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ABBREVIATIONS 

The abbreviations of the units from the International System Units and the 

abbreviations universally used in statistics are not included in this section, as 

there are internationally accepted standards for their use. 

 

AMT   Active motor threshold.  

AURC   Area under the recruitment curve. 

BB   Biceps brachii. 

CE   Cross education  

CMEP   Cervicomedullary motor evoked potential 

CON   Control group or control condition. 

CS   Conditioning stimulus 

CSE   Corticospinal excitability 

D-wave  Direct wave. 

EMG   Surface electromyography  

EMGRMS  Electromyography root mean square 

ERT   Estimated resting twitch 

FDI   First dorsal interosseous 

GABA   Gamma aminobutyric acid 

HLNF   High load resistance training without failure group. 

HLF   High load resistance training to failure group.  

H-reflex  Hoffmann’s reflex 

ICF   Intracortical facilitation  

IHI   Interhemispheric inhibition  

ISI   Inter stimulus interval 

I-wave   Indirect wave. 

LL   Low load resistance training group. 

LMEP   Lumbar motor evoked potential. 
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LTP   Long-term potentiation. 

M1   Primary motor cortex. 

MEP   Motor evoked potential  

Mmax   Maximal compound muscle action potential  

MVC   Maximal voluntary contraction. 

M-wave Compound muscle action potential elicited by electric 

stimulation of the peripheral nerve. 

RC   Recruitment curve. 

RF   Rectus femoris. 

1RM   One repetition maximum. 

10RM   Ten repetition maximum. 

RM-ANOVA  Repeated measures analysis of variance. 

RMT   Resting motor threshold. 

RPE   Ratings of perceived exertion 

RT   Resistance training.  

SICI   Short-interval intracortical inhibition  

SP   Silent period. 

ST   Strength training. 

TES   Transcranial electric stimulation 

TMEP   Thoracic motor evoked potential. 

TMS   Transcranial magnetic stimulation. 

TS   Test stimulus.  

VL   Vastus lateralis. 

V-wave  Volitional wave. 
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ABSTRACT 

When resistance training (RT) is performed unilaterally, increases in 

maximal voluntary force occur in the trained and also in the untrained 

homologous contralateral muscle, a phenomenon known as cross-education of 

voluntary muscle force. It is believed that cross-education arises from neural 

adaptations in the untrained hemisphere consequence of its concurrent activation 

along with the trained hemisphere during unilateral contractions. The magnitude 

of cross-education is estimated to be around a 12% of the maximal voluntary 

force, which could be considered of small clinical relevance. RT variables like 

training load and fatigue during the set influence the concurrent activation of the 

untrained hemisphere during unilateral contractions, and may be manipulated to 

increase the magnitude of cross-education. Therefore, the main aim of this thesis 

was to determine the effect of RT load and the level of fatigue during the set, on 

cross-education and the acute neural changes in cortical and corticospinal circuits 

projecting to the trained and untrained muscles. Those acute changes occurring 

after just one RT session are believed to be the trigger for the long-term sustained 

neural adaptations leading to voluntary force increases. In the first study, we 

determined the effects of RT load on the acute trained biceps brachii responses to 

transcranial magnetic and cervicomedullary electric stimulation after a RT 

session. We found an increase in the responses to both types of stimulations after 

RT. However, training load only affected the responses to transcranial magnetic 

stimulation, with greater increases in the responses after high-load RT. This data 

suggests that RT load influence the acute increases in cortical excitability. In the 

second study, we performed a systematic review to analyse the unilateral RT 

variables that may affect the neural adaptations in the untrained hemisphere. We 

found that unilateral RT increases cortical excitability and reduces intracortical 

inhibition. However, results were inconsistent probably due to the influence of 

training variables like contraction type, training load, fatigue or the strategy of 

pacing the movement, which influence the adaptations in the untrained 

hemisphere. In the third study, we determined the effect of acute RT load on the 
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trained and untrained biceps brachii corticospinal excitability and the efficacy of 

intracortical circuits after a single RT session. We found that acute high- but not 

low-load unilateral RT increases corticospinal excitability in the trained muscle 

without modifications in intracortical inhibition or facilitation. However, the 

effects of a single session of RT were limb-specific, as no changes occurred in the 

untrained hemisphere regardless of training load. In the fourth study, we 

determined the effects of training load and the level of fatigue during the set on 

cross-education and associated chronic neural adaptations after four weeks of RT. 

We found that high- but not low-load RT improves maximal voluntary force in 

the trained and the untrained knee extensors but fatigue did not enhance these 

adaptations. Furthermore, voluntary force improvements were unrelated to 

corticospinal excitability changes in both legs. Overall, this thesis shows that 

training load influences the chronic functional adaptations in the trained and the 

untrained side after RT. However, despite the influence of training load on the 

acute changes in CSE, suggesting a greater influence of high-load RT on 

supraspinal structures, chronic voluntary force improvements after short-term RT 

are not related to changes in CSE. The corticospinal excitability of the untrained 

hemisphere does not change either after one session or four weeks of RT 

regardless of training load, probably due to the lower stimulus that the untrained 

hemisphere receives. Furthermore, fatigue during RT, which may increase the 

concurrent activation of the untrained hemisphere, does not have an additive 

effect on the adaptations in the untrained side and therefore could be avoided. 

 

Keywords: Cross-education, Unilateral Resistance Training, Transcranial 

Magnetic Stimulation, Corticospinal excitability, Cortical excitability. 
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RESUMEN 

El entrenamiento de fuerza (EF) unilateral aumenta la fuerza voluntaria 

máxima tanto del músculo entrenado, como del músculo homologo contralateral 

no entrenado, un fenómeno conocido como efecto cruzado. El efecto cruzado 

surge de adaptaciones neurales en el hemisferio no entrenado como consecuencia 

de su activación concurrente junto con el  hemisferio entrenado durante 

contracciones unilaterales. La magnitud del efecto cruzado se estima en un 12% 

de la fuerza voluntaria máxima, lo que se podría considerar de baja relevancia 

clínica. Variables relacionadas con el EF como la intensidad y la fatiga durante la 

serie influyen sobre la activación concurrente del hemisferio no entrenado 

durante contracciones unilaterales, por lo que podrían ser manipuladas para 

aumentar la magnitud del efecto cruzado. Por tanto, el principal objetivo de esta 

tesis es determinar el efecto de la intensidad de entrenamiento y el nivel de fatiga 

durante la serie sobre el efecto cruzado y los cambios neurales agudos en los 

circuitos corticales y corticoespinales que proyectan sobre el miembro entrenado 

y no entrenado. Se piensa que estos cambios agudos, que ocurren tras una única 

sesión de EF, podrían ser los detonantes de las adaptaciones neurales sostenidas a 

largo plazo que dan lugar a los aumentos en la fuerza voluntaria. En el primer 

estudio, determinamos los efectos de la intensidad del EF en las respuestas 

agudas del bíceps braquial a la estimulación magnética transcraneal y eléctrica 

cervicomedular tras una sesión de EF. Encontramos un aumento en la respuesta a 

ambos tipos de estimulación. Sin embargo, la intensidad de entrenamiento solo 

afectó a la respuesta a la estimulación magnética transcraneal, observándose 

mayores aumentos en las respuestas tras EF de alta intensidad. Estos datos 

sugieren que la intensidad del EF afecta a la excitabilidad cortical. En el segundo 

estudio, realizamos una revisión sistemática para analizar qué variables del EF 

podrían afectar a las adaptaciones neurales del hemisferio no entrenado. 

Encontramos que el EF unilateral aumenta la excitabilidad cortical y disminuye la 

inhibición intracortical. Sin embargo, se observó una falta de consistencia en los 

resultados, probablemente debido a la influencia de variables de entrenamiento 
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como el tipo de contracción, la intensidad de entrenamiento, la fatiga o la 

estrategia para el control del tempo durante el movimiento, las cuales influyen 

sobre las adaptaciones del hemisferio no entrenado. En el tercer estudio, 

determinamos el efecto de la intensidad de entrenamiento en la excitabilidad 

corticoespinal y la eficacia de los circuitos intracorticales del bíceps braquial 

entrenado y no entrenado tras una sesión de EF. Encontramos un aumento en la 

excitabilidad corticoespinal del músculo entrenado tras EF de alta intensidad pero 

no de baja intensidad, sin cambios en la inhibición o facilitación intracortical. Sin 

embargo, los efectos de una sola sesión de EF fueron específicos del miembro 

entrenado, pues no se halló ningún cambio en el hemisferio no entrenado 

independientemente de la intensidad de entrenamiento. En el cuarto estudio, 

determinamos el efecto de la intensidad de entrenamiento y el grado de fatiga 

durante la serie en el efecto cruzado y las adaptaciones neurales crónicas 

derivadas de un periodo de cuatro semanas de EF. Observamos que el 

entrenamiento de fuerza de alta intensidad, no así el de baja intensidad, mejoró la 

fuerza voluntaria en los extensores de rodilla entrenados y no entrenados, sin que 

la fatiga durante la serie influyera en dichas adaptaciones. Además, los aumentos 

en la fuerza se relacionaron con cambios en la excitabilidad corticoespinal de 

ambas piernas. Esta tesis muestra que la intensidad de entrenamiento influye en 

las adaptaciones funcionales derivadas del EF. Sin embargo, a pesar de la 

influencia de la intensidad de entrenamiento en los cambios agudos en la 

excitabilidad corticoespinal, la cual sugiere una mayor influencia del EF de alta 

intensidad sobre estructuras supraespinales, los aumentos crónicos en la fuerza 

tras un periodo corto de EF no se asocian con cambios en la excitabilidad 

corticoespinal. La excitabilidad corticoespinal del hemisferio no entrenado no 

cambió ni tras una sesión ni tras cuatro semanas de EF independientemente de la 

intensidad de entrenamiento, probablemente debido al menor estímulo que 

recibe. Además, la fatiga durante el EF, la cual puede aumentar la activación 

concurrente del hemisferio no entrenado, no tiene ningún efecto aditivo en las 

adaptaciones del miembro no entrenado y por tanto puede evitarse. 

 

Palabras clave: Efecto cruzado, Entrenamiento de Fuerza Unilateral, 

Estimulación magnética transcraneal, Excitabilidad corticoespinal, Excitabilidad 

cortical.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I – GENERAL 

INTRODUCTION 
 



 

 



CHAPTER I: GENERAL INTRODUCTION  31 

I - GENERAL INTRODUCTION 

Resistance training (RT) is one form of motor training widely used to 

increase sports performance (1-4), improve health (5-14), and to diversity 

recreational training programs. RT increases maximal voluntary force and muscle 

mass (15, 16). When RT is performed unilaterally (i.e. with only one limb while 

the contralateral homologous is at rest), increases in maximal voluntary force 

occur in the trained and also in the untrained homologous contralateral muscle, a 

phenomenon known as cross-education (CE) of voluntary muscle force (17-20).  

