
METADOCK: A Parallel Metaheuristic
schema for Virtual Screening methods

The International Journal of High Perfor-
mance Computing Applications
():1–13
c©The Author(s) 2016

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Baldomero Imbernón1, José M. Cecilia1, Horacio Pérez-Sánchez1 and Domingo Giménez2

Abstract
Virtual Screening through Molecular Docking can be translated into an optimization problem, which can be tackled with
metaheuristic methods. The interaction between two chemical compounds (typically a protein, enzyme or receptor,
and a small molecule, or ligand) is calculated by using highly computationally demanding scoring functions that are
computed at several binding spots located throughout the protein surface. This paper introduces METADOCK, a
novel Molecular Docking methodology based on parameterized and parallel metaheuristics and designed to leverage
heterogeneous computers based on CPU-GPU architectures. The application decides the optimization technique at
running time by setting a configuration schema. Our proposed solution finds a good workload balance via dynamic
assignment of jobs to heterogeneous resources which perform independent metaheuristic executions when computing
different molecular interactions required by the scoring functions in use. A cooperative scheduling of jobs optimizes the
quality of the solution and the overall performance of the simulation, so opening a new path for further developments of
Virtual Screening methods on high-performance contemporary heterogeneous platforms.

Keywords
Drug Discovery, Virtual Screening, Molecular Docking, HPC, Metaheuristics, Heterogeneous Computing

Introduction
The discovery of new drugs may benefit from using
Virtual Screening (VS) methods Jorgensen (2004). These are
computational techniques that analyze large libraries of small
molecules (ligands) to search for those compounds which
are most likely to bind to a drug target, typically a protein
receptor or enzyme (e.g. Rester (2008); Rollinger et al.
(2008)). These libraries of chemical compounds may have
up to millions of ligands Irwin and Shoichet (2005). Indeed,
the analysis of larger databases increases exponentially the
chances of generating hits.

The computational complexity of VS methods is
determined by two main parameters: the size of the
database to be analyzed and the accuracy of the chosen VS
method. Fast VS methods with atomic resolution require
some minutes per ligand Zhou et al. (2007). In contrast,
molecular dynamic approaches can require up to thousands
of hours per ligand Wang et al. (2006). Therefore, the main
bottleneck for the success of VS methods is the lack of
computational resources or, in other words, there is a need
for highly efficient applications that leverage emergent, high
performance computing architectures Asanovic et al. (2006).

We are witnessing the steady transition to heterogeneous
computing systems Top500 (2016) where nodes combine
traditional Central Processing Units (CPUs), which may
have multiple cores, and many-core systems or accelerators
(like NVIDIA GPUs NVIDIA Corporation (2014) or
Intel Xeon Phi Sodani et al. (2016)), that enable us
to speed-up computationally demanding parts of the
code. Heterogeneity limits system growth, which can not
now be addressed in an incremental way. In particular,
concepts like scalability, energy barrier, data management,

programmability and reliability are becoming challenges for
tomorrow’s cyberinfrastructures Song et al. (2016). Run-
time systems are still too immature to map processors and
computations efficiently. In the meantime, researchers are
focusing on the latest breakthroughs in high performance
computing together with specific fields (metaheuristics,
image processing, computational modeling, etc.). This
results in a vertical approach enabling remarkable advances
in computer-driven scientific simulations, the so-called
hardware-software co-design De Michell and Gupta (1997).

Programmers play a fundamental role in this emerging
scenario. They have to redesign, and even rethink,
applications to leverage the best features of all the
sides in a joint execution to maximize performance,
with parallelism as a mandatory ingredient. Of particular
interest to us are metaheuristic algorithms, especially those
inspired by natural processes, whose computations are
intrinsically massively parallel, and therefore well-suited for
implementation in this area of computation Cecilia et al.
(2013). There are a wide variety of metaheuristic algorithms,
each with its own characteristics Blum and Roli (2003), and
sometimes it is necessary to develop and experiment with

1Bioinformatics and High Performance Computing Research Group
(BIO-HPC), Polytechnic School, Universidad Católica San Antonio of
Murcia (UCAM), 30107, Murcia, Spain.
2Department of Computing and Systems, University of Murcia, Spain.

Corresponding author:
Baldomero Imbernón, Bioinformatics and High Performance Computing
Research Group (BIO-HPC), Polytechnic School, Universidad Católica
San Antonio of Murcia (UCAM), 30107, Murcia, Spain.
Email: bimbernon@ucam.edu

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

2 The International Journal of High Performance Computing Applications ()

various soft computing methods, and tune them for each
particular problem in order to obtain satisfactory results.

Metaheuristics are frequently used to solve NP-hard
problems Rozenberg et al. (2011). Some of these problems
are in the field of Bioinformatics, e.g., DNA analysis
Minetti et al. (2008) or molecular docking López-
Camacho et al. (2015). Many metaheuristic methods are
available, including Distributed metaheuristics (e.g., Genetic
Algorithms, Scatter Search, Ant Colony, Particle Swarm
Optimization, etc.) and Neighborhood metaheuristics (e.g.,
Tabu Search, Hill Climbing, Simulated Annealing, etc.). The
best metaheuristic to deal with a particular problem is not
clear. Many experiments with different metaheuristics and
hybridations of basic metaheuristics are needed to discover
the optimum solution for a problem. Additionally, for any
particular metaheuristic, a tuning process is traditionally
conducted to select appropriate values of some parameters
in the metaheuristic, and experimentation with several
metaheuristics and their tuning process will drastically
increase the computational cost.

In this paper, we introduce METADOCK, a virtual
screening technique that uses a unified schema to generate a
wide range of metaheuristics. METADOCK is designed to
leverage massively parallel and heterogeneous architectures,
including Chip Multiprocessors and NVIDIA’s GPUs. We
use a molecular docking computational methodology that
seeks to predict non-covalent binding of molecules or,
more frequently, of a macromolecule (receptor) and a
small molecule (ligand). The goal is to predict the bound
conformations and the binding affinity; i.e., the strength
of association, which is usually measured with a scoring
function. These functions compute the score by calculating
different conformations of the ligand at several binding
spots throughout the protein surface, including computations
between pairs of atoms in the protein and the ligand. For
detailed reviews on recent and widely used scoring functions
see Yuriev and Ramsland (2013); Li et al. (2014b,a); Lionta
et al. (2014).

This paper is an extension of a previous work developed by
the same authors Imbernón et al. (2016). Major contributions
include:

1. A new methodology called METADOCK for virtual
screening, widely applied in the field of computational
Drug Discovery, is introduced. It is based on a
parameterized schema that is able to generate a branch
of different search algorithms (Metaheuristics) by
setting different input parameters.

2. METADOCK leverages heterogeneous computers
based on CPUs and NVIDIA GPUs to provide an
agile framework to run real experiments. We assume
the nodes may have NVIDIA GPUs with different
compute capabilities. A load balance strategy is
introduced to efficiently distribute different workloads
at runtime among all GPUs in the system. This
load balancing strategy is based on the application
performance.

3. We analyze METADOCK’s prediction quality by
calculating its performance on binary classification
(active or not active compounds), for which we
generate Receiver Operating Characteristic (ROC)

curve analysis, after processing benchmarks contain-
ing experimental information about protein-ligand
datasets, such as Directory of Useful Decoys (DUD).
Our results place METADOCK as a very competi-
tive docking method, reporting an Area Under Curve
(AUC) value of up to 0.84, in the benchmarks reported.

4. We provide an extensive performance analysis to val-
idate our parallelization strategy for such heteroge-
neous environments. Our results reveal that our tech-
niques achieve up to 50x speed-up factor compared to
a multicore counterpart version. Moreover, they also
provide the following conclusions: (1) homogeneous
distribution is not a good load balancing strategy
for systems with GPUs with different compute capa-
bilities; (2) technical specifications are not enough
to achieve peak performance, and load balancing at
runtime is needed, with the workload depending on
application performance; (3) all these parallelization
strategies give the opportunity to improve the solution
quality in our problem.

