
Accelerating Fibre Orientation Estimation from Diffusion
Weighted Magnetic Resonance Imaging Using GPUs
Moisés Hernández1,4*, Ginés D. Guerrero1, José M. Cecilia2, José M. Garcı́a1, Alberto Inuggi3,

Saad Jbabdi4, Timothy E. J. Behrens4, Stamatios N. Sotiropoulos4

1 Department of Computer Science, University of Murcia, Murcia, Spain, 2 Department of Computer Science, Catholic University of Murcia, Murcia, Spain, 3 Basque Center

on Cognition, Brain and Language, San Sebastian, Spain, 4 Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom

Abstract

With the performance of central processing units (CPUs) having effectively reached a limit, parallel processing offers an
alternative for applications with high computational demands. Modern graphics processing units (GPUs) are massively
parallel processors that can execute simultaneously thousands of light-weight processes. In this study, we propose and
implement a parallel GPU-based design of a popular method that is used for the analysis of brain magnetic resonance
imaging (MRI). More specifically, we are concerned with a model-based approach for extracting tissue structural information
from diffusion-weighted (DW) MRI data. DW-MRI offers, through tractography approaches, the only way to study brain
structural connectivity, non-invasively and in-vivo. We parallelise the Bayesian inference framework for the ball & stick
model, as it is implemented in the tractography toolbox of the popular FSL software package (University of Oxford). For our
implementation, we utilise the Compute Unified Device Architecture (CUDA) programming model. We show that the
parameter estimation, performed through Markov Chain Monte Carlo (MCMC), is accelerated by at least two orders of
magnitude, when comparing a single GPU with the respective sequential single-core CPU version. We also illustrate similar
speed-up factors (up to 120x) when comparing a multi-GPU with a multi-CPU implementation.

Citation: Hernández M, Guerrero GD, Cecilia JM, Garcı́a JM, Inuggi A, et al. (2013) Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic
Resonance Imaging Using GPUs. PLoS ONE 8(4): e61892. doi:10.1371/journal.pone.0061892

Editor: Essa Yacoub, University of Minnesota, United States of America

Received December 18, 2012; Accepted March 14, 2013; Published April 29, 2013

Copyright: � 2013 Hernández et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by Fundación Séneca (Agencia Regional de Ciencia y Tecnologı́a, Región de Murcia) under grant 15290/PI/2010, and by
the Spanish Ministerio de Educación y Ciencia and European Commission FEDER (Fonds Européen de Développement Régional) under grants TIN2009-14475-C04
and TIN2012-31345. Funding also comes from the Human Connectome Project (1U54MH091657-01) from the 16 National Institutes of Health Institutes and
Centers that support the NIH Blueprint for Neuroscience Research. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: moises.hernandez@um.es

Introduction

Having effectively reached a limit in the improvement of the

single-core frequency of central processing units (CPUs), parallel

computing has become the method of choice for applications with

high computational demands. Even if parallelisability is not always

guaranteed, it can be potentially achieved at a high or low level

scale for many applications [1–3]. For heavily parallelisable tasks,

the performance improvement is an increasing function of the

number of available computing cores; the more cores are

available, the higher the speedups that can be achieved compared

to sequential counterpart versions.

Modern Graphics Processing Units (GPUs) are massively

parallel processors that contain hundreds of computing cores.

Even if the instruction sets of these cores are much simpler than

the respective of CPUs [4], GPUs are capable of supporting

thousands of threads running in parallel, reaching (at least

theoretically) peak performances up to a TeraFLOP (A trillion

floating point operations per second). Many general-purpose

applications have been successfully ported to these platforms,

obtaining considerable accelerations[5–7]. Particularly for Mag-

netic Resonance Imaging (MRI), the potential and increased

performance of GPU-based designs has been clearly illustrated

for the computationally-demanding task of image reconstruction

[8–11].

In this paper, we are concerned with the GPU parallelisation of

analysis methods applied for studying brain’s structural connec-

tivity through diffusion-weighted magnetic resonance imaging

(DW-MRI) [12,13]. We illustrate how a GPU-based design and

implementation can dramatically improve the performance of one

of the most popular approaches for processing this type of data.

This approach involves Bayesian inference and parameter

estimation through Markov Chain Monte Carlo (MCMC) of the

ball & stick model [14–16], applied repetitively to volume elements

(voxels) of three-dimensional images. A sequential implementation

of the algorithm is included into Oxford’s software library (FSL)

[17,18] via the bedpostX toolbox. Despite its popularity, a drawback

of this toolbox is the long computation time, since depending on

the parameters of the MRI acquisition protocol, the analysis of a

single dataset can easily take more than 24 hours on a single-core

CPU.

The bedpostX toolbox belongs to a family of processing

methods that provide unique information for studying brain’s

structural connectivity. Traditional neuroimaging techniques

cannot provide enough information about the anatomical

connections between brain regions. However, with the advent of

DW-MRI [19] and variants, such as Diffusion Tensor Imaging

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e61892

(DTI) [20], connectivity analysis has become feasible, non-

invasively and in-vivo. Algorithms for mapping the brain

connections, collectively termed as tractography methods [21,22]

have opened new possibilities for tackling both neuroscience and

neuropathology questions.

BedpostX is one of the major components of FSL’s probabilistic

tractography [14,23] toolbox. We introduce here a parallelisation

of the toolbox on NVIDIA GPUs by using the CUDA

programming model [24]. We identify two main modules in this

application that are studied separately. The first provides a starting

Figure 1. Typical NVIDIA GPU architecture. The GPU is comprised of a set of Streaming MultiProcessors (SM). Each SM is comprised of several
Stream Processor (SP) cores, as shown for the NVIDIA’s Fermi architecture (a). The GPU resources are controlled by the programmer through the
CUDA programming model, shown in (b).
doi:10.1371/journal.pone.0061892.g001

Speeding-Up dMRI Orientation Estimation Using GPUs

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e61892

point for the MCMC algorithm by fitting the model determinis-

tically, minimising the sum of squared residuals. A data parallelism

approach is used for this module. The second module performs the

MCMC. We propose a design to increase parallelism, but also

avoid long-stall warp serialization. Speed-up factors of up to 124x

and 135x are achieved for each of the two modules respectively,

giving an overall speed-up of up to 112x in a single GPU

compared to the sequential single-core CPU version. We also

illustrate an overall speed-up of up to 120x for a cluster of GPUs

compared to a CPU cluster version.