Maximal voluntary force can increase already after short periods of 

unilateral RT without any apparent hypertrophy in either limb (21-25). The 

dissociation between the time course of increase in muscle mass and maximal 

voluntary force has been interpreted as an indirect evidence that early increases in 

maximal voluntary force in the trained and untrained muscles are consequence of 

adaptations in the nervous system (26-28). Non-invasive stimulation techniques 

like transcranial magnetic stimulation (TMS) (29-46), or direct stimulation of the 

corticospinal axons (34, 47, 48) and a peripheral nerve (49-59), allowed researchers 

to track specific neural adaptations to RT at different levels of the nervous system 

(60). Although the main locus of neural adaptations underlying maximal 

voluntary force increases in the trained muscles is still a matter of debate and may 

involve adaptations at the spinal and supraspinal level (61, 62), the neural 

adaptations leading to CE are believed to be located at the untrained hemisphere 

(63-69). Those adaptations may arise from the lower but concurrent activation of 

the ipsilateral (to the contracting muscle) untrained hemisphere along with the 

trained hemisphere (70-73).  For example, several TMS studies reported that short 

term RT is accompanied by increases in corticospinal excitability (CSE) or 

reductions in intracortical inhibition in the trained and the untrained hemisphere 

(33, 38-41, 74). Those neural adaptations theoretically would increase the 

effectiveness of the motor command and the central drive to the muscles, leading 

to early increases in maximal voluntary force. In fact, such adaptations can occur 

as fast as after just one RT session (75-78), before any maximal voluntary force 
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improvement could be measured. Those acute neural changes after a bout of RT 

have been interpreted as the initial neural adaptations to RT that may trigger the 

sustained neural adaptations underlying the  increases in maximal voluntary 

force in the trained and the untrained muscles (i.e. CE) if the stimulus is repeated 

in time (75-77). 

Independently of the underlying mechanisms, from a practical point of 

view, CE could be used as an adjuvant to standard rehabilitation programs to 

accelerate recovery in people with unilateral dysfunctions consequence of 

orthopaedic injuries or strokes (79-81). However, the magnitude of CE is 

estimated to be around 12%, which could be considered of small clinical relevance 

(18). Furthermore, unilateral orthopaedic injuries or strokes are associated with 

brain remodelling that reduce the excitability of the hemisphere controlling the 

affected limb (82-87), which could reduce even more the effect of CE on those 

populations. Therefore, there is a need to maximize the benefits that the untrained 

limb gets from the unilateral training of the homologous contralateral muscles. 

CE of voluntary force could be enhanced by increasing sensory inputs to the 

untrained hemisphere by viewing the reflection of the trained limb in a mirror 

(88, 89), with whole body muscle vibration (90) or by somatosensory stimulation 

(91). CE could also be optimized by increasing the concurrent activation of the 

untrained hemisphere during unilateral contractions by priming the primary 

motor cortex (M1) with non-invasive brain stimulation techniques, such as anodal 

transcranial direct current stimulation (92-94). However, before exploring new 

tools added to unilateral RT to enhance CE, may be worth it to examining the 

effects of the modification of some basic training variables on CE, to determine 

the training protocol most efficacious in increasing maximal voluntary force of the 

untrained limb. 

Adaptations to RT in the trained side are determined by RT variables such 

as load (95-97), volume (98-100), frequency (101, 102) and the degree of fatigue 

during the set (103-107). However less is known about the ideal exercise 

prescription to optimize CE of voluntary muscle force. Variables like the type of 

muscle contraction (108, 109), the total volume performed during training, or the 

velocity of such contractions during dynamic RT has been shown to affect the 

magnitude of CE (110). Specifically, eccentric contractions, greater training 

volumes, and high contraction speeds seems to enhance of CE (108-110). Because 
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CE is thought to be related to neural adaptations in the untrained hemisphere 

consequence of its concurrent activation during unilateral contractions (66-68), it 

is likely that modifications in training variables that lead to a greater concurrent 

activation of the untrained hemisphere may enhance the functional and neural 

adaptations in the untrained limb (111). This may explain, for example, why 

eccentric contractions, which are associated with a greater concurrent activation 

of the untrained hemisphere than isometric or concentric contractions (112, 113), 

lead to a greater CE of voluntary muscle force (108, 109). However, there is a lack 

of knowledge about how modifications in other relevant training variables could 

affect adaptations in the untrained limb (111). Variables like RT load or the level 

of fatigue during the set may affect the adaptations in the untrained hemisphere 

underlying CE (111). In fact, high contraction intensities (70, 114, 115), and high 

levels of fatigue (71), separately, lead to a greater concurrent activation of the 

untrained hemisphere , which could potentially increase the magnitude of CE. If 

the last statement is true, greater training loads and levels of fatigue during RT 

could be suitable as CE-enhancer for orthopaedic patients. However, greater 

levels of fatigue would have limited relevance for neurological patients (stroke, 

multiple sclerosis), who have high levels of self-reported fatigue (116, 117), and 

therefore other ways of enhancing CE should be used. 

Therefore, the main aim of this thesis was to determine the effect of 

training load and the level of fatigue during RT on the CE of voluntary force 

that occurs with unilateral RT in healthy adults. We have selected both, training 

load and fatigue, based on their potential to influence the level of concurrent 

activation of the untrained hemisphere, and because we detected, in the 

systematic review of the present thesis (111), a lack of knowledge regarding the 

effect of modification of those variables on functional and neural adaptations of 

the untrained limb. Furthermore, early maximal force improvements in the 

trained and the untrained muscles are believed to be a consequence of neural 

adaptations (15, 27, 60, 62), which seems to occur as soon as after only one RT 

session (75, 77, 118). Therefore, knowing how modification in RT variables affects 

acute (after one session) corticospinal changes could help to infer the long-term 

effectiveness of RT protocols with different characteristics. Thus, the second aim 

is to determine the effects of unilateral RT load on acute changes in cortical and 

corticospinal circuits projecting to the trained and the untrained muscles. A 
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detailed understanding of the effects of training load and the degree of fatigue 

during the set on functional and neural adaptations will guide RT prescription 

aiming to optimize adaptations in the untrained limb, which could ultimately 

increase the potential use of CE as an adjuvant therapy in patients unable to train 

bilaterally.  

In addition, in the general literature review of the present thesis, there is an 

overview of the modulation of the nervous system output during muscle 

contractions, after an acute bout of RT, and after chronic periods of RT in the 

trained and the untrained muscle, and how this output is affected by the 

contraction intensity or training load, and fatigue. Additionally, this initial 

literature review briefly introduces the main non-invasive stimulation techniques 

and associated measures used to monitor the neural control of voluntary muscle 

force and neural adaptations to RT. 
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II – LITERATURE REVIEW 

2.1 TECHNIQUES TO MONITOR CHANGES IN THE NERVOUS SYSTEM OUTPUT  

2.1.1 Transcranial magnetic stimulation 

First registered successful attempts to stimulate the human cortex date from 

1874, when Bartholow observed limb muscle contractions in a woman 

undergoing electric stimulation with fine needles inserted in her brain through an 

ulcer in the skull (119). This stimulation technique allowed a detailed mapping of 

the cerebral cortex, leading to the localization of the motor areas (120, 121). 

However, this invasive technique was limited to patients undergoing a brain 

surgery.  It was not until 1980, when Merton developed a transcranial electric 

stimulation (TES) technique that allowed a successful stimulation of the cerebral 

cortex of subjects with intact skull (122, 123). Although TES was a step forward 

because of its non-invasive nature, it uses brief high voltage shocks delivered 

through electrodes attached to the scalp that produce a strong uncomfortable 

sensation. Five years later, Barker and co-workers developed another non-

invasive, safe, and painless technique to stimulate the intact human brain, TMS 

(124). Since its invention, this method has been widely used in the field of 

neuroscience to study general and pathological brain physiology and motor 

control. 

A transcranial magnetic stimulator is a capacitor charged by a power 

supply that can be discharged through a coil of wire creating a current of around 

4000 A (124, 125). According to the principle of electromagnetic induction, the 

high-intensity current flowing through the coil generates a magnetic field of 

about 2-4 Tesla lasting 100µs passing perpendicularly to the plane of the coil (126, 

127). When the coil connected to the stimulator is placed over the scalp, the 

magnetic field passes through the skull and generates a secondary electric current 

perpendicular to the magnetic field that depolarizes the neurons of the brain 

under the coil (127). The shape of the coil influences the depth and focus of the 

magnetic field and therefore of the stimulation (128, 129). The three most common 
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types of coils used are the circular coil, the figure of eight coil (or Butterfly coil), 

and the double cone coil (130). The circular coil has usually an 8-10 cm diameter 

and generates a powerful magnetic field that is stronger near to the circumference 

and weaker near the center of the coil, which means that stimulation occurs on a 

wide surface under the coil (128). The “figure of eight” coil consists of two 

circular coils placed side by side. With this type of coil the strength of the 

magnetic field is greater at the intersection of the two coils, which allows a more 

focal stimulation than the circular coils (128). The double cone coil is like a figure 

of eight coil but with the two coils side by side with an angle, which increases the 

strength of the magnetic field at the intersection, allowing a deeper stimulation 

(131). These coils are usually used to stimulate tissue on the central sulcus, where 

the cortical representations of the lower limb muscles are located (131). 

Although both types of transcranial stimulation, electric and magnetic, seem 

to differ only in the way that they produce the ion flow in the tissue underneath, 

they also differ in the site at which each stimulation activates the corticospinal 

system (132-134). Studies recording the descending corticospinal volley evoked 

by TES and TMS with epidural electrodes in the spinal cord, have shown that the 

descending volley is formed by a series of waves whose characteristics are 

affected by the type and intensity of stimulation (133). With TES the response is 

composed mainly by an initial direct wave (D-wave), and only with greater 

intensities of stimulation, a second indirect wave (I-wave) with a greater latency 

(1.5 ms later) appears (134). However, with TMS, the response follows an inverse 

pattern. With low stimulation intensities, the response is mainly composed by an 

early I-wave, followed by later I-waves when the stimulation intensity is 

increased. The preceding D-wave only appears with high intensities of TMS (134). 

It is thought that D-waves arises from the deeper direct activation of the 

descending axons of the corticospinal neurons, whereas the I-waves are the 

consequence of the activation of the corticospinal neurons trans-synaptically by 

cortical interneurons activated by the TMS (134). The differences between the site 

of stimulation of TES and TMS explain the longer latency of the TMS response at 

low and medium intensities of stimulation (135). 