The rest of the paper is structured as follows. The next
section includes the background of Virtual Screening and
some relevant knowledge about metaheuristics and GPU
computing. Next, our metaheuristic-based virtual screening
technique and its design for heterogeneous computers are
introduced before showing the experimental set-up and
results. A final section summarizes the conclusions and gives
some directions for future work.

Background
This Section briefly shows the main characteristics of Virtual
Screening methods, metaheuristics and GPU computing for
a better understanding of the rest of the paper.

GPU computing
Almost from the outset, computer architects have relied
on technology scaling to provide sustainable performance.
Heterogeneous architecture design is now seen as the
only solution to continue scaling Moore’s law through
innovation Austin (2015), with systems where nodes
combine traditional multicore architectures (CPUs) and
accelerators (mostly GPUs Kirk and Wen-mei (2013) or
Intel Xeon Phi Sodani et al. (2016)). In a few years, the
GPGPU (developing General Purpose application on GPUs)
field expanded and became one of the best ways of achieving
high performance computing from emergent heterogeneous
computers. We briefly introduce the CUDA programming
model and refer the reader to NVIDIA Corporation (2014)
for insights. Compute Unified Device Architecture (CUDA)
is a platform for Graphics Processing Units (GPUs) that
covers both hardware and software. On the hardware side,
the GPU consists of N multiprocessors which are replicated
within the silicon area. Each is endowed with M cores
sharing the control unit, and with a shared memory (a small
cache explicitly managed by the programmer). Moreover,
all of these multiprocessors are connected to an off-chip
memory (GPU device memory) that acts as an interface to
the host CPU. Each GPU generation has increased the CUDA
Compute Capabilities (CCC), as well as the number of cores,

Prepared using sagej.cls

3

and the shared and device memory sizes (see Table 1). In
conjunction with these developments, power efficiency has
been reduced by a factor of 2 in each new generation.

Table 1. CUDA summary by generation, with Maxwell to
increase the number of cores soon.

Hardware generation Fermi Kepler
and starting year 2010 2012
Multiprocessors per die (up to) 16 15
Cores per multiprocessor 32 192
Total number of cores (up to) 512 2880
Shared memory size 48 48(maximum in kilobytes)
Device memory size 6 12(maximum in gigabytes)
CUDA Compute Capabilities 2.x 3.x
Peak single-precision 1178 4290performance (GFLOPS)
Performance per watt 2 6
(approx. and normalized)

The CUDA software paradigm is based on a hierarchy
of abstraction layers: the thread is the basic execution unit;
threads are grouped into blocks; and blocks are mapped
to multiprocessors. C language procedures to be ported
to GPUs are transformed into CUDA kernels, mapped to
many-cores in an SIMD (Single Instruction Multiple Data)
fashion (that is, with all threads running the same code but
with different IDs). The programmer deploys parallelism
by declaring a grid composed of blocks equally distributed
among all the multiprocessors. A kernel is therefore executed
by a grid of thread blocks, where threads run simultaneously,
grouped in batches called warps, which are the main
scheduling units.

Metaheuristics
There are many optimization problems of high compu-
tational cost which can not be solved by evaluating all
the possible solutions. Due to the high computational cost
of exact methods, the optimum solutions for those NP-
hard problems can be found for only very small instances,
and so they are traditionally approached through heuristics
and metaheuristics (general information on metaheuristics
can be found, for example, in Blum et al. (2011); Dréo
et al. (2005); Glover and Kochenberger (2003); Hromkovič
(2003); Michalewicz and Fogel (2002)), which are tuned for
the problem in question.

Metaheuristics include an abstraction layer that may
provide a sufficiently good solution for an optimization
problem, especially with limited computation capacity or
inexact information Bianchi et al. (2009). They reduce the
search space, focusing only on the most promising areas,
and thus, cannot guarantee the analysis of all possible
solutions, which means that they do not guarantee to find the
optimal solution. There are many metaheuristic algorithms
of different characteristics Blum and Roli (2003) that can
provide several good solutions to the same problem. Among
them, we highlight:

• Distributed metaheuristics, which search for solutions
within the whole solution space. These work with

populations or sets of elements that are combined in
order to generate better solutions progressively. Some
examples include Scatter Search, Genetic Algorithms,
Ant Colony and Particle Swarm Optimization.

• Neighborhood metaheuristics, which work with an
element in the solution space and search for better
elements in its neighborhood. Examples include
Hill Climbing, Tabu Search, Guided Local Search,
Variable Neighborhood Search, Simulated Annealing
and GRASP.

Virtual Screening
We draw on our description of the Virtual Screening (VS),
which was first given in Guerrero et al. (2014); Sánchez-
Linares et al. (2012). VS methods are computational
techniques used in several scientific areas, such as catalysts
and energy materials Franco (2013), and mainly drug
discovery Kitchen et al. (2004), where experimental
techniques can benefit from the predictions provided by
simulation methods.

VS methods search for libraries of small molecules that
can potentially bind to a drug target, typically a protein
receptor or enzyme, with high affinity. Within VS methods,
Molecular Docking techniques simulate the docking process
of small molecules into the structures of macromolecular
targets (see Figure 1). Moreover, they look for (i.e., score)
the optimal binding sites by providing a ranking of chemical
compounds according to the estimated affinity or scoring
Schneider (2002). In general, VS methods optimize scoring
functions, which are mathematical models used to predict
the strength of the non-covalent interaction between two
molecules after docking Jain (2006). In fact, these candidate
molecules will continue the drug discovery process roadmap
that goes from in-vitro studies, to animal investigations and,
eventually, to human trials Drews (2000).

Figure 1. Crystallographic structure of
5-(5-chloro-2,4-dihydroxyphenyl)-N-ehtyl-
4-(4-methoxyphenyl)-1H-pyrazole-3-carboxamide (pink color)
bound to HSP90 protein (green color). Details available at PDB
database with accession code 2BSM.

Although VS methods have been researched for many
years and several compounds can be identified that evolve
into drugs, the impact of VS has not yet fulfilled all
expectations. Neither the VS methods nor the scoring
functions used are sufficiently accurate to identify high-
affinity ligands reliably. To deal with a large number of
potential candidates (many databases comprise hundreds of
thousands of ligands), VS methods must be very fast and
still be able to identify “the needles in the haystacks”. These

Prepared using sagej.cls

4 The International Journal of High Performance Computing Applications ()

techniques require hundreds of CPU hours for each ligand,
and, according to Wang et al. (2006), even thousands of CPU
hours for each ligand when simulation strategies are used to
compute absolute binding affinities.

The relevant non-bonded potentials used in VS calcula-
tions are the Coulomb, or electrostatic, and the Lennard-
Jones potentials, since they describe the most important short
and long-range interactions between atoms of the protein-
ligand system very accurately. The calculation of non-
bonded potentials is usually the most time-consuming calcu-
lation in VS methods. For example, in Molecular Dynamics
simulations, the calculation of these kernels can take up to
80% of the total execution time Kuntz et al. (2001).

Within these VS methods, of particular interest to us are
protein-ligand docking techniques. Examples are given in
Yuriev et al. (2011) and Huang and Zou (2010). Docking
simulations are typically carried out on the protein surface
using known methods, like Autodock Morris et al. (1998);
Glide Friesner et al. (2004); DOCK Ewing et al. (2001);
FMD Dolezal et al. (2015), which combines message passing
interface (MPI) with multithreading; or BUDE McIntosh-
Smith et al. (2014), a molecular docking program for hybrid
computing architectures that exploits the heterogeneity with
OpenCL for portability to different computer architectures.
The surface region is commonly derived from the position
of a particular ligand in the protein-ligand complex, or
from the crystal structure of the protein without any
ligands. The main problem of many docking methods is
that they assume, once the binding site is specified, that all
ligands will interact with the protein in the same region,
and completely discard the other areas of the protein. In
BINDSURF , Sánchez-Linares et al. (2012) uses GPUs
to overcome this problem by dividing the whole protein
surface into arbitrary independent regions (or spots). Using
GPU parallelism, a large ligand database is screened against
the target protein simultaneously over its whole surface,
and docking simulations for each ligand are performed
simultaneously in all the specified protein spots, resulting in
new spots found after the examination of the distribution of
scoring function values over the entire protein surface.