The impact of these accelerations cannot be underestimated, as

they change our perception on what is computationally feasible for

brain anatomical studies. Big databases, comprising of massive and

high-resolution datasets are soon becoming available (for instance

through the Human Connectome Project [25]). Data analysis

within reasonable time frames is a major engineering challenge

and studies that reduce computation times by orders of magnitude

are assisting towards this direction. Furthermore, more accurate

but computationally demanding models [26] could be benefitted

from similar approaches. Finally, closer to real-time processing

could make probabilistic tractography methods more appealing for

clinical practice (as in neurosurgical planning [27]).

The rest of the paper is structured as follows. We start by

introducing background concepts on DW-MRI, the ball & stick

model and GPU programming. Then, we describe the sequential

algorithm that is used by the bedpostX application. We present in

detail the parallel version implemented in CUDA. The sequential

and parallel implementations are compared using a set of tests.

Discussion of results and conclusions are presented in the last

section. Preliminary results of this work have been presented

before in a short conference paper [28].

Background

Diffusion-Weighted MRI and the Ball & Stick Model
Diffusion-weighted MRI is sensitive to the diffusion motion of

water molecules. Features of diffusion vary throughout the

different brain tissues; white matter, which mostly comprises of

neuronal axons, grey matter, which contains mainly cell bodies,

and cerebrospinal fluid (CSF)-filled regions. Particularly in white

matter diffusion is anisotropic; water diffuses preferably along

rather than across the axons [29]. In grey matter and CSF regions

diffusion is isotropic, i.e. there is no preference for diffusion along

any particular orientation. By applying strong magnetic field

gradients in several and different directions, it is possible to map

these Preferred Diffusion Orientations (PDOs) in each image volume

element (voxel), where diffusion is anisotropic. Thus, PDOs

provide local fibre orientation estimates, i.e. the major axon

orientations within an image voxel [30]. Tractography approaches

can then utilise PDOs to reconstruct the underlying brain

connections, which are mediated by bundles of neuronal axons

[21].

To estimate the PDOs a set of diffusion-weighted magnetic

resonance images are needed. Each DW image has a contrast that

is sensitive to diffusion motions along a specific direction, the

direction of an applied diffusion-sensitizing magnetic field gradient

[31]. Many DW images are commonly acquired along K different

directions to effectively sample the signal on a unit sphere domain.

Various model-based and model-free approaches have been

suggested to estimate the PDOs through the DW-MRI spherically-

sampled signal in each voxel [32]. A popular approach that also

takes care of within-voxel fibre crossings, a common problem in

tractography, is the ball & stick model [14,15]. The approach has

been implemented in the bedpostX toolbox of the FSL software

(developed by the centre for Functional MRI of the Brain,

FMRIB, at the University of Oxford). The ball & stick model

explains this signal in each voxel of the brain volume, using a

multi-compartment decomposition. It assumes a fully isotropic

compartment (the ball) and L§1 perfectly anisotropic compart-

ments (the sticks). The orientations of these sticks provide the

PDOs in a voxel.

Equation 1 shows the signal model when each of the k~1 : K
gradient directions is applied:

Sk~S0½(1{
XL

j~1

fj) exp ({bkd)z
XL

j~1

fj exp ({bkd(gT
k vj)

2)�: ð1Þ

S0 is a baseline signal without any diffusion weighting; bk

depends on the magnitude and duration of the kth diffusion-

sensitizing gradient, gk indicates the direction of this gradient, d is

the diffusivity, and finally fj[½0,1� and vj describe the volume

fraction and orientation of the jth stick (PDO), with:

vj~ sin (hj) cos (qj) sin (hj) sin (qj) cos (hj)½ �T , ð2Þ

with hj[½0,p� and qj[½0,2p�. The above model has R~2z3 � L

unknown parameters to be estimated.

BedpostX inverts the above model using a Bayesian inference

framework. Equation 1 can be used to obtain the likelihood, the

conditional distribution of the data measurements given the model

parameters. Bayes theorem allows us to calculate the posterior

distribution of the parameters given the data P(parameters Ddata).
Thus, a distribution is estimated for each of the model parameters

S0, d, hj , qj and fj , j~1 : L. This is performed using a Markov

Chain Monte Carlo (MCMC) algorithm [33], which is initialized

using a Levenberg-Marquardt fit of the model to the data [34].

Certain features of the above implementation make it a good

candidate for a GPU-based design. These can be summarised into

the following: a) Independence between voxels across the three-

dimensional brain volume allows voxel-based parallelisation, b)

Within each voxel, certain computation steps of data analysis are

intrinsically iterative and independent, allowing further paralleli-

sation (for instance, likelihood calculation within the MCMC), c)

Relatively simple mathematical operations are needed and these

can be handled effectively by the GPU instruction set and d)

Memory requirements are moderate during each step of the

algorithm.

The NVIDIA’s GPU Architecture and CUDA Programming
Model

All NVIDIA GPU platforms from the G80 architecture may be

programmed using the CUDA programming model [24], which

makes the GPU operate as a highly parallel computing device.

Each GPU device is a scalable processor array consisting of a set of

SIMT (Single Instruction Multiple Threads) [4,35] Streaming
Figure 2. The sequential pseudo-code of bedpostX.
doi:10.1371/journal.pone.0061892.g002

Speeding-Up dMRI Orientation Estimation Using GPUs

PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e61892

Multiprocessors (SM), each containing several Stream Processors

(SPs) (see Figure 1(a)). The GPU has a global scheduler (Giga

Thread) for distributing the work to the SMs and a host interface.

Different memory spaces are also available within a GPU, having

different latencies, storage capacity and access methods. These

memory spaces, ordered from low to high latency are: the register

file (32768 32-bit registers per SM in NVIDIA compute capability

devices 2.X), the shared memory/L1 cache (64 KB per SM), the

L2 cache (768 KB) and the global memory (DRAM, 1 - 6 GB).