According to the somatotopic organization of the M1 (120, 121), the 

response to TES or TMS also depends on the position of the electrodes or the coil 

over the scalp. With TMS, the coil could be easily moved through the scalp to find 
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the region where the response of a given muscle is greater, which is usually called 

“hot-spot”. Therefore, although not purely focal, TMS could be used to stimulate 

muscles over specific regions of the body such as the hand, forearm, upper arm, 

legs, face, etc. With high enough intensity, single pulse TMS produces twitches in 

contralateral muscles and, when used with surface electromyography (EMG), a 

motor evoked potential (MEP) is registered in the muscle under study and nearby 

muscles due to the overlap of cortical representations in the M1 (126, 130). The 

MEP is as EMG signal composed by the action potentials of the motor units 

stimulated by the descending volley coming from the corticospinal neurons 

activated by the cortical neurons depolarized by the single pulse TMS (126, 130).   

Because of the cortical origin of the MEP obtained by TMS, the size of the 

MEP has been interpreted as a measure of cortical excitability (130). However, 

although one of the factors that modulates the size of the MEP is the excitability of 

the cortical neurons activated initially by the single pulse, there are other factors 

in the pathway from the brain to the muscle that could also influence the MEP 

size (60, 136, 137). Those factors include mainly the excitability of the spinal α-

motoneurons, and peripheral factors affecting the features of the recorded muscle 

fibres action potentials forming the MEP, such as the electrode position or the 

muscle fibre membrane properties (136, 138).  To reduce the influence of the 

peripheral factors, the MEP amplitude is usually normalized with the amplitude 

of the maximal compound muscle action potential (Mmax) obtained by electric 

stimulation of the peripheral nerve innervating the muscle under study (138). 

However, even normalized MEPs are still influenced by spinal factors, therefore 

they should be considered as a measure of corticospinal rather than pure cortical 

excitability (60, 136). To further delimit the origin of the modulation of the MEPs 

at the cortical or spinal level, a valid measure of α-motoneuron excitability should 

be obtained, like MEPs obtained by electric stimulation of the corticospinal axons 

at the cervicomedullary junction, which will be further explained in the next 

section. 

In addition to cortical, spinal and peripheral factors, the other main variable 

influencing the MEP size is the stimulation intensity (126). The intensity of the 

stimulus depends on the magnitude of the magnetic field generated under the 

coil, which can be manipulated by modifying the intensity of the current that 

flows through the coil (126). This intensity can be expressed in absolute values as 
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the percentage of the maximal stimulator output or, more often, as a percentage 

of the minimum output of the stimulator needed to obtain a clear response in the 

muscle under study (139). This minimum intensity is known as resting motor 

threshold (RMT), when the subject is tested at rest, or active motor threshold 

(AMT), when measures are obtained during a sustained low intensity muscle 

contraction (126, 139). The motor threshold is usually defined as the minimum 

intensity that produces a MEP of a peak-to-peak amplitude of 50-100 µV (RMT) or 

100-200 µV (AMT) in five of ten consecutive stimulations (139). 

When single pulse TMS stimulation is performed during a sustained muscle 

contraction, following the MEP there is a total or partial reduction in the EMG 

activity in the muscle that is called “silent period” (SP) (140). The SP is usually 

quantified as the duration of the suppression of the EMG, from the stimulus 

artefact, or the onset or the offset of the MEP, to the return of the voluntary 

activity (141). Although SP is usually used as a measure of intracortical inhibition, 

it is affected by both spinal and cortical inhibitory mechanisms (142). Specifically, 

the first part is thought to be a consequence of reduced α-motoneuron excitability; 

while the late part is mainly caused by the action of inhibitory gamma 

aminobutyric acid (GABA)-B intracortical circuits (142). 

In addition to single pulse measurements, TMS allows to deliver a pair of 

pulses with the same or different coils located at the scalp, which is called paired 

pulse TMS. The first pulse is usually called “conditioning stimulus” (CS), and the 

second pulse “test stimulus” (TS), and are separated by a brief inter stimulus 

interval (ISI) (126). The effect of the CS on the TS depends on the ISI and the 

intensity of stimulation of the CS and the TS (126, 143, 144). Paired pulse TMS is 

usually used to test the efficacy of inhibitory or facilitatory intracortical circuits. 

The net effect of the cortical inhibitory or facilitatory circuits activated by the 

subthreshold CS on the TS is quantified by comparing the size of the MEP evoked 

by the TS alone with the MEP evoked by the TS preceded by the CS (126). When 

the CS precedes the TS by an ISI of 1-5 ms and the intensity of the CS is around a 

70-90% of the motor threshold, there is a reduction in the amplitude of the MEP 

evoked by a suprathreshold TS (145). This paradigm is called short-interval 

intracortical inhibition (SICI). It is though that SICI arise from the activation of 

low-threshold cortical inhibitory GABA-A circuits by the CS, that reduce the 

indirect activation of the corticospinal neurons by the cortical neurons 
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depolarized by the TS, thus reducing the size of the MEP evoked by the TS (146). 

When the subthreshold CS and the suprathreshold TS are separated by an ISI of 

around 8-30 ms, there is an increase in the amplitude of the MEP evoked by the 

TS (144, 145). This paradigm, known as intracortical facilitation (ICF), is thought 

to arise from the recruitment of glutamatergic circuits in the M1 (144, 147). Paired 

pulse stimulation can also be used with two different coils to stimulate different 

parts of the brain (144). One possibility is to put the coils at the cortical 

representation of contralateral homologous muscles located in the left and right 

hemispheres to test interhemispheric inhibition (IHI) (148). With this paradigm, 

the CS and the TS are separated by an ISI of 6-50 ms, and are both suprathreshold 

(around 120% of the motor threshold) (148). IHI is used to test the efficacy of the 

excitatory transcallosal inputs from the hemisphere stimulated by the CS that 

projects to inhibitory GABAergic intracortical circuits located at the hemisphere 

receiving the TS, reducing the size of the MEP (149, 150). 

 

2.1.2 Direct subcortical stimulation of corticospinal axons 

Every voluntary, reflex or artificially stimulated motor signal will converge 

at the α-motoneuron pool, which was defined by Sherrington as the final 

common path of the nervous system (151). Therefore, when stimulation 

techniques are used to monitor changes in the nervous system output, α-

motoneuron excitability will influence the response to stimulation, even when the 

stimulation occurs at the cortical level, as occurs with TMS. Thus, knowing the 

excitability state of the α-motoneurons helps to determine if the modulation of the 

nervous system output that may occur under some situations or after some 

interventions, has its origin at the spinal level. α-Motoneuron excitability is 

determined by several factors, such as the ionotropic drive (excitatory or 

inhibitory) coming from supraspinal centers or sensory receptors, and the 

properties of the α-motoneurons, which are not fixed and can be modified by 

neuromodulatory inputs coming from the brain stem (152). However, 

independently of the mechanisms determining α-motoneurons excitability, the 

likelihood and magnitude of α-motoneurons response to an input can be 
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measured by direct subcortical stimulation of the corticospinal axons (48, 153, 

154). 

The descending axons of the corticospinal neurons can be non-invasively 

stimulated at the cervicomedullary junction (154, 155), when the focus are the 

muscles of the upper limbs, and at the thoracic (156) or lumbar spine to focus on 

muscles of the legs (157). The stimulation of the corticospinal neurons at the 

subcortical level is accompanied by a MEP and a twitch that reflects the sum of 

the forces of several muscles acting around the same joint due to the non-focal 

nature of this stimulation technique (48, 153). The MEP is usually known as 

cervicomedullary MEP (CMEP) (155), thoracic MEP (TMEP) (156) or lumbar MEP 

(LMEP) (157) depending on the site of stimulation. The latency of the MEP 

obtained by subcortical stimulation of the corticospinal axons is lower than the 

MEP obtained by TMS, because stimulation occurs at a lower level of the 

corticospinal tract (155). However, despite the different site of stimulation, when 

a single pulse TMS is paired with subcortical stimulation of the corticospinal 

axons at an appropriate interval, the size of the MEP obtained by TMS is largely 

reduced by the antidromic collision generated by the subcortical stimulation, 

suggesting that both techniques recruit the same corticospinal axons (154-157). In 

addition, the response to subcortical stimulation of the corticospinal axons is 

mainly monosynaptic (158), and is not affected by afferent presynaptic inhibition 

or cortical excitability, as occurs with the Hoffmann’s reflex (H-reflex) or the 

response to high intensity TES, respectively (153). This makes subcortical 

stimulation of the corticospinal axons the ideal technique to test α-motoneuron 

excitability (153). 

Subcortical stimulation of the corticospinal axons could be achieved with 

electric and magnetic stimulation interchangeably, with the only difference that 

magnetic stimulation is less painful but responses are usually smaller (48, 153). To 

stimulate the corticospinal axons subcortically with electrical stimulation, a pair 

of electrodes should be placed at the mastoid processes, while with magnetic 

stimulation, a double cone coil should be placed over the inion (48, 153). 

Independently of the kind of stimulation used, the main problem with subcortical 

stimulation of the corticospinal axons, in addition to pain, is the risk of directly 

stimulating the α-motoneurons postsynaptically (137). When this happens, there 

is a sudden reduction of around 1-2 ms in the latency of the MEP and a lower 
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increase in the size of the MEP when obtained during voluntary contractions. This 

reflects that α-motoneurons are being directly stimulated at their axons and not 

transynaptically. Thus, the resultant MEP is less sensitive to changes in α-

motoneuron excitability. Because the direct activation of the α-motoneuron axons 

by the electric stimuli occurs closer to the cathode, with cervicomedullary electric 

stimulation it is generally recommended to put the anode on the side of the 

muscles being tested to reduce the risk of direct α-motoneuron axons stimulation 

(48). 

2.1.3 Electric stimulation of a peripheral nerve 

When using any kind of stimulation to test the nervous system output in a 

given situation, it could be tempting to ascribe changes in the MEPs only to 

modulations at a spinal or supraspinal level (60). However, responses to 

stimulation are usually registered from the muscles using EMG. Therefore, 

modulations in the EMG responses to all forms of stimulation are also affected by 

changes in the peripheral factors that affect any form of EMG signal 

independently of the voluntary, reflex, or stimulated origin (138, 159). The main 

peripheral factors that influence EMG based signals are decreases in muscle fibre 

conduction velocity, or the modification of the sarcolemma excitability due to 

decreases in the sodium-potassium pump efficiency of the muscle membrane 

(138). In addition, when the amplitude of EMG signals obtained by stimulation is 

going to be compared between different days, factors like electrode position over 

the muscle, or modifications in the composition of the tissue under the EMG 

electrodes could also affect the signal (138). Therefore, the MEPs size obtained by 

TMS or cervicomedullary electric stimulation, for example, could change despite 

any modulation occurring at the spinal or cortical level, solely due to peripheral 

factors. 