Metaheuristics for virtual screening on
heterogeneous systems
Traditional parallel implementations are not always efficient
when ported to heterogeneous systems. They are often
inherited from scalable supercomputers, where all nodes
in the cluster have the same compute capabilities, and
therefore they lack the ability to distinguish computational
devices with asymmetric computational power. Differences
are not limited to fundamental hardware design (CPUs vs.
GPUs), but also occur within the same family of processors.
For example, the Kepler family (see Table 1) includes
Tesla K20, K20X and K40 models, endowed with 13, 14
and 15 multiprocessors, respectively (the K80 model even
reaches 30 multiprocessors split into two chips). Here,
we distinguish two different aspects; the system itself,
which may be heterogeneous or homogeneous, and the
parallel distribution of the workload which can also be
heterogeneous or homogeneous. This section shows our
proposal, METADOCK, for metaheuristic-based virtual

screening applications that leverage massively parallel and
heterogeneous computers. We introduce the reader to the
design of our virtual screening approach before showing the
parallelization strategy for heterogeneous distribution of the
workload.

METADOCK: Metaheuristics for VS methods
Our Virtual Screening technique divides the whole protein
surface into arbitrary and independent regions (or spots).
Spots are specified around alpha-carbons of the protein
backbone, so that we can ensure a full scanning of the
protein surface. All these spots are independent of each
other and, thus, offer great opportunities for data-based
parallelization. Docking simulations for each ligand are then
performed simultaneously at every protein spot. Actually, the
computation places copies of the same ligand at each of those
spots. These copies (a.k.a. individuals or conformations) are
different from each other as they have a different position and
orientation with respect to each spot. Docking simulations
search for an optimized conformation for both the protein
and ligand and the relative orientation between them, such
that the free energy (given by the scoring function) of the
overall system is minimized. Therefore, METADOCK
uses an optimization procedure where the scoring function,
that models the non-bonded interactions between protein
and ligand, is minimized throughout the execution. With
that in mind, we first introduce the optimization procedure
used in METADOCK before briefly describing the GPU
implementation of the underlying scoring function. The
scoring function computation represents more than 95%
of the METADOCK overall computation time and thus
it is offloaded to the GPU to increase overall application
performance.

Search method based on a parameterized metaheuristic
schema Algorithm 1 shows the METADOCK generic
template that we use to generate several metaheuristics
for the VS problem. Several authors agree (Raidl (2006);
Vaessens et al. (1998)) that many metaheuristics, particularly
those based on populations, share six basic functions
(see Algorithm 1): Initialize, End condition, Select,
Combine, Improve and Include. These functions are like
algorithmic templates in which the programmer can
provide different implementations, so obtaining different
metaheuristics. Population-based metaheuristics maintain
and improve multiple candidate solutions (S), and often use
population characteristics to guide the search. Local search
metaheuristics are also included in the schema, with |S| = 1.

Algorithm 1 METADOCK ′s parameterized metaheuris-
tic schema

Initialize(S,ParamIni)
while no End condition(S) do

Select(S,Ssel,ParamSel)
Combine(Ssel,Scom,ParamCom)
Improve(Scom,ParamImp)
Include(Scom,S,ParamInc)

end while

Each of the functions in the algorithm works with various
sets or populations (S, Ssel and Scom). S represents the whole

Prepared using sagej.cls

5

population of candidate solutions. In our case, a candidate
solution (or individual) is a conformation. Thus, several
individuals are selected (Ssel) to be combined, so generating
a new set of elements, Scom. Candidate solutions can also be
improved by applying a local search; i.e. moving, translating
and/or rotating with respect to each spot.

A further step in developing unified metaheuristics
schemes is the introduction of several parameters, i.e.,
metaheuristic parameters (ParamXXX in Algorithm 1),
in each of these functions to provide a wider range of
metaheuristics. Almeida et al. (2013); Cutillas-Lozano et al.
(2012); Cutillas-Lozano and Giménez (2013) show that the
use of a parameterized schema of metaheuristics helps to find
satisfactory metaheuristics and to tune them for a particular
problem. Several metaheuristics could be evaluated for the
problem (each with its corresponding tuning process); and
hybrid metaheuristic schemes can also be considered. As
a consequence, the selection and tuning for a satisfactory
metaheuristic or hybridation for a problem is a complex
process, which can require large execution times.
METADOCK is based on that unified parameterized

metaheuristic schema and is used for docking simulations.
As mentioned in the Metaheuristics Section and as shown
in Algorithm 1, the schema is like a template that defines
a set of functions to be implemented for a particular
problem. Those functions use several parameters to pro-
vide different metaheuristic implementations. Particularly,
METADOCK uses up to fifteen metaheuristic parameters
(see Table 2).

The schema is applied at each spot, with the same
metaheuristic parameters in Table 2 (the same metaheuristic)
for each spot, and with the basic functions working on
different subsets. Below, we briefly summarize details
about the implementation of the basic functions used in
METADOCK.

• Initialize returns an initial set of solutions. INEIni
conformations are generated randomly for each of
the m spots. Once they have been generated, a
percentage (PEIIni) of the initial conformations
of each spot is improved. The intensification of
the improvement is indicated by the parameter
IIEIni. Finally, (PBEIni+ PWEIni) ∗ INEIni
conformations from each spot are selected for the
execution of the following functions. PBEIni and
PWEIni represent the percentage of best and worst
conformations to be included. The best conformations
are those with the best value of the scoring function,
and the “worst” conformations are selected from the
remaining ones. Indeed, METADOCK does not
select only the best conformations, so as to diversify
the search and avoid falling into local optima.
• End condition determines the stop criteria for
METADOCK. Either, the maximum number of
steps without improvement of the best solution from
all the spots, NIREnd, or the maximum number of
iterations, MNIEnd, is used to finish the execution.
• Select chooses some conformations to work with

for the next phases. A percentage of the best and
worst conformations relative to each spot are selected,
i.e. PBESel and PWESel. Again, to diversify the

search and avoid local minima, not only “good”
conformations are selected.

• Combine mixes conformations in pairs, depending
on their scoring. Three parameters represent the per-
centage of best-best, worst-worst and best-worst con-
formations to be combined: PBBCom, PWWCom
and PBWCom. Combinations are performed among
conformations at the same spot.

• Improve performs a local search within the neigh-
borhood of some of the conformations previously
generated by Combine. Two metaheuristic parameters
are considered for each spot. First, PEIImp defines
the percentage of conformations that the local search
will be applied to to improve those conformations.
Second, IIEImp establishes the number of trials for
the local search. Hence, METADOCK can generate
hybrid metaheuristics with different degrees of inten-
sification.

• Include updates the reference set for the next iteration
of the schema. The parameter PBEInc establishes
the percentage of best conformations associated
to each spot to be included in its reference set.
The rest of the conformations to be included in
this set are randomly selected from the remaining
conformations at the spot. The inclusion of non-
promising conformations contributes to diversify the
search, so avoiding stalling in local minima.

GPU implementation of the scoring function The
METADOCK scoring function is based on the relevant
non-bonded potentials typically used in VS calculations
previously described in Background section. They are the
Coulomb, or electrostatic, the Lennard-Jones potentials, and
Hydrogen-Bounds interactions kernel. A discussion about
the main terms included in the scoring function is beyond
the scope of this paper, but we refer the reader to Wang et al.
(2004) for insights.