Figure 3. Distribution of resources for the CUDA kernel that performs the Levenberg-Marquardt algorithm. Voxels are assigned to
threads of CUDA blocks. Each CUDA block is comprised of Q threads and processes Q voxels (Q~64 was used in this study).
doi:10.1371/journal.pone.0061892.g003

Figure 4. Distribution of resources for the CUDA kernel that performs the MCMC algorithm. Each voxel is assigned to more than one
thread within a thread block, so that the likelihood calculation is parallelised. Each CUDA block is comprised of Q threads and processes only 1 voxel
(Q~64 was used in this study).
doi:10.1371/journal.pone.0061892.g004

Speeding-Up dMRI Orientation Estimation Using GPUs

PLOS ONE | www.plosone.org 4 April 2013 | Volume 8 | Issue 4 | e61892

Figure 5. Workflow in the MCMC kernel. (a) Workflow for a single iteration and a single parameter update describing how computation tasks are
distributed between the threads of a block (Q) in a case with K§Q gradient directions. The calculation of the model-predicted signals for the
different gradient directions is distributed as evenly as possible between threads within a thread block. The remaining tasks, which are not
computationally demanding, are performed by a leader thread, while the rest of threads are waiting. (b) Workflow for a thread block of the MCMC
kernel that performs all T iterations for all R parameters (i.e. for a voxel). Each block has Q(~64) threads. The threads need to be synchronised at
certain steps.
doi:10.1371/journal.pone.0061892.g005

Speeding-Up dMRI Orientation Estimation Using GPUs

PLOS ONE | www.plosone.org 5 April 2013 | Volume 8 | Issue 4 | e61892

The CUDA programming model utilises this architecture and is

based on a hierarchy of abstraction layers (see Figure 1(b)). The

thread is the basic execution unit that is mapped to a single SP.

A thread-block or simply block is a batch of threads assigned

to the same SM, and therefore share all the resources included in

that multiprocessor, such as the register file and shared memory.

The threads within a block can communicate through the shared

memory. Finally, a grid is composed of several blocks which are

equally distributed and scheduled across all SMs in a non-

deterministic manner.

Threads included within a block are divided into batches of 32

threads called warps. The warp is the scheduled unit, so the

threads of the same block are executed in a given multiprocessor

warp-by-warp in a SIMD (single instruction, multiple data)

fashion. The programmer arranges parallelism by declaring the

number of blocks and the number of threads per block to use in a

specific kernel. To avoid wasting SP resources, the number of

threads per block should be a multiple of 32 (i.e. a warp). The

maximum number of threads per block since NVIDIA 2.0

compute capability is 1024.

The reader is referred to [35] for a comprehensive overview of

the Fermi architecture and to [24] for a comprehensive overview

of the GPU programming model.

Methods

Description of the Sequential BedpostX Implementation
The input of the bedpostX application is a 4D dataset that

represents the DWI brain acquisition of a given subject, with the

three dimensions representing location in space (i.e. voxel

coordinates) and the fourth corresponding to the K diffusion-

sensitising gradients applied (i.e. one 3D volume corresponding to

each diffusion gradient). The computational demands depend on

the size of the dataset, but also on the number L of fibre

orientations (sticks) to be estimated, as well as on the number T of

iterations of the MCMC algorithm. The parameter estimation for

each voxel location is performed independently and sequentially

on a single-core CPU.

Figure 2 summarizes this sequential process, which comprises of

two main steps: (1) An initial estimation of the parameters through

a Levenberg-Marquardt algorithm, and (2) the estimation of the

posterior distribution of the model parameters given the data

through the MCMC.

The Levenberg-Marquardt algorithm is based on an iterative

numerical optimization procedure that minimizes the sum of

squared model residuals [34]. It performs a first, deterministic

estimation of the parameters for each voxel and provides a starting

point for the MCMC algorithm. The algorithm then proposes in

an iterative fashion values for each parameter drawn from Normal

proposal distributions (random walk Metropolis).

Whenever a new parameter value is proposed, its posterior

probability needs to be evaluated. This involves the calculation of

a likelihood term (thus multiple signal calculations using equation

Figure 6. Execution times for the MCMC GPU kernel using
different number of threads per block Q. Results are shown for
different number K of gradient directions (50, 100 and 200), for a slice of
4804 voxels (L~2 fibres, T~4250 MCMC iterations (3000 burn-in)).
doi:10.1371/journal.pone.0061892.g006

Table 1. Major Hardware features for Tesla C2050 and M2090
GPUs.

GPU element Feature Tesla C2050 Tesla M2090

SPs
(GPU cores)

SPs per SM 32 32

SMs 14 16

Total num. cores 448 512

Clock frequency 1.15 GHz 1.3 GHz

Maximum
number of
threads

Per SM 1536 1536

Per block 1024 1024

Per warp 32 32

SRAM
memory
available
per SM

32-bit registers 32 K 32 K

Shared memory 16/48 KB 16/48 KB

L1 cache 48/16 KB 48/16 KB

Total SRAM

(shared+L1) 64 KB 64 KB

Size 3 GB 6 GB

Global
(video)
memory

Speed 261.546 GHz 261.85 GHz

Width 384 bits 384 bits

Bandwidth 148 GB/sec 177 GB/sec

Technology GDDR5 GDDR5

DRAM DRAM

doi:10.1371/journal.pone.0061892.t001

Table 2. Theoretical Peak Performance of the GPUs devices
and CPU cores used.

Device Cores
Clock
Frequency

Single
Precision

Double
Precision

NVIDIA Tesla C2050 448 1.15 GHz 1030.4 GFLOPS 515.2 GFLOPS

NVIDIA Tesla M2090 512 1.3 GHz 1331.2 GFLOPS 665.6 GFLOPS

1 core of Intel Xeon
E5620

1 2.40 GHz 19.2 GFLOPS 9.6 GFLOPS

1 core of Intel Xeon
X5650

1 2.66 GHz 21.28 GFLOPS 10.64 GFLOPS

doi:10.1371/journal.pone.0061892.t002

Speeding-Up dMRI Orientation Estimation Using GPUs

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e61892

Figure 7. Comparison between CPU and GPU model estimates for the diffusivity d, the baseline signal So and the volume fraction of
the first fibre f1, in different brain areas. (a) A corpus callosum voxel, (b) a centrum semiovale voxel and (c) a grey matter voxel. Each design was
ran 1000 times on the same data and for each repeat the mean of the posterior distribution of the respective parameter was recorded. The
histograms show the distributions of these means across all 1000 repeats. For each repeat, a burn-in period of 3000 iterations and a thinning period
of 25 samples was used for the MCMC.
doi:10.1371/journal.pone.0061892.g007

Speeding-Up dMRI Orientation Estimation Using GPUs

PLOS ONE | www.plosone.org 7 April 2013 | Volume 8 | Issue 4 | e61892

1 are needed) and a prior probability term, that describes our prior

belief for the parameters before looking at the data. The proposed

parameter values are then accepted or rejected based on a

Metropolis acceptance criterion. Therefore, within a MCMC

iteration, the step with the highest computational cost is the

calculation of the posterior probability value each time a new

parameter value is proposed.