One way to reduce the influence of any peripheral factor on MEPs size is to 

normalize them with the maximal compound muscle action potential, also called 

the M-wave (138). The M-wave is the sum of the dispersed action potentials of the 

motor units located under the EMG electrodes that have been activated by a 

single pulse electrical stimulation of their α-motoneuron axons at a peripheral 

nerve (138).  The M-wave informs about the peripheral properties of the 
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neuromuscular system without influence from spinal or cortical factors, what 

allows to differentiate if the cause of the modulation in a EMG derived signal, like 

the MEPs obtained by TMS, is due to peripheral or central factors (138). To obtain 

an M-wave is usual to determine its maximal amplitude (i.e. Mmax) by increasing 

the electric stimulation intensity until no further growth is observed despite 

additional increases in stimulation intensity (138). When the minimum intensity 

to obtain the Mmax is determined, it is usual to use a supramaximal stimulation 

intensity to ensure the depolarization of all α-motoneuron axons (138). 

In addition to purely peripheral factors, electrical stimulation of the 

peripheral nerves can also inform about spinal factors influencing the nervous 

system output (160, 161). When a mixed nerve (containing afferents and α-

motoneuron axons) is stimulated at intensities below the ones producing a direct 

stimulation of the α-motoneurons axons, the axons of the greater diameter IA 

afferents are depolarized (160, 161). The activation of those afferents produces a 

synaptic activation of the α-motoneurons at the spinal cord, causing a muscle 

twitch and an evoked potential, called H-reflex, which can be registered by EMG 

(160, 161). The H-reflex, first described by Hoffman (162, 163), has been 

misinterpreted as a measure of pure α-motoneuron excitability, however, the 

amplitude of the H-reflex is also affected by factors such as presynaptic inhibition 

of the IA afferents projecting to α-motoneurons (164).  The amplitude of the H-

reflex increases with the intensity of stimulation. However, when the intensity of 

stimulation is high enough to directly depolarize the α-motoneurons axons, there 

is a progressive decrease in the H-reflex amplitude until it disappears with higher 

intensities (50, 160). The cancellation of the H-reflex occurs because the direct 

activation of α-motoneurons provokes antidromic (from the point of stimulation 

to the spinal cord) impulses in their axons that collide with the orthodromic 

volley generated by the synaptic activation of the α-motoneurons by the IA 

afferents (i.e. the H-reflex) (50, 160). However, Upton et al. (165), discovered that 

with supramaximal stimulations leading to a Mmax and a total cancelation of the 

H-reflex, the latter can also be recorded during voluntary contractions, what is 

called the volitional wave (V-wave). The V-wave can be registered because the 

orthodromic volitional volley leading to the voluntary contraction collides with 

the antidromic volley generated by the supramaximal stimulation of the α-

motoneuron axons (137, 165). This collision allows the impulses generated by the 
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stimulation of the α-motoneurons by the IA afferents to reach the muscle, leading 

to the V-wave. The amplitude of the V-wave, which is a variation of the H-reflex 

obtained during contraction, is also affected by α-motoneuron excitability and 

presynaptic inhibition of the IA afferents (137). The size of the V-wave is affected 

by the intensity of the contraction, which determines the descending volley that 

will clear the α-motoneuron axons ultimately allowing the V-wave to be 

registered (137). Therefore during maximal contractions the V-wave has been 

proposed to reflect the magnitude of the volitional drive from supraspinal centers 

(49). A further description of the details of the H-reflex or the V-wave is outside 

the scope of the present literature review due to those techniques are not used in 

the experimental studies of the present thesis. For further details see (160, 161). 

2.2 CORTICOSPINAL MODULATION DURING VOLUNTARY CONTRACTIONS 

The present section briefly describes how the output of the nervous system 

to a contracting muscle is modulated depending on the characteristics of the 

contraction by interpreting the information obtained with the techniques 

described in the previous section. There are several characteristics of voluntary 

movements that affect the neural output, such as the frequency and the velocity 

during repetitive movements, the complexity of the task, the limb position, the 

type of contraction (113, 166-172), etc. However, in this section we focused on the 

two variables that are the focus of the present thesis, the intensity of the muscle 

contraction and fatigue during sustained or repeated muscle contractions. 

2.2.1 Corticospinal modulation during contractions of different levels of 

voluntary muscle force 

The force generated against a load or an immovable resistance (i.e. 

contraction intensity) is determined by the summed force exerted by every 

muscle acting around one or several joints (in addition to the contribution of 

passive tissue elements). The force exerted by these muscles will depend on the 

number of recruited motor units, which follow the size principle, and the firing 

rate (number of pulses per second) at which each motor unit fires (i.e. α-

motoneuron output) (173, 174). This α-motoneuron output will depend on the 
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summed excitatory and inhibitory supraspinal and afferent inputs, and on α-

motoneurons intrinsic properties, which can be modulated by neuromodulatory 

inputs (152). However, one of the main determinants of force during simple 

voluntary movements, is the monosynaptic corticospinal input coming from 

motor areas through the descending pyramidal neurons (175). The stimulation 

techniques described in the previous section allow to obtain information about 

how the corticospinal output, and the α-motoneuron excitability, are modulated 

during simple voluntary movements of different forces. 

When responses to TMS are obtained during voluntary contractions there is 

an increase in the amplitude and a reduction in the latency compared to 

responses to an equal input obtained at rest (176-178). During voluntary 

contractions of different forces, the general pattern of modulation of the MEPs 

obtained by TMS is an initial increase in the amplitude together with contraction 

intensity, followed by a stabilization despite further increases in force, and a final 

decrease during contractions of greater force (177, 179-183). Although responses 

to TMS are affected by cortical and spinal excitability, a similar pattern of 

modulation is present for CMEPs amplitude when measured during contractions 

of different forces (179). This suggests that the main source of the modulation of 

MEPs amplitude with increasing force occurs at a spinal level (179). Specifically, 

this pattern of modulation seems to be related to how motor units are recruited 

during contractions of increasing force (179, 180, 182), with the latter decline in 

amplitude being related to a decrease in the responsiveness of the α-motoneurons 

firing at high rates (184, 185). During high firing rates, the trajectory of the 

afterhyperpolarization between spikes is more linear and the duration is shorter. 

The shorter duration of the time between spikes reduces the time that the 

membrane potential stays below threshold, reducing the time avaialable for 

excitation. The linear trajectory of the afterhyperpolarization makes that the 

membrane potential of the motoneuron stays far from the firing threshold a 

greater proportion of the time between spikes, reducing its probability of firing in 

response to new inputs  compared with lower firing rates, in which the trajectory 

is more exponential.(185). This influence of α-motoneuron firing rate on MEP 

amplitude explains why the relation between MEP amplitude and contraction 

force depends on the muscle (179, 180, 182). In some muscles like the first dorsal 

interosseous, all motor units are recruited at low force levels and further increases 
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in force are attained by increasing their firing rate (186). In those cases, the peak 

amplitude of the MEP is reached at low forces, and further increases in force 

provoke a decrease in MEP as a consequence of the increase in the firing rate of 

the already recruited α-motoneurons (179). However, in those muscles in which 

new motor units are progressively recruited until greater levels of force, such as 

the biceps brachii (BB) (187), the MEP can continuously increase until contractions 

of around 75% of the maximal voluntary contraction (MVC), where it plateaus 

and start to decrease as a consequence of the increased firing rate of the already 

recruited α-motoneurons (179). In other muscles, like the soleus or the tibialis 

anterior, the MEP amplitude continuously increases with the force output, which 

suggests that new motor units are recruited even until near maximal force levels 

(180, 188). 

Despite most of the modulation of the responses to TMS according to 

contraction force occurs at the spinal level, increases in the excitability of the 

cortical neurons projecting to the descending corticospinal neurons, or in the 

corticospinal neurons themselves, also influence the response to TMS (176, 178). 

This is supported, for example, by the large increase in the amplitude of the I-

waves recorded at the cervical epidural space during maximal voluntary 

contractions (178). Furthermore, contraction force also influences the excitability 

of intracortical inhibitory and facilitatory circuits. SP duration is not affected by 

contraction intensity (141, 177), suggesting that the excitability of GABA-B 

inhibitory circuits is not affected by the level of force. This conclusion is 

reinforced by the lack of modulation of long-interval intracortical inhibition, 

another paired pulse TMS paradigm that measures the excitability of the same 

intracortical inhibitory circuits as SP (144). In contrast, SICI is progressively 

reduced according to contraction force (189-191), which seems to be related to a 

reduction in the inhibition of corticospinal neurons by inhibitory GABA-A circuits 

(144, 189, 191), and a concurrent facilitation of excitatory glutamatergic 

intracortical interneurons (190). It is believed that this modulation of intracortical 

excitatory and inhibitory circuits releases the cortical representation of the 

contracting muscle from inhibition, focusing the excitatory drive (192). 

Additionally, several studies using different techniques than TMS, such as brain 

imaging techniques (73, 114, 193), or recordings from single motor cortex neurons 

activity in non-human primates (194, 195), have shown that M1 activity is 
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correlated, although not totally in a linear way (196), to muscle activity and force. 

This suggests that M1 has an important role in controlling, among other 

kinematics variables such as position, velocity, or the direction of the limb; the 

force output during movements (194, 197). 

Unilateral voluntary muscle contractions not only modulate the responses 

of the motor pathway controlling the contracting muscle, it also leads to changes 

in the response of the motor pathway projecting to the homologous contralateral 

muscle. Specifically, during unilateral contractions there is an increase in the 

amplitude of the MEPs in the resting contralateral homologous muscles according 

to the force of the muscle contraction (70, 112, 115, 181, 198-200). This facilitation 

of the MEPs obtained by TMS in the resting homologous muscles has been 

observed also in patients with agenesis of the corpus callosum (201). Therefore, it 

was initially proposed that the origin of this cross-facilitation was probably 

related to an increase in the α-motoneuron excitability of the resting homologous 

muscles (199-201). However, Hortobágyi et al. (70) found that strong unilateral 

wrist flexions increased the amplitude of the MEPs but not of the CMEPs in the 

contralateral resting wrist flexors. This data suggests that the facilitation of the 

MEPs in the contralateral homologous muscles occurs due to an increase in the 

excitability of the stimulated M1, without changes in the excitability of the α-

motoneuron pool in the resting muscle (70). 