Algorithm 2 Sequential baselines for the Lennard-Jones
interactions between receptor and ligand.

for i=1 to N CONFORMATION do
for j=1 to N ATOMS RECEPTOR do

for k=1 to N ATOMS LIGAND do
Energy = 4*epsilon*(term12(j,k) - term6(j,k))
Scoring += Energy

end for
end for
S energy[i] = Scoring
Scoring = 0

end for

Algorithm 2 shows the sequential baselines for the
Lennard-Jones potential interactions between a receptor and
all conformations for a particular ligand (i.e. the set S in
algorithm 1) to briefly illustrate the GPU implementation of
the scoring function.

The scoring function of METADOCK is implemented
in a single kernel where all terms are calculated at the same
time. We identify each candidate solution (i.e. conformation)
to a CUDA warp, and warps are grouped into blocks
depending on the CUDA thread block granularity. Algorithm

Prepared using sagej.cls

6 The International Journal of High Performance Computing Applications ()

Table 2. The fifteen metaheuristic parameters used in the unified parameterized metaheuristic schema for METADOCK

Metaheuristic
Parameters Description

INEIni Number of initial ligand conformations.
PEIIni Percentage of the best conformations that are improved in the function Initialize.
IIEIni The intensification of the improvement in the function Initialize.
PBEIni Percentage of best conformations to be included in the initial set for the next iterations.
PWEIni Percentage of worst conformations to be included in the initial set for the next iterations.
PBESel Percentage of the best conformations to be selected for combination.
PWESel Percentage of the worst conformations to be selected for combination.
PBBCom Percentage of best-best conformations to be combined.
PWWCom Percentage of worst-worst conformations to be combined.
PBWCom Percentage of best-worst conformations to be combined between them.
PEIImp Percentage of best conformations of the combination to be improved.
IIEImp The intensification of the improvement of elements generated by combination.
PBEInc Percentage of best conformations to be included in the reference set.
NIREnd Maximum number of steps without improvement.
MNIEnd Maximum number of iterations with or without improvement.

Algorithm 3 Method to calculate scoring on GPU
pos = atom position
individual = get individual()
for i=1 to r do

Energy = 4*epsilon*(term12(i,pos) - term6(i,pos))
Scoring += Energy

end for
synchronize threads()
S energy[individual] = Reduction atoms individual()

3 shows the CUDA kernel for the Lennard-Jones potential.
Here, some performance strategies that we have applied
to our codes to leverage NVIDIA GPU architectures are
introduced:

• The use of shared memory facilitates the re-usability
of data by threads of the same block. In our case,
the compound is loaded into the shared memory so
that threads within the same block can share this
information, so saving costly device memory accesses.
Thus, each thread calculates the scoring function
corresponding to the elements that are associated to
each of them, thus increasing the overall application
bandwidth.
• The possibility of using shuffle instructions is available

in devices with 3.X or higher compute capability,
and their use can improve application performance
substantially. These instructions enable information
sharing within threads that belong to the same warp
without using either shared or device memory.

In addition to the scoring function CUDA kernels, other
kernels are also included in METADOCK to implement
different actions required by main schema functions shown
in Algorithm 1. Among them, we may highlight the
modification of ligand conformations in (Initialize and
Improve functions). The main objective of these kernels
is to keep the information in the GPU device memory, so
avoiding data-movement through PCI-Express bus.

Scaling to a heterogeneous node
Algorithm 4 shows the parallelization scheme we use
to leverage heterogeneous nodes with shared-memory
multiprocessors and multiple GPUs. OpenMP is used
to manage several CPU threads, where each thread is
responsible for controlling a GPU context (we refer the
reader to Chapman et al. (2008) for insights). Then, each
GPU calculates the scoring function for a set of candidate
solutions. In a homogeneous distribution, those candidate
solutions are equally distributed among GPUs in the form
of CUDA thread blocks. However, a HPC cluster may
have different kinds of devices or even devices within the
same family with different compute capabilities or improved
instruction set architecture. Thus, the programmer plays a
fundamental role in deciding where the code will run on each
of those different architectures as long as performance is the
main objective.

Algorithm 4 Scoring computation on a Parameterized
Metaheuristic for multicore+multiGPU

omp set num threads(number GPUs)
#pragma omp parallel for
for i=1 to number GPUs do

Select device(Devices[i].id)
Host To GPU(Scom,Stmp)
Conformations=Devices[i].conformations
threads=Devices[i].Threadsblock
stride=Devices[i].stride
Calculate scoring<Conformations/threads,threads>
(Stmp+Devices[i].stride)
GPU To Host(Scom,Stmp)

end for

With this scenario in mind, we introduce a heterogeneity
distribution of the workload for our VS methodology. The
execution time of each independent execution can differ, as
it depends on (1) the underlying GPU each metaheuristic
instance runs on, which is actually unknown at compile-
time, and (2) the number of candidate solutions (the
same in principle for all processors, but affected by GPU
heterogeneity). Given that the slowest GPU will determine
the overall execution time, our mission is to make use of
the idle time offered by the most powerful GPUs. The

Prepared using sagej.cls

7

peak performance differences shown in the last two rows
of Table 1 lead us to believe that there is ample room for
improvement. Nevertheless, it is worth noting that these are
theoretical peak performances provided by the manufacturer,
but only the different speed of the targeted GPUs is the factor
for heterogeneity that should be considered to distribute the
workload.

We have designed an implementation with two main
focuses: (1) resources accounting through OpenMP pro-
cesses and (2) performance monitoring via OpenMP threads.
First, our algorithm defines a master thread which creates as
many OpenMP threads as GPUs available on a node, which
is easily attained by querying the GPU properties at runtime
(using cudaGetDeviceCount from the CUDA API) and
NVML (NVIDIA Management Library). Secondly, a warm-
up phase is performed to establish performance differences
among all targeted GPUs, running the scoring function for a
few candidate solutions. This phase measures the execution
time of a small number of iterations of the metaheuristic at
run-time (once) in order to detect these differences. Impor-
tantly, at this stage, the algorithm is not trying to solve the
docking problem in any meaningful sense, but these runs
allow us to calculate the performance differences between
GPUs. The execution times in this warm-up phase on all
GPUs are reduced to obtain the maximum value using omp
reduction. Thus, the Percent parameter is eventually
determined, as shown in Equation (1)

Percent =
Ex.timeactualGPU

Ex.timeslowestGPU
(1)

The slowest GPU will have Percent = 1; a GPU two times
fast than the slowest GPU would have Percent = 0.5, and
so on. Each OpenMP thread then calculates the number
of conformations it is in charge of for the simulation. The
optimum number of threads is also experimentally obtained
at this stage to increase the level of parallelism and to
maximize processor occupancy.

Experimental set-up
Experiments have been conducted in two different hetero-
geneous systems based on multicore+multiGPU configura-
tions. Bellow, we show the main characteristics of these
computational systems along with the metaheuristic scheme
parameters we have used to generate different kinds of meta-
heuristics to test our implementations. Finally, a description
of the target datasets is provided.

Hardware environment
Two different computational systems are used to run our
experiments:

• Jupiter: is a system with two hexa-cores (12 cores)
Intel Xeon E5-2620 at 2 GHz and 32 GB of RAM.
The node has up to six GPUs. Two of them are GPUs
NVIDIA Fermi Tesla C2075 with 448 CUDA cores
(14 Streaming Multiprocessors and 32 Streaming
Processors per Multiprocessor) running at boost clock
of 1.15 GHz, giving a raw processing power of
up to 1030 GFLOPS. The memory size is 5,3 GB
of GDDR5. The other four GPUs are actually two

NVIDIA Fermi GPUs GeForce GTX 590 that each
contain two chips in turn. Both have 512 CUDA cores
(16 Streaming Multiprocessors and 32 Streaming
Processors per Multiprocessor) running at boost clock
of 1.21 GHz, giving a raw processing power of up to
2488.3 GFLOPS.

