 𝑫𝑺𝟏 𝑫𝑺𝟐 𝑫𝑺𝟑 

𝒘𝒑𝟏 0:00:00 0:22:00 0:01:00 0:01:00 0:02:00 0:22:00 0:22:00 0:15:00 0:06:00 0:09:00 0:24:00 0:05:00 0:35:00 

𝒘𝒑𝟐 0:22:00 0:00:00 0:19:00 0:20:00 0:18:00 0:06:00 0:05:00 0:04:00 0:17:00 0:18:00 0:13:00 0:23:00 0:11:00 

𝒍𝟏 0:01:00 0:19:00 0:00:00 0:02:00 0:01:00 0:32:00 0:21:00 0:18:00 0:10:00 0:20:00 0:25:00 0:07:00 0:35:00 

𝒍𝟐 0:01:00 0:20:00 0:02:00 0:00:00 0:02:00 0:35:00 0:35:00 0:30:00 0:06:00 0:20:00 0:27:00 0:07:00 0:35:00 

𝒍𝟑 0:02:00 0:18:00 0:01:00 0:02:00 0:00:00 0:35:00 0:40:00 0:20:00 0:07:00 0:09:00 0:27:00 0:07:00 0:24:00 

𝒍𝟒 0:22:00 0:06:00 0:32:00 0:35:00 0:35:00 0:00:00 0:08:00 0:09:00 0:55:00 0:50:00 0:16:00 0:26:00 0:14:00 

𝒍𝟓 0:22:00 0:05:00 0:21:00 0:35:00 0:40:00 0:08:00 0:00:00 0:06:00 0:55:00 0:50:00 0:17:00 0:28:00 0:16:00 

𝒍𝟔 0:15:00 0:04:00 0:18:00 0:30:00 0:20:00 0:09:00 0:06:00 0:00:00 0:50:00 0:43:00 0:19:00 0:29:00 0:10:00 

𝒍𝟕 0:06:00 0:17:00 0:10:00 0:06:00 0:07:00 0:55:00 0:55:00 0:50:00 0:00:00 0:04:00 0:24:00 0:09:00 0:35:00 

𝒍𝟖 0:09:00 0:18:00 0:20:00 0:20:00 0:09:00 0:50:00 0:50:00 0:43:00 0:04:00 0:00:00 0:23:00 0:11:00 0:34:00 

𝑫𝑺𝟏 0:24:00 0:13:00 0:25:00 0:27:00 0:27:00 0:16:00 0:17:00 0:19:00 0:24:00 0:23:00 0:00:00 0:22:00 0:29:00 

𝑫𝑺𝟐 0:05:00 0:23:00 0:07:00 0:07:00 0:07:00 0:26:00 0:28:00 0:29:00 0:09:00 0:11:00 0:22:00 0:00:00 0:38:00 

𝑫𝑺𝟑 0:35:00 0:11:00 0:35:00 0:35:00 0:24:00 0:14:00 0:16:00 0:10:00 0:35:00 0:34:00 0:29:00 0:38:00 0:00:00 
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APPENDIX B: Proposed location of the municipal bins in Don Manuel, Quezon 

City.  

 

1 12 Matimyas Street 14  17 Cordillera Street 

2 43 Data Street 15 2 D. Tuazon Street 

3 35 Sto Tomas Street 16 7 V. Illustre Street 

4 51 Data Street 17 36 Nicanor Ramirez Street 

5  21 Data Street 18 19 V. Illustre Street 

6 1 Data Street 19 39 V. Illustre Street 

7 4 Nicanor Ramirez Street 20 2 Luskot Street 

8 4 E. Rodriguez Avenue 21  41 Luskot Street 

9 24 E. Rodriguez Avenue 22 51 Lourdes Castillo Street 

10 236 E. Rodriguez Avenue 23 27 Lourdes Castillo Street 

11 291 E. Rodriguez Avenue 24  11 Lourdes Castillo Street 

12 39 Cordillera Street 25 49 Sto Tomas Street 

13  52  Cordillera Street 26 11 Sto Tomas Street 
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APPENDIX C:  Time Distance Matrices in the Experiments for Chapter VI. 

C1: Matrix for collection by Car  

 

C2: Matrix for collection on Foot 
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C3: Matrix for collection by Bike  

 



 

 

 