Part of this increase in ipsilateral M1 excitability may arise from the 

concurrent activation of the ipsilateral sensory and motor cortical areas together 

with the contralateral hemisphere (71, 73, 114, 193, 202). Furthermore, as occurs 

with the contralateral hemisphere, this ipsilateral activation varies according to 

the force of the contraction (114, 193). The origin of this concurrent activation is 

not clear. The delay between the activation in the two hemispheres is in the 

millisecond range, therefore, a part of the activation is likely to occur 

simultaneously and inadvertently (203). However, there is a temporal element of 

this activation that is probably due to interhemispheric inputs acting on 

intracortical circuits in the ipsilateral hemisphere (203). Perez et al. (115) found 

that during unilateral contractions of increasing force there is a progressive 

release of GABA-A mediated intracortical inhibition (i.e. SICI) in the ipsilateral 

hemisphere. However, they also found a reduction in IHI from the active to the 
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resting hemisphere, supporting that the concurrent activation of the ipsilateral 

hemisphere is also influenced by interhemispheric interactions (115).  

Another evidence about the influence of unilateral contractions on the 

motor pathway projecting to the resting homologous muscle is the presence of 

inadvertent muscle activity in the resting muscle (204-208). This activation is not 

always accompanied by overt movements but can be registered by EMG, usually 

called associated activity (208). As occurs with the cross-facilitation measured 

with TMS, the presence of associated activity is accentuated during strong 

unilateral contractions (206, 208-211). Although several theories have been 

proposed to explain the origin of the associated activity (212), like uncrossed 

corticospinal fibres coming from the hemisphere controlling the contracting 

muscle, it seems that associated activity arise from corticospinal input coming 

from the concurrent activation of the hemisphere ipsilateral to the contracting 

muscles (208, 211). Specifically it has been suggested that this associated activity 

may arise from the overload of a distributed cortical network responsible for 

restricting the motor output to the contralateral cortex, leading to a bilateral 

cortex activation (212-216). 

2.2.2 Corticospinal modulation during fatiguing contractions 

Although several definitions can be found over the literature, broadly 

fatigue refers to any reduction derived from exercise in the capacity of the 

neuromuscular system to produce muscle force (136, 217, 218). Muscle fatigue can 

be divided into peripheral and central fatigue (136). Peripheral fatigue refers to 

events occurring at or distal to the neuromuscular junction (217). Central fatigue 

refers to events occurring in the nervous system that lead to a failure or reduction 

in the ability to activate the muscle voluntarily (136, 217). The present section 

focuses on central fatigue and briefly describes the modulations in the 

corticospinal pathway controlling the exercising muscle and the contralateral 

resting homologous muscle during unilateral fatiguing exercise. Specifically, it 

focuses on the corticospinal modulation during sustained or repeated fatiguing 

muscle contractions due to its similarity with the exercise performed during RT 

sessions. Therefore, the effect of fatigue during whole body locomotor exercise or 
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corticospinal modulation during recovery of a fatiguing bout of exercise will not 

be discussed. 

A MVC represents the maximal force ability of a subject, and is determined 

by peripheral factors, such as cross-sectional area of the muscle or group of 

muscles acting around a joint, and by the α-motoneuron output to those muscles 

(219). When a MVC is sustained in time, there is a fast progressive decline of 

around a 50% in the maximal torque in just 1-2 minutes (220-222). This fast 

reduction in voluntary maximal force is accompanied by a reduction in the 

amplitude of the EMG signal that occurs due to a reduction in the firing rate of 

the recruited α-motoneurons (217, 222, 223). This reduction in the α-motoneuron 

output occurs due to a combination of different factors. The amplitude of CMEPs 

is strongly reduced during a sustained MVC (224). This reduction suggests that a 

decrease in α-motoneurons excitability, probably due to a modification in their 

intrinsic properties (217, 224), has an important role in the decline in α-

motoneuron output. However, other mechanisms may influence the α-

motoneuron output, such as changes in neuromodulatory inputs that reduce the 

responsiveness of the α-motoneurons to ionotropic inputs (136, 217); or the 

modification in excitatory or inhibitory afferent inputs to the α-motoneurons, like 

for example a reduction in the α-motoneuron facilitation derived from IA afferent 

inputs (136, 225). However, during fatiguing maximal contractions, nervous 

system modulation is not restricted to changes at the spinal level. During a 

sustained MVC there is an increase in the MEPs amplitude despite the reductions 

in EMG amplitude (226, 227). This increase in MEPs, together with the decrease in 

CMEPs, suggest an increase in cortical excitability that may serve to counteract 

peripheral fatigue and reduced α-motoneuron excitability while trying to 

maintain the force output (217, 218). However, together with increased MEP 

amplitude there is a lengthening of the SP duration (220, 226, 228-230), suggesting 

also an increase of the efficacy of corticospinal inhibitory mechanisms which may 

contribute to fatigue. Together with those modulations in the excitatory and 

inhibitory balance, when TMS is superimposed during a sustained MVC there is a 

progressive increase in the force evoked by the magnetic stimulus (217, 218, 229-

231). This increase in the response reflects a failure from supraspinal centers to 

harness the capacity of the muscle, probably due to a submaximal central output 

to the α-motoneuron (136, 218). When blood flow to a fatigued muscle after an 
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MVC is restricted by a tourniquet, which enhances the feedback from 

metabosensitive group III/IV muscle afferents, the suboptimal voluntary 

activation present during the MVC is maintained (220, 232). However, the 

modulations in MEP amplitude and SP duration return to baseline levels quickly 

despite the blood flow restriction (220). This suggests that the mechanisms 

limiting the supraspinal input to the α-motoneurons may be related to 

metabosensitive afferent input acting at other brain areas with inputs to the M1, 

but without affecting directly to motor cortical cells (218). Another possibility is 

that the input from the M1 to the α-motoneuron pool during the MVC is 

maintained but it is less effective to produce α-motoneuron output, with a part 

unexploded by the voluntary effort (i.e. not leading to α-motoneuron output) but 

that can be activated by the TMS, producing a muscle twitch (221). 

During a sustained submaximal contraction in which subjects have to 

maintain the level of torque, EMG amplitude increases instead of the decline that 

occurs during a sustained MVC (217, 218). This different behaviour is probably 

related to the pattern of α-motoneuron recruitment. During an MVC, all α-

motoneurons are recruited from the start and there is a progressive decline in 

their firing rate together with a derecruitment of the larger α-motoneurons (233, 

234). However, during submaximal contractions, there is a decrease in the firing 

rate of the initially recruited α-motoneurons together with the recruitment of new 

ones (235-237). Furthermore, the latter recruited α-motoneurons increase their 

firing rate as the contraction continues, while the first recruited continue 

decreasing their firing rate or are even derecruited (237, 238). However, despite 

the dissimilarities in α-motoneuron recruitment, the effects of sustained 

submaximal efforts at the spinal and cortical level are similar to those present 

during an MVC (217). During submaximal contractions, there is also a reduction 

in α-motoneuron excitability (239). However, this reduction is greater in the early 

recruited low-threshold α-motoneurons, as suggest the greater reduction in the 

amplitude of small CMEPs, in which the contribution of the low-threshold α-

motoneurons is larger due to the size principle (239). At the cortical level, there is 

an increase in the descending drive to recruit new α-motoneurons, as suggests the 

associated increase in EMG and MEP amplitude during torque matched sustained 

submaximal contractions (217, 240, 241). This is also supported by the increase in 

brain activation during submaximal sustained contractions found with brain 
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imaging techniques (71, 242). However, this increased drive also leads to 

supraspinal fatigue (measured during brief interspersed MVCs) (240, 241). In fact, 

during submaximal contractions, the contribution of supraspinal fatigue to the 

reduction in force generation is greater than with MVC (218). 

As explained in the previous section, during unilateral contractions the 

ipsilateral “resting” motor areas are also activated concurrently with the 

contralateral ones. This ipsilateral activation is not only affected by contraction 

intensity, but also by the magnitude of fatigue of the contracting muscles (71). In 

fact, the ipsilateral activation during submaximal unilateral contractions rises 

progressively as fatigue in the contracting muscles develops (71). Part of this 

ipsilateral activation is likely to occur simultaneously with the contralateral 

activation due to inputs from areas upstream both M1s (203, 208). However, 

during unilateral fatiguing contractions, there is a reduction in the IHI from the 

main active hemisphere to the “resting” hemisphere that may also contribute to 

increase the bilateral activation (207). Probably consequence of this increased 

ipsilateral activation during fatiguing unilateral contractions, there is a 

progressive facilitation of the MEPs obtained in the contralateral homologous 

muscles. However, this increased facilitation is probably also enhanced by the 

inadvertent associated activity in the homologous muscle, which also increases as 

fatigue in the contracting muscles develops (207, 208, 243).  

2.3 NEUROMUSCULAR ADAPTATIONS TO RESISTANCE TRAINING 

2.3.1 Acute corticospinal responses to a single bout of resistance training 

Motor practice leads to rapid increases in motor performance in the trained 

task, such as increased acceleration of a finger during ballistic contractions (244, 

245), or increased tracking accuracy while following a template during 

visuomotor practice (31). This fast increase in motor performance is thought to be 

related to a use-dependent plasticity by which there is a strengthening of the 

connections between the specific cortical M1 neurons activated during the task 

(i.e. Long-term potentiation (LTP)) (246). This use-dependent plasticity allows the 

learning of specific patterns of muscle activation related with the practiced task 

(246, 247). Use-dependent plasticity can be measured with TMS (248). Indeed, 
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several studies have found that different types of motor practice lead to increases 

in cortical excitability, reductions in intracortical inhibition, and enlargements of 

the motor cortical representation of the trained muscles (31, 245, 249-251). 

After RT, a type of motor practice, force increases occur after just a few 

sessions, well before any increase in muscle hypertrophy occurs (24, 252, 253). The 

origin of this early increase in maximal voluntary force is believed to arise from 

adaptations in the nervous system (15, 60, 62, 254). In fact, several studies have 

found adaptations at the spinal or cortical level after short-term RT (32-34, 40, 49, 

51, 255) (see section 2.3.2.2). However, some have suggested that RT can be 

considered a type of motor skill in which performance improvements, as occur 

with other types of motor practice, are related to a learning process of the proper 

muscle activation patterns brought about by LTP-like mechanisms at the M1 (31, 

256). Following this argument, several studies have used a single RT session 

model similar to the one used in motor learning contexts (31, 75-78, 257-264). This 

model allows to track the earliest central nervous system responses to RT, which 

have been suggested to be the trigger for long-term neural adaptations following 

repeated RT sessions (75, 77, 118). 