• Hertz: has four Intel Xeon X7550 processors
running at 2 GHz and plugged into a quad-
channel motherboard endowed with 128 Gigabytes of
DDR3 memory. It has two NVIDIA GPU. A GPU
NVIDIA Tesla Kepler K40c with 2880 CUDA cores
(15 Streaming Multiprocessors and 192 Streaming
Processors per Multiprocessor) running at boost clock
of 0.88 GHz, giving a raw processing power of up to
5068 GFLOPS. The memory size is 12 GB of GDDR5.
A GPU NVDIA Fermi GeForce GTX 580 with 512
CUDA cores (16 Streaming Multiprocessors and 32
Streaming Processors per Multiprocessor) running at
boost clock of 1.54 GHz, giving a raw processing
power of up to 1581 GFLOPS

In both platforms, gcc 4.8.2 with the -O3 flag was used for
compilation on the CPU, and the CUDA toolkit version 6.5
was used for compilation on the GPU.

Benchmarking
Metaheuristics The template shown in Algorithm 1 allows
experimentation with several basic metaheuristics and com-
binations/hybridations of them. So, it can be used for
the selection and tuning of satisfactory metaheuristics for
the problem we are working with, and, furthermore, the
parallelization of the schema facilitates the parallelization
and the determination of the best parallelism configurations
for different metaheuristics and combinations. In the
experiments, we consider up to six metaheuristics of
different characteristics for comparison purposes. The
performance, efficiency and quality are evaluated on various
hardware configurations.

Table 3. Parameter setting used for experimentation
COMBINATIONS

M1 M2 M3 M4 M5 M6
INEIni 500 50 300 20 100 10
PEIIni 0 50 100 100 50 100
IIEIni 0 20 100 100 50 200
PBEIni 8 20 0 100 20 100
PWEIni 0 20 0 100 20 100
PBESel 100 100 0 50 100 100
PWESel 0 100 0 50 100 0
PBBCom 100 100 0 100 50 100
PWWCom 0 25 0 50 10 0
PBWCom 0 50 0 10 25 0
PEIImp 0 50 0 50 100 100
IIEImp 0 20 0 20 10 200
PBEInc 100 100 0 80 50 80

Table 3 shows the values of the metaheuristic parameters
for the six metaheuristics considered in the experimental
section. The first metaheuristic (M1) is a Genetic Algorithm
with a population of 500 individuals (INEIni = 500) for
each spot in the receptor at the initialization stage. Only the
best 40 individuals keeps on going with the computation

Prepared using sagej.cls

8 The International Journal of High Performance Computing Applications ()

(PBEIni = 8) after initialization. After that, all best
candidates are selected, combined and included for the
next iteration ({PBESel, PBBCom,PBEInc} = 100),
and no local search is included to improve the conformations.
The second metaheuristic (M2) is also an evolutionary
method but, in this case, its computation is similar to a
Scatter Search algorithm. It works with a reference set of
50 individuals, many elements are improved after they have
been generated, initially or by combination, through local
search in the neighborhood of each element to obtain better
solutions, and combinations between worst or best and worst
elements are included. After the initialization phase, all the
selected elements are combined with each other, and a further
improvement is applied in half of them. The metaheuristic
M3 is a neighborhood-based metaheuristic, where local
searches are applied to candidate solutions for a large initial
set, thus the initialization stage is the only stage executed in
this metaheuristic, and it can be seen as a GRASP method.
The metaheuristics M4, M5 and M6 are combinations of
the above metaheuristics, changing the parameter values of
combination and improvement, to try to get better results.
For example, for larger sets less elements are improved or
the intensification of the improvements is lower. The unified
schema allows us to experiment with several configurations
to determine the best metaheuristic for our problem, but this
study is beyond the scope of the paper.

Accuracy of the predictions It is necessary to measure
the performance of VS methods in terms of accuracy of
the predictions they yield. One common approach in this
research area is to process datasets of known compounds
and to check the ability of VS methods in classifying them.
A set of benchmark instances from the Directory of Useful
Decoys (DUD) was used for this DUD (2006). The DUD
dataset contains, for 40 sets of protein-targets, a set of active
ligands, decoys (ligands known to be not active) and the
structural information (X-ray crystallographic studies) about
a ligand co-crystallized with each respective protein. The
decoy compounds have similar physical properties to the
active ligands but dissimilar topology, and were designed in
order to make the classification task difficult. In this work,
three different targets are selected from DUD (see Table
4). These targets have different numbers of atoms (13261,
7158 and 3419 respectively) that require different amount of
memory in the simulation.

Performance datasets Data sets in Table 4 are also used
to evaluate computational performance of our parallelization
strategies. The docking simulations, in this case, are
performed with the different receptors (GPB, SRC and
COMT) and their corresponding crystallography ligands.
They have different sizes to test scalability on the different
platforms targeted. Our scoring function calculates the
interaction between all atoms from the protein (nrec) and
all atoms from the ligand (nlig). This is performed at each
spot where a number of individuals (the same ligand with
different spatial locations) runs in parallel. Therefore, a
METADOCK simulation performs Spots ∗ Individuals
simulations at the same time, and each calculates nrec ∗ nlig
interactions. For instance, M1 works with 500 conformations
at the same time in the initialization stage. The number
of interactions for GPB would be 13, 261 ∗ 52 ∗ 500 =

344, 786, 000 at each spot, having up to 813 spots. The
number of spots, receptor atoms and crystallography ligand
atoms are listed in Table 4. Indeed, memory requirements
for our simulations are directly related to this formula. The
number of bytes for these benchmarks is shown.

Experimental results
This section shows the experimental results for
METADOCK on multicore and multiGPU systems.
The main objective of these experiments is two-fold. First,
we analyze our load distribution strategies to improve
performance on heterogeneous nodes based on CPU and
MultiGPU. Second, we study the quality of the results with
several chemical compounds to discuss the effectiveness of
our approach.

Performance results
Given that our technique establishes the experimental set-
up dynamically, the results shown below are platform-
dependent. Therefore, we provide an exhaustive analysis on
the two heterogeneous systems previously described. Tables
5 and 6 show the execution time (single-point precision
execution) and relative speed-up factor among different
implementations and metaheuristic configurations for each
target dataset in both systems (see Table 4 for dataset
description and Table 3 for the schema configuration). They
show the execution times for OpenMP implementation on
multicore CPUs as a reference for the improvements.

Table 5 shows performance numbers on the Hertz system,
in which the computational capability of the GPUs available
are quite different (Fermi and Kepler architecture). First, it
shows the speed-up factor for a single GPU (Tesla K40c)
versus multicore CPU. This is in the range of 22-29x. The
implicit data parallelism in this problem benefits greatly
from the GPU horsepower. Our CUDA implementations take
advantage of data-locality through tilling implementation
via shared memory, which benefits the receptor scalability.
Then, computing with several GPUs come into the scene.
First, our version using a homogeneous distribution of the
workload (i.e. assigning the same amount of workload to
each GPU) is in the range 26-35x speed-up factor compared
to multicore CPU for small-medium molecules. This speed-
up for large molecules is up to 37x. This means an additional
1.27x speed-up factor by adding a GPU in some cases.
Furthermore, these data show that metaheuristic parameters
are important for the performance, that is enhanced when
the number of combined and improved individuals increases.
This is clearly shown in metaheuristic M3 for small-
medium compounds where all initial population generated
is improved, and metaheuristics M3 and M6 with the largest
compound. In this case, in M6 another large improve phase
for all combined elements produces a significant increase in
computation.