Parallel Design in CUDA
A first straight-forward step towards a parallel design is

motivated by the independent nature of the model parameters

between voxels. This would entail parallel processing of multiple

voxels. In FSL, a similar philosophy is followed [17,18]. Large

groups of voxels (e.g. slices) are fed into different CPU cores and

processed independently and sequentially by using a large CPU

cluster and the SunGridEngine [36]. This design, however, is

based on task parallelism and, thus, it involves heavy tasks assigned

to each processor. Task-based parallelism is not theoretically well-

suited for GPU programming; within a SM of the GPU, all

threads that belong to the same warp will execute the same

instruction at a time. Therefore, they cannot execute different

tasks, but they can execute the same instruction over different

data. A data-based approach can lead to better performance,

taking advantage of the thousands of light-weight threads that can

run in parallel [37].

Our data-based parallelism approach for this problem is

obtained by thinking about how data can be partitioned. We

utilise parallelisation in the sub-voxel level. As we have seen, two

computational stages run for every voxel (the Levenberg-

Marquardt and the MCMC) and these are independent across

voxels. These stages are identified as CUDA kernels, which are

executed one after the other in a massively parallel way on the

GPU.

Levenberg-marquardt kernel. The first CUDA kernel

performs the Levenberg-Marquardt algorithm. This kernel maps

Figure 8. Comparison of single-core CPU and GPU execution times (in log scale) running the Levenberg-Marquardt algorithm with
speed gains over two orders of magnitude: (a) As the number of Levenberg-Marquardt iterations are increased, and (b) as the
number of voxels per slice are increased. The execution times for (a) are for a slice of 4804 voxels, with the convergence criterion of the
algorithm decreased to allow more iterations. For each case, results are shown for different number K of gradient directions (64, 128 and 256) and for
estimating L~2 fibres.
doi:10.1371/journal.pone.0061892.g008

Figure 9. Comparison of single-core CPU and GPU execution times (in log scale) running the MCMC algorithm with speed gains
over two orders of magnitude: (a) As the number of MCMC iterations are increased, and (b) as the number of voxels per slice are
increased. The execution times for (a) are for a slice of 4804 voxels and for (b) for 1000 MCMC iterations. For each case, results are shown for
different number K of gradient directions (64, 128 and 256) and for estimating L~2 fibres.
doi:10.1371/journal.pone.0061892.g009

Speeding-Up dMRI Orientation Estimation Using GPUs

PLOS ONE | www.plosone.org 8 April 2013 | Volume 8 | Issue 4 | e61892

each CUDA thread to a voxel (see Figure 3), and it launches as

many threads as voxels contained in a particular slice. Because

processing of different voxels is totally independent, the threads do

not need to synchronize. It is noteworthy that each thread must

compute all steps of the Levenberg-Marquardt algorithm using

large intermediate structures (the size of the structures depends on

the number of parameters to fit and the number of gradient

directions K of the input dataset). That involves managing many

hardware resources and on-chip memories, specifically the

registers, which are limited to a maximum number of 64 per

thread, at least up to NVIDIA’s Fermi architecture used here. We

should point out that for input datasets with a high number K of

diffusion-sensitising directions, a thread may run out of registers

and therefore need to utilise the Global memory. This will

inevitably increase latencies each time data have to be read or

written. The more recent Kepler architecture [38] supports up to

255 registers per thread and will potentially improve performance.

To achieve a high occupancy of the GPU hardware, while also

accounting for the fact that different slices in the brain may have

very different number of voxels, we optimised the number of

threads per block Q (which as explained before needs to be a

multiple of 32 to avoid wasting resources with under-populated

warps). The target is to have as many threads as possible per SM

(organised in warps) to ‘‘hide’’ latencies that may be induced by

Global memory access (while a warp is accessing Global memory,

the SM can process another warp). The available number of

registers per SM is 32768. If we use the maximum number of

registers per thread (minimizing that way the number of Global

memory accesses), the maximum number of threads running per

SM simultaneously is 512 (32768 registers/64 registers per

thread = 512 threads per SM or 16 warps per SM). Choosing

how to distribute these threads in blocks of size Q affects

performance.

In general, smallerQ provides greater flexibility to the scheduler

to distribute threads better. For instance, let’s imagine the case

where 2 SMs are free and there are only 128 voxels (threads) to be

processed. If we choose Q~128 (4 warps) we will use only one of

the two SMs (all threads belong to the same block and therefore

must be executed by the same SM). But if Q~64 (2 warps) we can

use both SMs (2 warps in each SM), therefore achieving greater

parallelisation. The minimum number for Q is 32 (to avoid under-

populated warps). However, a limitation imposed in NVIDIA 2.X

compute capability devices is that any SM can only handle 8

different blocks simultaneously. Therefore, if we set Q~32 the

maximum number of warps simultaneously in a SM are 8 (32

threads * 8 blocks/32 threads of a warp), i.e. half of the maximum

warps an SM can handle in our case. Therefore, we set the

number of threads to the next minimum number Q~64 to get the

best balance of threads between the different SMs and the best

performance for this algorithm in our application.

MCMC kernel. Our second CUDA kernel implements the

MCMC algorithm. This computation has three main issues: (1) it

needs to draw random samples from probability distributions (in

this case Normal and Uniform distributions), which implies

generation of many random numbers for each voxel, (2) the input

of each iteration depends on the output of the previous one, and

thus, iterations have to be processed sequentially, and (3) there are

dependencies among the different parameters that compose the

signal (Equation 1).

The random number generation is computationally expensive.