The first study that used this model to test if one session of RT is 

accompanied by a use-dependent plasticity at the M1 similar to motor skill 

learning, was the one by Jensen et al. (31). They tested the effects of a single 

session of BB RT, and of a complex visuomotor task requiring a precise control of 

the elbow joint by BB contractions to track varying force traces. They found that 

only the subjects who performed the visuomotor tracking task experienced an 

acute increase in the MEPs obtained by TMS. This suggests that the initial force 

improvements after RT may not be related to a similar cortical plasticity process 

like the one involved in learning a new skill (31). However, the later findings by 

Selvanayagam et al. (75) showed a different picture. In this study the subjects 

performed RT protocols based on isometric wrist extensions. During RT the 

subjects contracted the wrist in a direction 90º deviated from the direction of the 

single pulse TMS twitches recorded before training. What the authors found is 

that RT shifted the direction of the muscle twitches evoked by single pulse TMS 

from the initial to the trained direction. In contrast with the study of Jensen et al. 

(31), these results suggest that RT leads to LTP-like mechanisms at the M1 that 
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strengthen the synapses of the corticospinal pathway, thus facilitating a muscle 

activation pattern of the wrist muscles in the trained direction (75). 

Since those two seminal studies, several publications have delved on the 

acute corticospinal response to a single bout of RT (31, 75-78, 257-264). Results 

suggest that one session of RT leads to acute increases in CSE measured by TMS 

MEP amplitude (76-78, 258-260, 262, 263, 265), although the results do not always 

support this conclusion (31, 261, 263, 264). Regarding the SP accompanying the 

MEP, the results are mixed, with some studies finding decreases (78, 258, 260) or 

increases (264) after a RT session. Together with the increase in the MEP 

amplitude, some studies have also found a concomitant increase in the amplitude 

of the twitches evoked by single pulse TMS (75, 77). Muscle twitches are the sum 

of the forces produced by all the muscles acting around a joint activated by the 

non-focal single pulse TMS. Therefore, the acute increase in twitch amplitude 

suggests that one session of RT strengthens the corticospinal pathway projecting 

specifically to the trained muscle (75, 77). Some studies have also used paired 

pulse TMS paradigms to test possible changes in the efficacy of intracortical 

inhibitory or facilitatory circuits. However results are inconsistent, some authors 

report decreases in SICI (76, 258, 259, 262) and increases in ICF (258, 259, 262), but 

others do not (76, 78, 260, 261). At the spinal level, increases in α-motoneuron 

excitability or increases in the efficacy of corticospinal-motoneuronal synapse, 

may also contribute to increase single pulse TMS response, as suggest the acute 

increase in the amplitude of CMEPs (77). However, increased CMEP amplitudes 

after a bout of RT are not always present (257).  

Therefore, despite inconsistencies, the overall results suggest that one RT 

session leads to increases in the response to single pulse TMS of the trained 

muscles. This increased TMS response may be related to an increased cortical or 

spinal excitability although changes in intracortical inhibitory or facilitatory 

circuits may also contribute. Part of the inconsistencies in the results between 

studies may be related to different measurement methodologies or even to the 

characteristics of the RT bout (265). For example, the type of contraction 

influences the acute response to RT (262). Eccentric contractions lead to a greater 

corticospinal modulation after a bout of RT than concentric contractions (262), 

which may be related to differences in the nervous system output between types 

of contraction (113, 171, 172, 266). It is likely that other training variables with 
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great influence on the nervous system output, like contraction intensity, also 

influence the acute response to a bout of RT (see section 2.2). Furthermore, the 

level of fatigue could also influence the acute corticospinal responses. In fact, 

some have suggested that these short-term modulations at the corticospinal 

pathway, may be a mechanism to counteract the neuromuscular fatigue 

developed during training rather than being related to motor learning processes 

(260, 262, 267). 

As explained in the sections above, unilateral contractions do not only 

activate areas in the contralateral cortex, also ipsilateral brain areas (70, 71, 73, 

112, 114, 115, 181, 193, 198-200, 202). Therefore this concurrent activation may act 

as a training stimulus in the untrained hemisphere, leading to long-term neural 

and functional adaptations in the untrained homologous muscles (i.e. CE) (18, 64, 

66-69). However, as occurs with the trained side, some corticospinal modulations 

in the untrained hemisphere may occur after just one RT session. This topic will 

be addressed with more detail in the literature review presented in the chapter VI 

(111). 

2.3.2 Chronic adaptations to resistance training 

2.3.2.1 Functional adaptations to resistance training 

Trained side 

RT is one form of motor training widely used in sports performance (1-4), 

health (5-14), and recreational training programs. It basically consists on 

performing repeated dynamic (eccentric or concentric) or isometric muscle 

contractions against a load, usually distributed in groups of repetitions (i.e. sets) 

interspersed by rest periods. The main functional adaptations to RT are increases 

in the ability to produce maximal voluntary muscle force accompanied by muscle 

hypertrophy (15). Muscle force is the maximal ability to generate torque around a 

joint by the excitation of a muscle or a group of muscles, and it is influenced by 

the size and the physiological composition of the muscle and by the total output 

of the α-motoneurons to those muscles (219). Although there are several different 

methods to measure voluntary force depending on the devices used, the type of 

contraction, or the time to generate maximum force among other variables, the 
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most common tests used to quantify maximal voluntary force are the one 

repetition maximum (1RM) and the MVC (219). The 1RM is the greater amount of 

weight that can be lifted once in a specific RT exercise and informs about the 

maximum ability to generate concentric force (219). The MVC is used to measure 

the maximum isometric force and it requires to perform a maximum voluntary 

contraction against an immovable object connected to a force transducer, a device 

that measures the modifications in electrical resistance depending on the force 

applied while pushing (pressure) or pulling (tension) it (219). Changes in 

maximal voluntary force derived from RT are usually greater when the test used 

to measure it is equal or has similar characteristics to the exercise used during 

training (type of contraction, movement pattern, device, etc.) (268-270). However, 

RT is not only associated with increases in maximum voluntary force. RT is also 

usually associated, for example, with an increase in the ability to generate large 

amounts of force in less time (i.e. power) (271-274), which could be more relevant 

for sport performance or activities of daily living, where it is more usual to 

perform muscle contractions against submaximal loads (271, 275). 

The other main adaptation to RT is the increase in muscle mass or 

hypertrophy (15). Hypertrophy is the consequence of a positive balance between 

protein synthesis over protein breakdown due to the great increase in protein 

synthetic rate occurring after a RT bout (276). This increased anabolism provokes 

an increase in muscle size mainly by an increment in the number of sarcomeres in 

parallel and noncontractile elements, including glycogen and fluid content (276). 

Muscle hypertrophy is usually quantified by measuring the change in cross-

sectional area of the trained muscles using scanning techniques (e.g. magnetic 

resonance imaging, computerised tomography, ultrasound), biopsies to measure 

changes in muscle fibres cross-sectional area, or by estimating it with 

anthropometry (277-281). Significant increases in muscle mass are not observed 

until 3-6 weeks of RT, depending on the sensitivity of the technique used to 

measure it or the training stimulus (282-285). Therefore, it is thought that the early 

increase in voluntary force during the initial stages of a training period is related 

to neural adaptations (see next section), and muscle hypertrophy do not 

significantly contribute to increases in voluntary force until several weeks of RT 

(15, 26, 27, 252, 254).  
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The magnitude of adaptations in maximal voluntary force and muscle mass 

after RT varies in a wide range. For example, after 12 weeks of progressive 

dynamic RT, the response of 585 subjects ranged from 0 (no increases) to 250% 

increases in elbow flexors 1RM, or from -2% (decreases) to a 59% increase in the 

BB CSA (286). Part of the variability in the adaptations to an equal RT protocol 

between subjects can be partly explained by the influence of non-modifiable 

factors such as genetics (287), sex (286), age (288) or the training status of the 

trainees (289). However, in addition to these non-modifiable factors, there are 

numerous training variables that influence the adaptations to RT, such as training 

intensity (95-97, 290), fatigue (103-107, 291), training volume (98, 99, 292, 293) and 

frequency (101, 102, 294, 295), or the type of contraction (296-300). However, of 

those variables, the more relevant for the present thesis are the training intensity 

and the level of fatigue.  

Training load, or training intensity, is usually determined by the weight of a 

constant external load lifted in a dynamic RT exercise, or by the quantity of force 

applied during an isometric contraction against or towards an immovable 

resistance. It is usually expressed in relation to the maximum voluntary force in a 

specific exercise as a % of the 1RM or the MVC. However, during dynamic RT 

exercises against a constant external load, it is also common to prescribe a number 

of repetitions that should be done with the maximum amount of weight that 

allow to reach this number of repetitions (e.g. 10RM load means the maximum 

weight that can be lifted 10 times) (301). Training load does not influence to a 

great extent the magnitude of hypertrophy when training volumes are matched 

and every set is performed until concentric muscular failure (i.e. the moment 

where no more concentric repetitions could be done due to fatigue) (96). It is 

likely that the similar muscle hypertrophy between load ranges is related to the 

increased motor unit recruitment that occurs during submaximal contractions to 

compensate for the decline in motor unit firing rate in the initially recruited motor 

units (see section 2.2). This increase in motor unit recruitment during fatiguing 

submaximal contractions leads to the recruitment of the full spectrum of type I 

and II motor units, even when using loads as low as 30% of the 1RM (302). This 

increased activation compensates for the differences in motor unit recruitment 

between training loads present at the beginning of a set, or when sets are not 

carried to muscle failure, leading to a similar training stimulus despite different 
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training loads (302). In contrast, training load is a determinant variable to 

maximize the increases in voluntary muscle force (96, 97). It is likely that 

differences in force adaptations between load ranges despite similar effect on 

hypertrophy are related to heavy-load RT inducing greater neural adaptations, 

such as increased voluntary activation (97). 

The level of muscle fatigue during training has been also suggested to 

influence adaptations to RT (103-107, 291). The level of fatigue or level of effort 

during RT is usually controlled by the number of repetitions done in relation to 

the total amount of repetitions that can be done during each set (i.e. failure), or by 

the amount of velocity or power loss during a set compared to the initial or 

maximal value (103, 303-306). Sets to a number of repetitions close to the 

maximum that can be done, to concentric muscular failure, or to a greater % of 

power or velocity loss, lead to greater levels of fatigue (303, 307). Another form to 

manipulate fatigue during RT is to include brief rest periods between repetitions, 

which is generally known as “cluster training” (308, 309). Muscle fatigue has a 

profound influence on nervous system output and muscle properties (see section 

2.2). The metabolic stress derived from exercise (i.e. the increase in exercise-

induced metabolites such as inorganic phosphate or H+) is increased during 

fatiguing RT (276, 291). Some have suggested that this metabolic stress, together 

with the increase in motor unit recruitment that occur during submaximal 

contractions as fatigue develops (235, 302), is key to maximize RT adaptations 

(107, 291, 310). Therefore, fatiguing RT, such as RT to failure, has been suggested 

to be a superior training stimulus for strength and hypertrophy adaptations 

compared to less fatiguing RT (105, 107, 291, 311, 312). Indeed, muscle fatigue 

may be required to maximize hypertrophy and strength adaptations with low-

load RT (313-315) due to the initial lower motor unit recruitment (174, 235). 