A further step to increase performance is to figure
out a new distribution strategy for load balancing. A
straightforward approach is to distribute the workload
according to the hardware features (i.e. peak performance).
The theoretical peak performance for Tesla K40c and
GeForce GTX 580 are 5068 and 1581 GFLOPS respectively.
This means a 3.2x speed-up factor in favor of Tesla

Prepared using sagej.cls

9

Table 4. Number of decoys and active ligands of the benchmark targets from DUD database. We also include the size of receptor
and crystallography ligand (number of atoms) used for performance comparison, and the number of interactions for each individual

Targets Number of Decoy Active Receptor size Crystallography ligand size Target memory
spots ligands ligands (number of atoms) (number of atoms, KB) size (KB)

GPB 813 2,139 52 13,261 (52, 1.21) 190
SRC 452 6,319 159 7,158 (67, 1.57) 293

COMT 214 468 11 3,419 (29, 0.67) 543

K40c. The strategy called hardware-feature distribution
in Table 5 schedules the workload based on this idea.
Some performance gains are reported compared to the
homogeneous approach although they are not remarkable.
Peak performance reported in technical specifications is
reported under ideal conditions (e.g. the execution of only
FMA instructions, not memory latencies, etc) and thus
application performance will be determined at runtime.
The last column in Table 5 shows the speed-up factor
of our heterogeneous distribution strategy compared to
multicore. The results are better than with the hardware-
feature distribution, reaching up to 1.43x speed-up factor on
average compared to a homogeneous approach.

Table 6 shows performance numbers in Jupiter. The
GPUs available in Jupiter (up to six) are based on the
same architecture (code-named Fermi) and, thus, the overall
GPU heterogeneity in this system is very low. Performance
numbers in this system raise similar conclusions to those
in Hertz. Our heterogeneous distribution strategy of the
workload here shows fewer benefits. Indeed, this means
that GPU heterogeneity on a computing node makes load
balancing strategy mandatory to get peak performance.
Finally, Tables 5 and 6 show that the speed-up increases
with the problem size, thus proving the scalability of the
multiGPU versions.

We report higher speed-up ratios whenever we increase
either the level of intensification in a local search or the
size of the reference set. Metaheuristics M2 and M3 contain
different values for local search in the neighborhood of each
conformation with the same number of initial elements. In
all the executions with the three compounds, more intensive
searches provide higher speed-up ratios, and they are even
higher in multiGPU environments. The M4 metaheuristic
studies the extreme case in which only local search is applied
on a very large number of elements, achieving the best speed-
up ratios in comparison with the distributed metaheuristics.

Figure 2. Scoring function evolution within 30 seconds
time-frame. Metaheuristic M6 and target COMT on Hertz.

Finally, Figure 2 shows the scoring function evolution
during a simulation of 30 seconds for a docking simulation
with METADOCK with M6 parameter configuration
and the target COMT. The techniques with the highest
performance obtains better quality results as it performs
more computations within the same time-frame. So, the
efficient exploitation of parallelism facilitates obtaining
satisfactory results at shorter times.

Quality results: accuracy of the predictions
As mentioned in the benchmark section, the quality of a
docking program is usually measured through its ability to
differentiate between active ligands (which could evolve into
drugs) and decoys.

The ROC (Receiver Operating Characteristic) curve is a
binary classification model which is frequently applied for
the analysis of the accuracy of virtual screening methods.
This model allows us to compare how good a method is
when selecting active ligands and discarding decoys. In order
to validate our algorithm, Figure 3 shows the ROC curves
obtained for three different targets conveniently selected
from the DUD database. The R language package ROCR
(published by Sing et al. (2005)) was used to perform the
analyses over generated docking results. The y-axis shows
the fraction of true positives (TPF), and that of false positives
(FPF) is shown on the x-axis. A diagonal line would indicate
that the classifier works randomly. The value of AUC (Area
Under Curve) is 1.0 when TPR is always 1 and FPR equal
to 0 (the ideal case). The results shown in Figure 3 have
been obtained with METADOCK with the combination
of metaheuristic parameters M4 in Table 2, and they are
representative of those obtained with the other configurations
(results not shown). The AUC values obtained for the DUD
datasets GPB, SRC and COMT are 0.838, 0.842 and 0.747,
respectively. AUC Values greater than 0.65 can be considered
to be adequate, with values closer to 1 indicating better
specificity and sensitivity of the method in detecting decoys.
The values obtained with METADOCK are satisfactory,
and the efficient exploitation of heterogeneous computing
systems facilitates experimentation with moderate execution
times.

Conclusions and future work
Virtual screening (VS) methods are computational tech-
niques that aid or complement the experimental drug dis-
covery process but they are very computationally demanding
applications. This paper introduces a VS technique, called
METADOCK, based on an unified parameterized meta-
heuristic schema that is able to generate a wide variety
of metaheuristics, so providing a fully flexible framework

Prepared using sagej.cls

10 The International Journal of High Performance Computing Applications ()

Table 5. Execution time (in seconds) and speed-up for the metaheuristics, executing the targets COMT, SRC, GPB in Hertz

Metaheuristics
Multicore CPU

(in seconds)

Speed-up
GPU K40c

Vs
Multicore CPU

Speed-up
Homogeneous distribution

Vs
Multicore CPU

Speed-up
Hardware-feature

distribution
Vs

Multicore CPU

Speed-up
Heterogeneous distribution

Vs
Multicore CPU

DUD:COMT Target
M1 180.19 24.32 27.35 29,90 37.91
M2 223.11 23.88 28.23 29.51 36.92
M3 2,942.99 28.21 35.08 36.94 46.56
M4 284.31 23.35 26.56 29.88 35.56
M5 402.25 24.33 29.35 30.67 38.49
M6 1,758.24 24.64 30.61 31.79 39.75

DUD:SRC Target
M1 1,025.19 23.21 26.12 28.82 37.64
M2 1,269.99 22.66 27.97 28.89 36.77
M3 15,042.33 23.03 26.66 29.46 37.98
M4 1,616.11 22.26 27.62 30.16 38.05
M5 2,287.21 22.81 23.25 28.11 37.16
M6 10,015.06 22.94 24.51 29.27 37.57

DUD:GPB Target
M1 1,479.51 28,56 31,71 36.19 45.61
M2 1,831.24 28.94 35.78 36.88 47.29
M3 21,758.21 29.47 37.42 37.75 48.57
M4 2,335.44 29.07 36.43 37.06 47.39
M5 3,303.33 29.11 36.51 37.32 47.96
M6 14,439.52 29.34 37.07 38.26 48.45

Table 6. Execution time (in seconds) and speed-up for the metaheuristics, executing the targets COMT, SRC, GPB in Jupiter

Metaheuristics Multicore CPU
(in seconds)

Speed-up
GPU Tesla C2075

Vs
Multicore CPU

Speed-up
Homogeneous distribution

Vs
Multicore CPU

Speed-up
Heterogeneous distribution

Vs
Multicore CPU

DUD:COMT Target
M1 140.48 10.42 38.72 39.35
M2 193.67 13.81 39.88 43.55
M3 1,911.52 9.62 53.25 54.16
M4 209.56 9.59 33.86 34.43
M5 262.65 8.55 34.81 35.51
M6 1,379.93 10.39 53.61 53.89

DUD:SRC Target
M1 639.32 7.45 36.43 39.35
M2 678.41 7.86 37.89 40.97
M3 10,670.57 8.55 49.34 49.41
M4 1,150.81 8.49 40.21 43.75
M5 1,574.79 8.27 43.08 44.62
M6 7,422.66 8.93 50.08 50.27

DUD:GPB Target
M1 910.42 9.24 45.19 46.21
M2 964.82 9.44 49.01 53.01
M3 15,050.81 10.75 60.98 62.28
M4 1,654.85 10.94 52.88 57.58
M5 2,449.27 11.47 58.71 62.47
M6 10,186.09 10.94 61.57 62.41

for drug discovery, and thus facilitating enhanced perfor-
mance and prediction accuracy. METADOCK is tailored
for heterogeneous computers based on CPU and multiple
GPUs. This heterogeneity may limit acceleration which is
not acceptable in such challenging applications. In this work
the heterogeneity of the system is exploited at two levels: (1)
CPU-GPU heterogeneity; with an implementation in which
some parts of the computation are carried out on the CPU
side while the most costly parts are assigned to the GPUs,

and (2) GPU-GPU heterogeneity, i.e. GPUs with different
characteristics, including different architectures, numbers of
cores and compute capabilities, providing a load balancing
technique based on the application performance on the tar-
geted GPUs.