Therefore, we decided to perform the calculation of all random

numbers in a separate kernel, before the MCMC kernel execution

takes place. Figures 4 and 5 show the underlying design of the

MCMC kernel that efficiently addresses (2) and (3) according to

the CUDA best practices [39]. Contrary to the Levenberg-

Marquardt kernel, each voxel is processed by more than one

Table 3. Speed-ups for running bedpostX in a GPU over a
single-core CPU.

K GRADIENT DIRECTIONS L FIBRES SPEEDUP

1 68x

64 2 77x

3 79x

1 95x

128 2 95x

3 96x

1 112x

256 2 99x

3 97x

doi:10.1371/journal.pone.0061892.t003
Figure 10. Total execution times (in log scale) of the bedpostX
application in a single-core CPU and a Tesla C2050 GPU for the
whole dataset (30 slices), as the number of fibres L is increased.
Results are shown for different number K of gradient directions (64, 128
and 256) and when T~4250 MCMC iterations were utilised (3000 burn-
in iterations).
doi:10.1371/journal.pone.0061892.g010

Table 4. Speed-ups for running bedpostX in a cluster of GPUs
over a cluster of CPUs.

K GRADIENT DIRECTIONS L FIBRES SPEEDUP

1 71x

64 2 85x

3 86x

1 88x

128 2 108x

3 109x

1 104x

256 2 116x

3 120x

doi:10.1371/journal.pone.0061892.t004

Speeding-Up dMRI Orientation Estimation Using GPUs

PLOS ONE | www.plosone.org 9 April 2013 | Volume 8 | Issue 4 | e61892

thread and is assigned to a thread block of size Q. This design

allows many, very light-weight threads (#voxels|Q threads) to

fully occupy the hardware resources of the GPU.

During a MCMC of T iterations (T|R|K) evaluations of

Equation (1) and (T|R) posterior probability evaluations are

needed. During each posterior probability evaluation (Figure 5A),

the calculations of the model predicted signal for the K different

diffusion-sensitising gradients are distributed and parallelised

between the different threads within the thread block as evenly

as possible. When KwQ, more than one evaluations of Equation

(1) are performed by each thread, at a given iteration of the

algorithm. As shown in Figure 5A it is possible for some threads to

perform one more calculation of Equation (1) than others.

After calculating K model-predicted signals, the threads from

the same block are synchronised and their results are jointly used

through the shared memory of the respective SM, to produce the

posterior probability values. In each iteration of the MCMC

algorithm, there are some steps (propose a new parameter and

calculate the posterior probability to make the decision of whether

to accept or reject) undertaken by one thread of the block. While

this ‘‘leader’’ thread performs these tasks (Tasks 1 and 3 in

Figure 5A), the other threads are waiting. As these tasks are very

fast, latencies are minimal. In addition, before each task, all the

threads of the block must be synchronised, as there are

dependencies across tasks. Figure 5B further illustrates the

workflow and pseudo-code with these necessary synchronizations

of the MCMC algorithm for a CUDA thread block processed in

the GPU.

As in the case of the Levenberg-Marquardt kernel, when we

choose the number of threads per block in the MCMC kernel, our

target is to have simultaneously as many warps per SM as possible

(to ‘‘hide’’ latencies from Global memory accesses). In the MCMC

kernel, there are additional accesses, as the random numbers used

during the MCMC are pre-generated and stored in the Global

memory. If we useQwK there will be idle threads inside the block

and we will have unused resources (SPs and shared memory). If Q
is not a multiple of K then the gradient directions will be

distributed unevenly across threads. In addition, the limitations

discussed in previous sections also exist, making the choice of the

optimal Q less straightforward. We therefore evaluated perfor-

mance for different numbers of Q and different numbers of K.

Figure 6 shows some illustrative examples. As it can be observed, a

Q of 64 gave on average the smallest execution times. We

therefore chose Q~64 for this kernel.

Multi-GPU Design
Up to now, we have exploited the hardware resources of a single

GPU to speed-up bedpostX by using a granularity defined by the

number of voxels and of diffusion-sensitising gradients. However,

the intrinsic, higher-level parallelism using groups of voxels may be

used to enhance even more the performance of the application in a

multi-GPU environment. Therefore, we divide the voxels into a set

of slices and assign each slice to one of the GPUs. A GPU runs

both kernels for all voxels of the assigned slice. Such a design,

suitable for running on a GPU cluster, is compared in the

following sections to the CPU cluster design of FSL.

We should point out that, in general, cluster-based designs may

require extra time to achieve communication across different

nodes (GPUs or CPU cores). In our case, the different nodes don’t

need to communicate because the slices are totally independent.

Therefore, execution times reported for both multi-GPU and

multi-CPU versions do not include any overheads of this type.

Experiments

Hardware Features
We have used two different GPU-based systems for testing our

design. Both systems are Intel-based hosts that provide service to

GPU devices. The first system had a Nvidia Tesla C2050 GPU

[40] and a main processor Intel Xeon E5620 2.40 GHz with

16 GB of main memory. The second system was a GPU cluster

with 372 Nvidia Tesla M2090 GPUs [41], based on the Fermi

architecture [35]. It comprised of 84 processors Intel Xeon X5650

2.66 GHz, with 48 GB-96 GB of main memory each. The cluster

used the platform LSF 8 [42] to handle jobs. Major features for the

GPU devices are summarized in Table 1. Table 2 shows the

theoretical peak performance in FLOPS (FLoating-point Opera-

tions Per Second) for each used device.

Comparisons were performed using both GPU systems and

their respective CPUs. Single-core experiments were performed on

the first system, with the sequential version of the algorithm

running on a single-core CPU and the CUDA design on the GPU.

Multi-GPU and multi-CPU experiments were performed on the

cluster, using respectively as many GPUs and CPU cores as the

number of slices in the dataset.

Finally, we used for our tests the 4.2 CUDA compiler version

(also 4.2 Driver Version and 4.2 Runtime Version) and the gcc

4.4.3 compiler version.

Diffusion-weighted MRI Data
A healthy male subject was scanned in a 3 T Siemens Trio

clinical imaging system, after giving informed consent. A diffusion-

weighted acquisition (single-shot EPI) was performed. The

acquisition matrix was 96696 with in-plane resolution 262 mm2

and 2 mm slice thickness (TR = 4.9 s, TE = 111 ms, 32-channel

coil, 6/8 partial Fourier). Thirty slices were acquired in total and

diffusion weighting was applied in K~256 evenly spaced

directions with b = 2500 s/mm2.