However, some evidence suggests that with high-load RT, fatigue is not a 

necessary stimulus to exploit maximal voluntary force adaptations (103, 104, 106). 

Therefore, it is usually recommended to limit fatiguing RT to short periods to 

reduce the risk of overtraining or injuries (276, 311, 312, 316). 

Untrained side 

When performed unilaterally while the other limb is at rest, RT produces 

not only increases in the maximal voluntary force of the trained muscles but also 

of the non-trained contralateral homologous muscles (18-22, 28, 108, 110, 317). 
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This phenomenon is known as CE. Since the first report by Scripture et al. (20) in 

1894, CE has been the focus of many research efforts due to its potential as an 

adjuvant to rehabilitation programs for patients with unilateral weakness due to 

orthopaedic injuries or neurological disorders (79, 81, 318, 319). Although initial 

scepticism attributed CE just to a familiarization with the testing procedures (19), 

CE has been found also in properly randomized control trials in which there is a 

control group, which allows the exclusion of a familiarization effect as the 

underlying mechanism of CE (18, 19, 108, 110, 320). It is believed that CE arises 

from neural adaptations in the untrained hemisphere consequence of its 

concurrent activation during the unilateral contractions (see next section) (18, 64, 

66-69). Indeed, several studies did not find any change in muscle mass of the 

untrained muscles even after training periods of 6-12 weeks (21, 23, 321), which 

reinforces the neural origin of CE.  

The overall magnitude of CE is around a 12-18% according to the last two 

meta-analyses published (17, 18), a greater effect than reported before (~8%) (19, 

68). CE has been measured in muscles of the upper (23, 28, 74, 110, 320, 322-325) 

and the lower limbs (28, 39, 55, 108, 317, 321, 326), however, untrained leg 

muscles seems to be slightly more benefited from unilateral RT (~16%) than upper 

limb muscles (~9%) (18). It has been suggested that CE occurs unidirectionally 

from the trained dominant limb to the untrained non-dominant limb, and not vice 

versa (323). However, there are studies that have found a CE effect in the 

dominant limb after non-dominant limb unilateral RT (327, 328), which suggest 

that CE of maximal voluntary force is indeed bi-directional and may not be 

influenced by laterality (327). Regarding the effect of the age of the trainees, the 

activation of the ipsilateral hemisphere during unilateral contractions is greater in 

older adults (329), which could mean a greater training stimulus for the untrained 

ipsilateral hemisphere, leading to a greater CE (see next section). However, CE of 

maximal voluntary force is similar in young and old adults (17, 330). Likewise, CE 

has been measured in men and women without differences between sexes (17, 

286, 331). Nevertheless, a common factor of the participants in most of the studies, 

regardless of age or sex, is the lack of previous experience in RT, which could 

have enhanced the maximal voluntary force increases in the trained and the 

untrained limbs (18). 
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Training characteristics and testing procedures used to measure the force of 

the untrained limb also affect the magnitude of CE. CE has been observed after 

RT with isometric (325, 332, 333), concentric (108, 109), eccentric (108, 109, 320, 

334) or a combination of concentric-eccentric contractions (39, 74, 327, 335-337). 

However, pure eccentric training (108, 109), or a combination of concentric and 

eccentric training (18), have a greater potential to induce adaptations in the 

untrained limb than pure concentric or isometric contractions. Nevertheless, 

independently of the type of contraction, CE is always higher when the test used 

to measure it resembles the exercise performed during training regarding to the 

type of contraction (108, 109), the position of the limb (338), or the angle of the 

joint during isometric RT (333). 

Besides the type of contraction, other variables of the training protocol 

influence CE. For example, in a randomized controlled trial with 115 participants, 

a CE effect of a 7% was found after six weeks of unilateral RT in the group that 

performed three sets per session, but not in the group that performed just one set 

per session (110). This finding suggests that greater RT volumes enhance the 

adaptations in the untrained limb. In the same study, the authors also reported a 

tendency towards a greater CE when RT is performed at faster contraction speeds 

for the same external load (110). Related to the distribution of training days over 

time, a recent study compared the time course of CE between a traditional RT 

protocol, in which subjects trained three days per week for six weeks, with a 

group that performed one daily RT session for 18 consecutive days (i.e. the same 

total amount of training sessions) (339).  CE after the first 15 sessions was similar 

for both groups, however, it occurred in significantly less time for the daily versus 

distributed RT group (i.e. two vs. five weeks, respectively). This means that CE 

may be accelerated by reducing the time interval between sessions when the focus 

is the untrained limb (339). This accelerated CE may be related to a greater 

amount of practice (i.e. volume) over the first two weeks (110). 

As explained in the section 2.2, high contraction intensities (70, 112, 114, 115, 

181, 193, 198-200), and high levels of fatigue (71), separately, lead to a greater 

concurrent activation of the untrained hemisphere. Because CE is thought to arise 

from adaptations in the untrained hemisphere consequence of its concurrent 

activation during unilateral contractions (18, 64, 66-69), training load and fatigue 

may influence CE (111). However, regarding training load, most of the studies 
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have used loads greater than a 50% of the maximum force in the trained exercise 

(18, 111). The few studies that have measured CE after low-load RT found 

inconsistent results, with increases (59), or no changes (340) after 3-4 weeks of 

unilateral RT. Therefore, how RT load affects CE is not clear. Because there is a 

positive correlation between force increases in the trained and the untrained limb 

(18), it could be expected that RT protocols leading to greater adaptations in the 

trained muscles also lead to greater CE. Therefore, greater RT loads are probably 

more effective than lower loads. However, from a practical point of view, it is 

relevant to know if low loads are also effective to produce CE, because 

rehabilitation programs, for which CE is though, usually include home-based 

exercises (341) where it could be difficult to use high RT loads for the stronger 

muscles. Therefore, more research is needed to determine the effect of RT load on 

CE. Regarding the effect of fatigue of the trained limb during unilateral RT on CE, 

only one study and a complementary study with a small sample size (n = 6) have 

addressed this question (42, 342). In each study the authors compared two 

protocols with the same load but leading to a different level of fatigue in the 

trained limb. One group performed a less fatiguing protocol in which each muscle 

contraction was separated from the next by ~18 seconds of rest (42, 342). This type 

of training has been associated whit low levels of fatigue and the maintenance of 

the power level during the whole training session (343). The other group 

performed a more traditional RT protocol in which all repetitions of every set 

were performed without rest, leading to a greater amount of fatigue (42, 342). 

However, the results are contradictory, with one study suggesting that more 

fatiguing protocols may enhance CE (342), while other do not (42). Therefore, 

more research is needed to determine the effect of fatigue in the trained limb 

during unilateral RT on CE of voluntary muscle force.  

2.3.2.2 Neural adaptations to resistance training 

Trained side 

The development of maximal voluntary force is not only related to increases 

in muscle mass, but also to the ability to harness the full capacity of the contractile 

elements of the muscle through its activation by the nervous system. Therefore, it 

is believed that adaptations in the nervous system contribute to increase the 
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ability to voluntarily generate force (15, 26, 27, 60-62, 254, 256, 344, 345). Some 

indirect and direct evidence support this argument. 

When a previously untrained subject starts a RT period, muscle force 

increases sharply during the first weeks of training (253). However, this early 

increase in voluntary force is not accompanied by muscle hypertrophy (25, 252, 

321) or changes in the intrinsic ability of the muscle fibres to generate force, as 

suggests the lack of increase in the force of the twitches evoked by electrical 

stimulation of the peripheral nerve (30, 34, 47). This divergent time-course 

between peripheral changes and maximal voluntary force has been interpreted as 

an indirect evidence of the contribution of nervous system adaptations to force 

increases (26, 27).  

Independently of the muscle properties, muscle force depends on the α-

motoneuron output to the muscle, which is determined by α-motoneuron 

recruitment and the rate at which each recruited α-motoneuron fires (219). 

Therefore, any change in the nervous system contributing to increase maximal 

voluntary force has to produce an increase in the α-motoneuron output. This α-

motoneuron output has been tried to be measured by several methods. The 

amplitude of the EMG signal during a maximal voluntary contraction has been 

one of the most used techniques to measure neural adaptations (62). This 

electrophysiological technique is used to measure the action potentials spreading 

along the sarcolemma of the muscle fibres under the electrodes (159, 346). 

Because, among other factors, EMG amplitude is determined by motor unit 

recruitment and the firing rate of the recruited motor units, it has been used as a 

surrogate of the α-motoneuron output to the muscle (159). Several studies have 

found an increase in EMG amplitude after RT, which has been interpreted as an 

increased α-motoneuron output (273, 321, 347-355). Also decreases in EMG 

amplitude of the antagonist muscles have been reported, suggesting reductions in 

antagonist co-activation during MVCs, which would increase the net torque 

towards the desired direction (351, 356). However, interpretation of changes in 

EMG after RT is complicated. EMG amplitude during a voluntary contraction is 

affected by several factors not related to the nervous system output, like changes 

in the position of the electrodes, muscle temperature, or anatomical changes (138, 

159, 346, 357). The influence of these factors on the interpretation of changes in 

EMG amplitude after a period of RT can be reduced by normalizing its amplitude 
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with the Mmax (see section 2.1) (138). However, even normalized EMG amplitude 

could be affected by changes in the intracellular action potentials provoked by 

peripheral factors, leading to misleaded conclusions about changes in the neural 

drive (358). Furthermore EMG signal can be underestimated by the cancellation of 

the action potentials that compose it, which further limits its potential as a 

measure of neural adaptation to RT (15, 346). 