The efficient exploitation of the heterogeneous system
provides good speed-ups, which increase with the problem
size. Our strategy is particularly useful for non-deterministic
algorithms and stochastic behaviors, where real-time

Prepared using sagej.cls

11

Figure 3. ROC plots for three targets of the DUD database:
GPB (blue), SRC (green) and COMT (orange).

constraints must be fulfilled. Performance gains are
translated into quality improvements that are a decisive
factor in virtual screening. AUC results obtained with
METADOCK support that its parallel, metaheuristic-
based schema makes it a useful tool in the early stages of
drug discovery.

For future work and to tackle larger problems or for better
solutions with limited execution times, it could be convenient
to adapt our virtual screening method to more complex
hardware systems, comprising several computational nodes
working together with the message-passing paradigm, and
each node with several computational components, e.g.,
multicore, heterogeneous GPUs and MICs. In this scenario,
multicore processors could also be used to compute part
of the simulation instead of only monitoring the GPU.
Regarding the quality of the results, many other types of
scoring functions are still to be explored, including metal
and aromatic interactions, and inclusion of implicit solvation
effects. This field seems to offer a promising and potentially
fruitful area of research.

Acknowledgements

This work is jointly supported by the Fundación Séneca (Agencia
Regional de Ciencia y Tecnologı́a, Región de Murcia) under
grant 18946/JLI/13, and by the Spanish MEC and European
Commission FEDER under grants TIN2015-66972-C5-3-R and
TIN2016-78799-P (AEI/FEDER, UE). We also thank NVIDIA for
hardware donation under GPU Educational Center 2014-2016 and
Research Center 2015-2016.

References

Almeida F, Giménez D, López-Espı́n JJ and Pérez-Pérez M
(2013) Parameterised schemes of metaheuristics: basic ideas
and applications with Genetic algorithms, Scatter Search and
GRASP. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans 43(3): 570–586.

Asanovic K, Bodik R, Catanzaro BC, Gebis JJ, Husbands P,
Keutzer K, Patterson DA, Plishker WL, Shalf J, Williams SW

and Yelick KA (2006) The landscape of parallel computing
research: A view from Berkeley. Technical Report UCB/EECS-
2006-183, University of California at Berkeley, Electrical
Engineering and Computer Sciences.

Austin T (2015) Bridging the Moore’s Law Performance Gap with
Innovation Scaling. In: Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering. ACM,
p. 1.

Bianchi L, Dorigo M, Gambardella LM and Gutjahr WJ (2009)
A survey on metaheuristics for stochastic combinatorial
optimization. Natural Computing: an international journal
8(2): 239–287.

Blum C, Puchinger J, Raidl GR and Roli A (2011) Hybrid
metaheuristics in combinatorial optimization: A survey. Appl.
Soft Comput. 11(6): 4135–4151.

Blum C and Roli A (2003) Metaheuristics in combinatorial
optimization: Overview and conceptual comparison. ACM
Computing Surveys (CSUR) 35(3): 268–308.

Cecilia JM, Garcı́a JM, Nisbet A, Amos M and Ujaldón M (2013)
Enhancing data parallelism for ant colony optimization on
GPUs. Journal of Parallel and Distributed Computing 73(1):
42–51.

Chapman B, Jost G and Van Der Pas R (2008) Using OpenMP:
portable shared memory parallel programming, volume 10.
MIT press.

Cutillas-Lozano JM and Giménez D (2013) Determination of the
kinetic constants of a chemical reaction in heterogeneous phase
using parameterized metaheuristics. In: ICCS.

Cutillas-Lozano LG, Cutillas-Lozano JM and Giménez D (2012)
Modeling shared-memory metaheuristic schemes for electricity
consumption. In: Distributed Computing and Artificial
Intelligence - 9th International Conference. pp. 33–40.

De Michell G and Gupta RK (1997) Hardware-software co-design.
Proceedings of the IEEE 85(3): 349–365.

Dolezal R, Ramalho TC, França TC and Kuca K (2015) Parallel
flexible molecular docking in computational chemistry on high
performance computing clusters. In: Computational Collective
Intelligence. Springer, pp. 418–427.

Dréo J, Pétrowski A, Siarry P and Taillard E (2005) Metaheuristics
for Hard Optimization. Springer.

Drews J (2000) Drug discovery: a historical perspective. Science
287(5460): 1960–1964.

DUD (2006) Directory of Useful Decoys. http://dud.

docking.org/. (accessed, October, 4th, 2016).
Ewing TJA, Makino S, Skillman AG and Kuntz ID (2001) DOCK

4.0: Search strategies for automated molecular docking of
flexible molecule databases. Journal of Computer-Aided
Molecular Design 15(5): 411–428.

Franco AA (2013) Multiscale modelling and numerical simulation
of rechargeable lithium ion batteries: concepts, methods and
challenges. RSC Advances .

Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz
DT, Repasky MP, Knoll EH, Shelley M, Perry JK and et al
(2004) Glide: A New Approach For Rapid, Accurate Docking
and Scoring: Method and Assessment of Docking Accuracy.
Journal of Medicinal Chemistry 47(7): 1739–1749.

Glover F and Kochenberger GA (2003) Handbook of Metaheuris-
tics. Kluwer.

Prepared using sagej.cls

http://dud.docking.org/
http://dud.docking.org/

12 The International Journal of High Performance Computing Applications ()

Guerrero GD, Cebrián JM, Pérez-Sánchez H, Garcı́a JM,
Ujaldón M and Cecilia JM (2014) Toward energy efficiency
in heterogeneous processors: findings on virtual screening
methods. Concurrency and Computation: Practice and
Experience 26(10): 1832–1846.

Hromkovič J (2003) Algorithmics for Hard Problems. Second
edition. Springer.

Huang SY and Zou X (2010) Advances and Challenges in Protein-
Ligand Docking. International journal of molecular sciences
11(8): 3016–3034.

Imbernón B, Cecilia JM and Giménez D (2016) Enhancing
metaheuristic-based virtual screening methods on massively
parallel and heterogeneous systems. In: Proceedings of the
7th International Workshop on Programming Models and
Applications for Multicores and Manycores. ACM, pp. 50–58.

Irwin JJ and Shoichet BK (2005) ZINC–a free database of
commercially available compounds for virtual screening.
Journal of Chemical Information and Modeling 45(1): 177–
182.

Jain AN (2006) Scoring functions for protein-ligand docking.
Current Protein and Peptide Science 7(5): 407–420.

Jorgensen WL (2004) The Many Roles of Computation in Drug
Discovery. Science 303: 1813–1818.

Kirk DB and Wen-mei WH (2013) Programming massively parallel
processors: a hands-on approach. Elsevier.

Kitchen DB, Decornez H, Furr JR and Bajorath J (2004) Docking
and scoring in virtual screening for drug discovery: methods
and applications. Nature Reviews Drug Discovery 3(11): 935–
949.

Kuntz SK, Murphy RC, Niemier MT, Izaguirre JA and Kogge
PM (2001) Petaflop Computing for Protein Folding. In:
Proceedings of the Tenth SIAM Conference on Parallel
Processing for Scientific Computing. pp. 12–14.

Li Y, Han L, Liu Z and Wang R (2014a) Comparative assessment
of scoring functions on an updated benchmark: 2. evaluation
methods and general results. Journal of chemical information
and modeling 54(6): 1717–1736.

Li Y, Liu Z, Li J, Han L, Liu J, Zhao Z and Wang R (2014b)
Comparative assessment of scoring functions on an updated
benchmark: 1. compilation of the test set. Journal of chemical
information and modeling 54(6): 1700–1716.