Another high-resolution dataset was acquired using a 3 T

Connectom Skyra system. A diffusion-weighted acquisition (single-

shot EPI) was performed, with an acquisition matrix of 1406168,

in-plane resolution 1.2561.25 mm2 and 1.25 mm slice thickness

(TR = 4.8 s, TE = 85 ms, 32-channel coil, 6/8 partial Fourier). A

Figure 11. Total execution times (in log scale) of the bedpostX
application in a CPU cluster and 372 GPUs Tesla M2090
processing 102 slices, as the number of fibres L is increased.
Results are shown for different number K of gradient directions (64, 128
and 256) and when T~4250 MCMC iterations were utilised (3000 burn-
in iterations).
doi:10.1371/journal.pone.0061892.g011

Speeding-Up dMRI Orientation Estimation Using GPUs

PLOS ONE | www.plosone.org 10 April 2013 | Volume 8 | Issue 4 | e61892

hundred and two slices were acquired in total and diffusion

weighting was applied in K~256 evenly spaced directions with

b = 1500 s/mm2. A multiband factor of 3 was employed [25,43].

We used the above datasets to compare the computational

performance of the two designs, sequential and CUDA. Tests were

performed for different number R of model parameters, which

increase with L, the number of fibres in the ball & stick model.

Also, for different number of diffusion-sensitising gradients K, by

taking subsets from the original dataset. The first dataset was used

for all the comparisons between a single-core CPU and a GPU.

The high resolution dataset was used to compare the multi-GPU

and multi-CPU versions.

Results

Before comparing the different designs in terms of their

execution time, we first evaluated the similarity of their model

estimates. Due to the random aspects of the MCMC algorithm,

each execution of the algorithm returns slightly different model

estimates; even if the same design is ran on the same data.

However, model estimates for a given design are expected to be

the same on average. For that reason, we chose some representative

voxels in the brain, from regions with different anatomical

features, and we examined whether the different designs return

on average the same results. For every voxel, both CPU and GPU

designs were executed 1000 times each. For each execution, the

mean of the respective posterior distribution for every model

parameter was recorded. The histograms of these mean values

across the 1000 repeats were then compared for the CPU and

GPU design. Three examples are shown in Figure 6 that also show

the histograms of three different model parameters. It is clear that

both designs return almost identical estimates.

A second way of validating the CUDA design against the

sequential one is to store and keep all random numbers exactly the

same for both designs and compare the MCMC estimates. We

performed this second test (results not shown) and we found

differences only due to precision caused by the different rounding

modes between CPU and GPU [44].

We further performed performance comparisons and assessed

speed-ups achieved by the CUDA design, under different aspects:

N Comparison of each CUDA kernel versus its CPU counter-

part.

N Scalability of performance when varying the number of

iterations for each kernel.

N Scalability when increasing the number R of model parame-

ters, the dataset size (number of voxels) or the number K of

diffusion-sensitising gradient directions.

N Overall comparison of single GPU versus the single-core CPU

counterpart version included in FSL.

N Comparison of our multi-GPU version versus a multi-CPU

version using a cluster.

Levenberg-Marquardt kernel evaluation
Figure 7 shows a performance comparison between a single-

core CPU and a GPU when executing Levenberg-Marquardt for

three data sets with different number K of gradient directions (64,

128 and 256) and when estimating L~2 fibres. In Figure 7a

execution times for a slice are shown as the number of iterations is

increased (i.e. the convergence criterion for the optimisation is

reduced). A good scalability of the GPU version is shown

compared to the CPU version. In Figure 7b, execution times are

shown for different slice sizes (i.e. different number of voxels to be

processed). A linear speedup is obtained whenever the number of

voxels increases. The maximum speed-up for 128 gradient

directions was 120x.

MCMC kernel evaluation
Figure 8 shows the performance evaluation of the MCMC

kernel on a single GPU compared to the sequential counterpart

version in a single-core CPU for three data sets with different

number K of gradient directions (64, 128 and 256) and for

estimating L~2 fibres. Similar as before, Figure 8a presents

execution times as the number of MCMC iterations increase and

Figure 8b as the number of voxels to be processed increase. In

both cases, we can see the scalability of the GPU version versus the

CPU version. The maximum speed-up for 128 gradient directions

was 135x.

Overall performance in a single GPU
The total execution times of the bedpostX application on a

single-core CPU and a GPU are shown in Figure 9 for processing

the whole dataset (30 slices). Execution times are plotted against

the number of fibres L to be estimated and for different number K

of gradient directions. Table 3 summarizes the speed-up factors

obtained for bedpostX.

Overall Performance in a Multi-GPU System
Figure 10 shows the execution times of bedpostx in a cluster of

either CPUs or GPUs. The reported times are for the high-

resolution dataset of 102 slices as the number of fibres L is

increased. The experiments were performed in the supercomputer

previously described in Section. Concretely, we used 102 CPU

cores and 102 GPUs. Table 4 summarizes the speed-up factors

obtained for bedpostX.

Discussion

We have designed and implemented a GPU-based parallelisa-

tion of a popular toolbox that is used for brain anatomical studies.

The bedpostX tool within the FSL software is commonly used to

estimate fibre orientations from diffusion-weighted magnetic

resonance images. Our design included the implementation of

two main CUDA kernels, which we validated and compared

against single-core CPU counterparts. We have achieved speed-up

factors of up to 112x in a single GPU compared to its sequential

single-core CPU counterpart version. We also tested the compar-

ison of our design in a multi-GPU system and achieved a 120x

speed-up to a multi-CPU version. These improvements mean, in

practical terms, that our approach reduces the processing time of

bedpostX to a few minutes per subject using a single GPU on

commonly acquired diffusion MRI data (2 mm isotropic, whole

brain coverage, 60 diffusion-sensitising directions).

The scalability in both the single and multi-GPU/CPU

architectures is roughly steady, in number of GPUs/CPU cores

(Figures 10, 11). We can therefore extrapolate execution times and

compare performances of configurations that were not explicitly

tested here. For instance, if we would like to compare the single-

GPU version with a CPU cluster, we would expect that we need

more than 100 cores on the cluster to achieve a similar

performance as a single GPU, but of course at a multiple cost.

Although we have obtained a notable reduction in execution

time, the CPU is only monitoring the execution of the GPU in the

current implementations. We can also use the CPU to compute

part of the workload, taking advantage of the heterogeneous

nature of the modern computers and this will be part of a future

study.

Speeding-Up dMRI Orientation Estimation Using GPUs

PLOS ONE | www.plosone.org 11 April 2013 | Volume 8 | Issue 4 | e61892

The CUDA programming model is a proprietary closed

platform. OpenCL (Open Computing Language) [45] is an open

standard and an alternative for these implementations. At this

stage, we opted for CUDA, as it is currently more mature and

achieves better performance [46]. However, our design is not

particularly tied to CUDA and its main components could be

implemented using a different platform.

The computational performance reported in this study cannot

be underestimated. Efforts to map the structural connections in the

human brain, such as the Human Connectome Project [25], will

provide massive and high-resolution datasets, whose processing is

very computationally demanding. Furthermore, advances in MRI

protocol acceleration, such as multiband acquisition [43], will

allow the collection of much more data at a given amount of time.

Input datasets from future acquisitions will be much larger in size

and much more demanding for their processing. Therefore, speed-

ups of more than two orders of magnitude in data processing, as

the ones reported here, are heavily beneficial.

Other studies have recently proposed the utilisation of GPUs in

the context of brain connectivity analysis and tractography.

However, in [47,48] GPUs were used only for visualising

tractography results. The approaches proposed in [49–51]

perform deterministic tractography rather than dealing with a

probabilistic Bayesian inference framework, as in our study.

Finally, Xu et al have very recently presented an implementation

with a similar aim to ours [52]. However, their MCMC GPU-

based design achieves a maximum speed-up of 34x compared to

the single-core CPU version, significantly smaller than the 112x

speed-up that our design achieved. Even if it is difficult to identify,

we believe that this difference is mostly due to our MCMC kernel

design (Figure 5) and the second level of parallelisation achieved.

Acknowledgments

The work presented here made use of the EMERALD HPC facility

provided by the e-Infrastructure South Centre for Innovation. We would

also like to thank Dr Karla Miller and Dr Essa Yacoub for providing the

data.

Author Contributions

Conceived and designed the experiments: MH GDG JMC JMG AI SNS.

Performed the experiments: MH. Analyzed the data: MH SJ SNS.

Contributed reagents/materials/analysis tools: MH TEJB SNS. Wrote the

paper: MH JMC JMG SJ TEJB SNS.

References

1. Asanovic K, Bodik R, Catanzaro BC, Gebis JJ, Husbands P, et al. (2006) The

Landscape of Parallel Computing Research: A View from Berkeley. Technical
Report UCB/EECS-2006–183, EECS Department, University of California,

Berkeley.

2. Owens JD, M H, Luebke D, Green S, E SJ, et al. (2008) GPU Computing.
Proceedings of the IEEE 96: 879–899.

3. Keckler SW, Dally WJ, Khailany B, Garland M, Glasco D (2011) Gpus and the

future of parallel computing. IEEE Micro 31: 7–17.

4. Lindholm E, Nickolls J, Oberman S, Montrym J (2008) NVIDIA Tesla: A

Unified Graphics and Computing Architecture. IEEE Micro 28: 39–55.

5. Hwu WW, NVIDIA Corporation, editors (2011) GPU Computing Gems.
Emerald Edition. Burlington: Morgan Kaufmann.

6. Garland M, Le Grand S, Nickolls J, Anderson J, Hardwick J, et al. (2008)

Parallel Computing Experiences with CUDA. IEEE Micro 28: 13–27.

7. Che S, Boyer M, Meng J, Tarjan D, W SJ, et al. (2008) A performance study of
general-purpose applications on graphics processors using CUDA. Journal of

Parallel and Distributed Computing 68: 1370–1380.

8. Stone SS, Haldar JP, Tsao SC, Hwu WmW, Sutton BP, et al. (2008)

Accelerating advanced MRI reconstructions on GPUs. Journal of Parallel and
Distributed Computing 68: 1307–1318.

9. Murphy M, Alley M, Demmel J, Keutzer K, Vasanawala S, et al. (2012) Fast ,1-

SPIRiT Compressed Sensing Parallel Imaging MRI: Scalable Parallel
Implementation and Clinically Feasible Runtime. IEEE Transactions on

Medical Imaging 31: 1250–1262.

10. Chi J, Liu F, Weber E, Li Y, Crozier S (2011) GPU-Accelerated FDTD

Modeling of Radio-Frequency FieldTissue Interactions in High-Field MRI.
IEEE Transactions on Biomedical Engineering 58: 1789–1796.

11. Sorensen TS, Schaeffter T, Noe KO, S HM (2008) Accelerating the

Nonequispaced Fast Fourier Transform on Commodity Graphics Hardware.
IEEE Transactions on Medical Imaging 27: 538–547.

12. Johansen-Berg H, Behrens TEJ, editors (2009) Diffusion MRI: From

quantitative measurement to in-vivo neuroanatomy. San Diego: Academic
Press.

13. Jones DK, editor (2011) Diffusion MRI: Theory, Methods, and Applications.

New York: Oxford University Press.

14. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, et al.

(2003) Characterization and Propagation of Uncertainty in Diffusion-Weighted
MR Imaging. Magnetic Resonance in Medicine 50: 1077–1088.

15. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007)

Probabilistic diffusion tractography with multiple fibre orientations: What can
we gain? NeuroImage 34: 144–155.

16. Jbabdi S, Sotiropoulos SN, Savio AM, Graña M, Behrens TE (2012) Model-

based analysis of multishell diffusion MR data for tractography: how to get over

fitting problems. Magnetic Resonance in Medicine 68: 1846–1855.

17. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, et al.
(2004) Advances in functional and structural MR image analysis and

implementation as FSL. NeuroImage 23: S208–S219.

18. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, et al. (2009)
Bayesian analysis of neuroimaging data in FSL. NeuroImage 45: S176–S186.

19. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, et al. (1986) MR

imaging of intravoxel incoherent motions: application to diffusion and perfusion

in neurologic disorders. Radiology 161: 401–407.

20. Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion

tensor from the NMR spin echo. Journal of Magnetic Resonance Series B 103:
247–254.

21. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber

tractography using DT-MRI data. Magnetic Resonance in Medicine 44: 625–
632.

22. Behrens TEJ, Jbabdi S (2009) MR diffusion tractography. In: Johansen-Berg H,

Behrens TEJ, editors, Diffusion MRI: From quantitative measurement to in-vivo
neuroanatomy, San Diego: Academic Press. 333–351.

23. Parker GJ, Haroon HA, Wheeler-Kingshott CA (2003) A framework for a

streamline-based probabilistic index of connectivity (PICo) using a structural

interpretation of MRI diffusion measurements. Journal of Magnetic Resonance
Imaging 18: 242–254.

24. NVIDIA Corporation (2012) NVIDIA CUDA C Programming Guide 4.2.

25. Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE, et al. (2012) The

Human Connectome Project: A data acquisition perspective. NeuroImage 62:
2222–2231.

26. Sotiropoulos SN, Behrens TE, Jbabdi S (2012) Ball and rackets: Inferring fiber

fanning from diffusion-weighted MRI. NeuroImage 60: 1412–1425.

27. Clark CA, Barrick TR, Murphy MM, Bell BA (2003) White matter fiber tracking
in patients with space-occupying lesions of the brain: a new technique for

neurosurgical planning? NeuroImage 20: 1601–1608.

28. Hernandez M, Guerrero GD, Cecilia JM, Garcia JM, Inuggi A, et al. (2012)
Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic

Resonance Imaging Using GPUs. In: 20th Euromicro International Conference

on Parallel, Distributed and Network-Based Processing (PDP): 622–626.

29. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system

- a technical review. NMR in Biomedicine 15: 435–455.

30. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor

MR imaging of the human brain. Radiology 201: 637–648.

31. Stejskal EO, Tanner JE (1965) Spin Diffusion Measurements: Spin Echoes in the

Presence of a Time-Dependent Field Gradient. Journal of Chemical Physics 42:

288–292.

32. Seunarine KK, Alexander DC (2009) Multiple fibers: Beyond the diffusion
tensor. In: Johansen-Berg H, Behrens TEJ, editors, Diffusion MRI: From

quantitative measurement to in vivo neuroanatomy, San Diego: Academic Press.
55–72.

33. Andrieu C, de Freitas N, Doucet A, Jordan MI (2003) An Introduction to

MCMC for Machine Learning. Machine Learning 50: 5–43.

34. Press WH, Teukolsky SA, Vetterling WT, Flannery BP, editors (1992)
Numerical Recipes in C: The Art of Scientific Computing. New York:

Cambridge University Press, 2 edition.

35. NVIDIA Corporation (2009) NVIDIA’s Next Generation CUDA Compute
Architecture: Fermi.

36. Sun Microsystems (2007) Sun N1 Grid Engine 6.1 User’s Guide.

37. Cecilia JM, Garcı́a JM, Nisbet A, Amos M, Ujaldón M (2012) Enhancing data

parallelism for Ant Colony Optimization on GPUs. Journal of Parallel and

Distributed Computing In press.

38. NVIDIA Corporation (2012) Whitepaper. NVIDIA’s Next Generation CUDA.

Compute Architecture:Kepler GK110. The Fastest, Most Efficient HPC

Architecture Ever Built. V1.0.

39. NVIDIA Corporation (2012) CUDA C Best Practices Guide, Version 4.1.

Speeding-Up dMRI Orientation Estimation Using GPUs

PLOS ONE | www.plosone.org 12 April 2013 | Volume 8 | Issue 4 | e61892

40. NVIDIA Corporation (2010) Tesla M2050 and Tesla M2070/M2070Q dual-

slot computing processor modules. Board Specification, Version 03.
41. NVIDIA Corporation (2011) Tesla M2090 dual-slot computing processor

module. Board Specification, Version 02.

42. Platform Computing, IBM (2010) Platform LSF 8, The HPC Workload
Management Standard.

43. Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, et al. (2010) Multiband
multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel

imaging with application to high spatial and temporal whole-brain fMRII.

Magnetic Resonance in Medicine 63: 1144–1153.
44. Whitehead N, Fit-Florea A (2011) Precision & performance: Floating point and

IEEE 754 compliance for NVIDIA GPUs.
45. Khronos OpenCL Working Group (2012) The OpenCL Specification Version:

1.2.
46. Karimi K, Dickson NG, Hamze F (2011) A Performance Comparison of CUDA

and OpenCL v3.

47. Chen W, Ding Z, Zhang S, MacKay-Brandt A, Correia S, et al. (2009) A novel
interface for interactive exploration of DTI fibers. IEEE Transactions on

Visualization and Computer Graphics 15: 1433–1440.

48. Petrovic V, Fallon J, Kuester F (2007) Visualizing whole-brain DTI tractography

with GPU-based Tuboids and LoD management. IEEE Transactions on

Visualization and Computer Graphics 13: 742–751.

49. Mittmann A, Nobrega THC, Comunello E, Pinto JPO, Dellani PR, et al. (2011)

Performing Real-Time Interactive Fiber Tracking. Journal of Digital Imaging

24: 339–351.

50. Köhn A, Klein J, Weiler F, Peitgen HO (2009) A GPU-based fiber tracking

framework using geometry shaders. In: Proceedings of SPIE Medical Imaging:

Visualization, Image-Guided Procedures, and Modeling 7261: 72611J.

51. Jeong WK, Fletcher PT, Tao R, Whitaker R (2007) Interactive visualization of

volumetric white matter connectivity in DT-MRI using a parallel-hardware

Hamilton-Jacobi solver. IEEE Transactions on Visualization and Computer

Graphics 13: 1480–1487.

52. Xu M, Zhang X, Wang Y, Ren L, Wen Z, et al. (2012) Probabilistic Brain Fiber

Tractography on GPUs. In: IEEE 26th International Parallel and Distributed

Processing Symposium Workshops & PhD Forum (IPDPSW): 742–751.

Speeding-Up dMRI Orientation Estimation Using GPUs

PLOS ONE | www.plosone.org 13 April 2013 | Volume 8 | Issue 4 | e61892