Lionta E, Spyrou G, K Vassilatis D and Cournia Z (2014) Structure-
based virtual screening for drug discovery: principles,
applications and recent advances. Current topics in medicinal
chemistry 14(16): 1923–1938.

López-Camacho E, Garcı́a-Godoy MJ, Garcı́a-Nieto J, Nebro AJ
and Montes JFA (2015) Solving molecular flexible docking
problems with metaheuristics: A comparative study. Appl. Soft
Comput. 28: 379–393.

McIntosh-Smith S, Price J, Sessions RB and Ibarra AA (2014)
High performance in silico virtual drug screening on many-
core processors. International Journal of High Performance
Computing Applications : 1094342014528252.

Michalewicz Z and Fogel DB (2002) How to Solve It: Modern
Heuristics. Springer.

Minetti G, Alba E and Luque G (2008) Seeding strategies
and recombination operators for solving the DNA fragment
assembly problem. Inf. Process. Lett. 108(3): 94–100.

Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE,
Belew RK and Olson AJ (1998) Automated docking using a
Lamarckian genetic algorithm and an empirical binding free
energy function. Journal of Computational Chemistry 19(14):
1639–1662.

NVIDIA Corporation (2014) NVIDIA CUDA C Programming
Guide 6.5.

Raidl GR (2006) A unified view on hybrid metaheuristics. In:
Hybrid Metaheuristics. Springer, pp. 1–12.

Rester U (2008) From virtuality to reality-Virtual screening in
lead discovery and lead optimization: a medicinal chemistry
perspective. Current opinion in drug discovery & development
11(4): 559–568.

Rollinger JM, Stuppner H and Langer T (2008) Virtual screening
for the discovery of bioactive natural products. In: Natural
Compounds as Drugs Volume I. Springer, pp. 211–249.

Rozenberg G, Bäck T and Kok JN (2011) Handbook of Natural
Computing. Springer.

Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM and Garcı́a JM
(2012) High-throughput parallel blind virtual screening using
BINDSURF. BMC Bioinformatics 13(Suppl 14): S13.

Schneider G (2002) Virtual screening and fast automated docking
methods. Drug Discovery Today 7: 64–70.

Sing T, Sander O, Beerenwinkel N and Lengauer T (2005) Rocr:
visualizing classifier performance in r. Bioinformatics 21(20):
3940–3941.

Sodani A, Gramunt R, Corbal J, Kim HS, Vinod K, Chinthamani
S, Hutsell S, Agarwal R and Liu YC (2016) Knights landing:
Second-generation intel xeon phi product. IEEE Micro 36(2):
34–46.

Song WJ, Mukhopadhyay S and Yalamanchili S (2016) Amdahl’s
law for lifetime reliability scaling in heterogeneous multicore
processors. In: 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, pp. 594–
605.

Top500 (2016) Top500 supercomputer site. http://www.

top500.org/. (accessed, October, 4th, 2016).
Vaessens RJ, Aarts EH and Lenstra JK (1998) A local search

template. Computers & Operations Research 25(11): 969–979.
Wang J, Deng Y and Roux B (2006) Absolute Binding Free

Energy Calculations Using Molecular Dynamics Simulations
with Restraining Potentials. Biophys J 91(8): 2798–2814.

Wang R, Lu Y, Fang X and Wang S (2004) An extensive test
of 14 scoring functions using the pdbbind refined set of 800
protein-ligand complexes. Journal of chemical information and
computer sciences 44(6): 2114–2125.

Yuriev E, Agostino M and Ramsland PA (2011) Challenges and
Advances in Computational Docking: 2009 in Review. Journal
of Molecular Recognition 24(2): 149–164.

Yuriev E and Ramsland PA (2013) Latest developments in
molecular docking: 2010–2011 in review. Journal of Molecular
Recognition 26(5): 215–239.

Zhou Z, Felts AK, Friesner RA and Levy RM (2007) Comparative
performance of several flexible docking programs and
scoring functions: enrichment studies for a diverse set of
pharmaceutically relevant targets. Journal of Chemical
Information and Modeling 47(4): 1599–1608.

Prepared using sagej.cls

http://www.top500.org/
http://www.top500.org/

13

Short Biography

1. Baldomero Imbernón received his B.S. degree in
Computer Science from Catholic University of Murcia
(Spain, 2013) and M.S. degree in New Technologies
in Computer Science in University of Murcia (Spain,
2015) specialism High Performance Architectures and
Supercomputing. In the last two years, he has authored
several journal papers in the areas of bioinformatics
and high performance computing. Actually, he is a
predoctoral researcher at the Catholic University of
Murcia (Spain).

2. José M. Cecilia received his B.S. degree in Computer
Science from the University of Murcia (Spain, 2005),
his M.S. degree in Computer Science from the
University of Cranfield (United Kingdom, 2007), and
his Ph.D. degree in Computer Science from the
University of Murcia (Spain, 2011). Dr. Cecilia was
predoctoral researcher at Manchester Metropolitan
University (United Kingdom, 2010), supported by
a collaboration grant from the European Network
of Excellence on High Performance and Embedded
Architecture and Compilation (HiPEAC) and visiting
professor at the Impact group leaded by Professor
Wen-Mei Hwu at University of Illinois (Urbana, IL,
USA). He has published several papers in international
peer-reviewed journals and conferences. His research
interest includes heterogeneous architecture as well
as bio-inspired algorithms for evaluating the newest
frontiers of computing. He is also working in applying
these techniques to challenging problems in the fields
of Science and Engineering. Now, he is working
as Assistant Professor at the Computer Science
Department in the Catholic University of Murcia. He
is teaching several lectures such as Introduction to
Parallel Computing, Object-Oriented Programming,
Operative System, Computer Architecture, Computer
Graphics; all of them are part of the Computer Science
degree.

3. Horacio Pérez Sánchez. I have contributed to compu-
tational and physical chemistry with several method-
ological developments, implementing them in high
performance computing (HPC) architectures (Super-
computers, GPUs, Cell Processor) so that they can be
accessed by other researchers either as standalone soft-
ware packages or web tools. Some of them have been
commercialized directly with industry. I have applied
these developments directly in drug discovery projects
(anticoagulants, Parkinson, Alzheimer, cancer, Fabry
disease, anti-inflammatories, etc) or for the analysis
and interpretation of experimental data (encapsulation
processes, ion channels, nutraceuticals, etc). Main
results have been published in 56 ISI indexed scientific
articles (8 as first author and 20 as corresponding
author), 2 international (and licensed) patents, 50 con-
tributions to international conferences with 45 peer
reviewed computer engineering and bioinformatics
conference proceedings (6 as first author and 21 as
corresponding author) and 17 invited talks. I have been
awarded with the 2016 HiPEAC technology transfer
award and participated in 30 research projects attract-
ing around 725.000 (I have been Principal Investigator
in 16 of them, with total funding 327.000), and
established 4 contracts with industry and academy.

4. Domingo Giménez is a Professor in the Computer
Science Department at the University of Murcia,
Spain. He has been a faculty member of the university
since 1988, where he teaches algorithms and parallel
computing. He received his degree in Mathematics
from the University of Murcia in 1982, and his Ph.D
in Computer Science from the Polytechnic University
of Valencia in 1995. His research interests include
scientific applications of parallel computing, matrix
computation, scheduling and software auto-tuning
techniques.

Prepared using sagej.cls

	Introduction
	Background
	GPU computing
	Metaheuristics
	Virtual Screening

	Metaheuristics for virtual screening on heterogeneous systems
	METADOCK: Metaheuristics for VS methods
	Search method based on a parameterized metaheuristic schema
	GPU implementation of the scoring function

	Scaling to a heterogeneous node

	Experimental set-up
	Hardware environment
	Benchmarking
	Metaheuristics
	Accuracy of the predictions
	Performance datasets

	Experimental results
	Performance results
	Quality results: accuracy of the predictions

	Conclusions and future work
	Short Biography