However, despite the limitations of EMG as an index of neural adaptations, 

other techniques support that RT increases the α-motoneuron output to the 

muscle. The twitch interpolation technique has been used to measure the 

voluntary activation, which is determined by the α-motoneuron output (136, 219, 

359, 360). This technique consists in delivering a supramaximal electric stimulus 

to a peripheral nerve during a MVC (219). If the electric stimulus produces an 

increase in force during the MVC, it means that the superimposed stimulus was 

able to further increase the α-motoneuron output, suggesting a suboptimal 

voluntary activation. Although not consistently (359, 361), several studies have 

found that after a period of RT, there is a decrease in the superimposed force 

evoked by the electrical stimulus during the MVC (51, 362-368). This reduction in 

the superimposed force suggests that RT increases the α-motoneuron output 

during the MVC, leading to a greater voluntary activation. This increased 

voluntary activation may be related to changes in motor unit behaviour during 

voluntary contractions. Indeed, a novel study using high density EMG, a 

technique that allows to track specific motor units longitudinally, found that force 

increases after four weeks of RT were accompanied by a reduction in the 

recruitment threshold and an increase in motor unit firing rate during 

submaximal isometric contractions (255). This finding agrees with previous 

reports of increased motor unit firing rate during submaximal (369) and maximal 

contractions  found with intramuscular EMG recordings after RT (253, 370). Those 

changes in α-motoneuron output to the muscle may be related to mechanisms 

leading to an increased responsiveness of the α-motoneurons to the same 

synaptic inputs, or to an increase in the magnitude of the synaptic inputs towards 

the α-motoneurons (255, 371). 

Increased α-motoneuron excitability would increase the responsiveness to a 

synaptic input after RT. If an increase in α-motoneuron excitability due to RT is 

related to changes in their intrinsic properties, those changes should be apparent 
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when α-motoneuron responsiveness is measured at rest. However, several 

studies have found no changes in the H-reflex amplitude at rest (32, 49, 51, 53, 54, 

62, 372). Although H-reflex amplitude is also affected by presynaptic inhibition of 

IA afferents (161), a recent study also found no changes in the amplitude of 

CMEPs at rest after four weeks of RT (47). Due to its monosynaptic nature (158), 

CMEPs are a better index of α-motoneuron excitability and the efficacy of the 

synapse between corticospinal neurons and α-motoneurons (153). Therefore, 

CMEPs and H-reflex data suggest that RT does not increase α-motoneuron 

excitability or corticospinal-motoneuronal synaptic efficiency, or decrease IA 

afferent presynaptic inhibition when measured at rest (62). However, there are 

some mechanisms that may specifically alter the responsiveness of α-

motoneurons to an input during contractions. For example, serotonergic 

neuromodulatory inputs coming from the brainstem enhance α-motoneuron 

excitability and are particularly active during contractions (373, 374). Therefore, 

RT derived adaptations in the neuromodulatory inputs to the α-motoneuron pool 

may increase the α-motoneurons excitability during contractions. Indeed, some 

studies have shown an increased H-reflex amplitude during contractions, 

suggesting increased α-motoneuron excitability or decreased Ia afferent 

presynaptic inhibition (49, 53, 54). However, results are inconsistent (51, 362, 372) 

and a recent meta-analysis showed no effect of RT on H-reflex amplitude either at 

rest or during contraction (62).  Therefore, overall results suggest that enhanced 

α-motoneuron output may not be related to an increased α-motoneuron 

responsiveness, but rather to an increased synaptic input towards them. 

If an increase in the synaptic input is the mechanism leading to a greater α-

motoneuron output, allowing a better harness of the muscle force capabilities, it 

should be apparent during maximal voluntary contractions. The V-wave obtained 

during MVCs, considered a proxy of the descending drive to the α-motoneurons 

(49) (see section 2.1), increases after RT (49, 51, 54, 57, 62, 372). However, the extra 

drive towards the α-motoneurons after RT that allows the V-wave to increase, 

may be related not only to a greater corticospinal input, but also to an increased 

contribution of reflex inputs during the voluntary contraction due to a decrease in 

presynaptic inhibition, for example (60, 375). Notwithstanding, although not 

always (36), short-term RT increases voluntary activation measured with TMS, 

which suggests an enhancement of the initially suboptimal supraspinal input to 
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the α-motoneuron pool (47). Those increases in the supraspinal input may be 

related to adaptations at the M1, or in other areas that influence the M1 output 

during maximal force production (60).  

A recent meta-analysis found that, although not consistently over the 

literature (36, 39, 44, 327), MEPs amplitude obtained during contraction increases 

after a period of RT (33, 38, 40, 44, 45, 62, 376, 377). In the same line, the force of 

the TMS-evoked twitches of the trained muscles also increase after RT (34). 

Although the response to TMS is also affected by changes at the spinal level, the 

lack of consistency in the effects of RT on the responsiveness of α-motoneurons, 

suggests that increases in the responses to TMS may be related to changes in the 

excitability of cortical and corticospinal neurons projecting to the trained muscles. 

Cortical and corticospinal excitability increases may be related not only to 

changes in the neuron's membrane properties, but also to adaptations in the 

intracortical inhibitory or facilitatory circuitry projecting to them (see section 2.2). 

Indeed, it has been shown that RT reduces GABA-A (i.e. SICI) (40, 44, 62, 335) and 

GABA-B (i.e. SP) (37, 39, 41, 45, 62) receptor-mediated intracortical inhibition. All 

those adaptations would hypothetically aid to increase the magnitude and the 

efficacy of the descending motor command to increase the α-motoneuron output, 

thus enhancing voluntary force production. Besides results derived from 

stimulation techniques, studies using brain imaging techniques have also found 

structural and functional brain adaptations after RT (23, 378). For example, one 

study found an increased mean diffusivity of the left corticospinal tract after 16 

sessions of RT together with an increase in force, suggesting an increase in 

myelination of the corticospinal tract (378). Also functional magnetic resonance 

imaging techniques have shown an increase in the activation of the M1 among 

other brain areas after RT (23), although this increased activation may not 

necessarily be functionally related to force enhancements (60). 

Therefore, overall results suggest that short periods of RT lead to an 

increased voluntary force paralleled with increased motor unit firing rate (255). 

Those increases in α-motoneuron output are mainly related to an increased 

corticospinal input to the α-motoneuron pool, which may be linked to functional 

and structural adaptations at supraspinal sites (47, 62). However, adaptations at 

the spinal level increasing the responsiveness of the α-motoneuron pool to 

synaptic inputs cannot be discarded. 
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Untrained side 

As occurs with the trained muscle, an increase in muscle force in the 

absence of muscle hypertrophy has been interpreted as an evidence of neural 

adaptations leading to the increases in voluntary force production (26). However, 

in contrast with the trained side, where increases in muscle mass may contribute 

to increase maximal voluntary force after the initial 3-6 weeks of training (282-

285), in the untrained homologous muscles hypertrophy does not occur even after 

longer training periods (21, 23, 321). Therefore, CE has been ascribed totally to 

neural factors (63). 

Two main theories have been proposed to explain the neural mechanisms 

underlying the increase in performance of the untrained limb after a unilateral 

task (66, 67). The “bilateral access” hypothesis suggests that the improved motor 

engrams related to a proper execution of the trained task derived from practice 

with the trained limb, may be accessed by the untrained hemisphere, leading to 

an increase in performance in the untrained limb (66, 67). This theory has been 

more accepted for intermanual transfer of motor tasks like serial reaction time 

tasks. However, with regards to CE of maximal voluntary force, the most widely 

accepted theory is the “cross-activation” hypothesis (66, 67). As explained in 

section 2.2, during unilateral contractions several areas in the ipsilateral 

hemisphere are also activated (70, 71, 73, 112, 114, 115, 181, 193, 198-200, 202). The 

cross-activation hypothesis suggest that the repeated activation of those areas 

during unilateral RT serves as the stimulus for the untrained hemisphere, leading 

to permanent functional adaptations (66, 67). Both theories are not mutually 

exclusive, and both assume a key role for the untrained hemisphere in the 

improvement of performance of the untrained limb. 

In relation to the role of the untrained hemisphere regarding CE, Lee et al. 

(379) found that after four weeks of unilateral RT, CE was accompanied by an 

increase in the cortical voluntary activation of the untrained wrist extensors. 

These results suggest that CE may arise from an increased capacity of the 

untrained M1 to drive the corticospinal pathway projecting to the untrained 

homologous muscles (379). As occurs with the trained hemisphere, increases in 

the supraspinal input from the untrained hemisphere may be related to 

adaptations at the M1, or in areas that influence its input during maximal 

contractions (60).  
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At the untrained M1, the effects of unilateral RT on M1 excitability are 

contradictory, with studies showing increases (74, 89, 109, 325, 335-337) and no 

changes (39, 109, 327, 332, 336). In this regard, a recent meta-analysis reported no 

significant increases in the MEP amplitude obtained by TMS stimulation of the 

untrained hemisphere (63). As discussed in the literature review of the present 

thesis, inconsistencies in the results can be related to different measurement 

methodologies and different characteristics of the training protocols that may 

influence adaptations (see Chapter VI) (111, 380). However, as explained in the 

section 2.2, unilateral contractions do not only raise cortical excitability of the 

untrained hemisphere but also reduce the efficacy of intracortical inhibitory 

circuits in the M1 (115). Therefore, it may be reasonable that repeated unilateral 

contractions during RT may lead to chronic changes in the efficacy of those 

circuits. In this regard, several studies have found a reduction in GABA-A (i.e. 

SICI) (63, 109, 335, 336) and GABA-B (i.e. SP) (39, 63, 109, 327, 337) receptor-

mediated intracortical inhibition in the untrained hemisphere after unilateral RT. 

Reductions in intracortical inhibition may improve the efficacy of the motor 

command to drive the untrained muscles, leading to CE.  

Increased cortical drive to the untrained muscles could also be related to 

adaptations in areas other than the untrained M1, but with influence on its 

output. In this regard, Hortobágyi et al. (325) found that CE after eight weeks of 

RT is related to a decrease in the IHI from the trained to the untrained 

hemisphere. In the same study, they also found a correlation between CE and the 

increase in the MEP amplitude obtained by TMS of the untrained hemisphere 

during contractions of the trained muscle (325). An increase in the cortical 

excitability of the untrained hemisphere during contraction of the trained limb, 

rather than explain a mechanism by which the untrained hemisphere would 

increase its output during contractions of the untrained muscle, suggest that with 

chronic unilateral RT there is an increase in the concurrent activation of the 

untrained hemisphere during unilateral contractions. This increased concurrent 

activation would mean a greater training stimulus for the untrained hemisphere, 

thus explaining the significant correlation with CE (325). Therefore, the reduction 

in IHI could have contributed to CE actively, by releasing the untrained 

hemisphere from the inhibition of the trained hemisphere and increasing its 

ability to drive the untrained muscles during maximal contractions; or passively, 
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by allowing a greater untrained hemisphere concurrent activation during RT, 

which would enhance the training stimulus for the adaptations causing CE (325). 

Adaptations in other areas than the ones that can be tested with TMS can also 

contribute to CE. For example, Farthing et al. (23) found that after six weeks of 

RT, unilateral contractions of the untrained limb were associated with an increase 

in the activation of the temporal lobe of the trained hemisphere and of the 

untrained sensorimotor cortex. An increase in the activation of the trained 

temporal lobe, an area related to memory retrieval of prior movements (23, 381), 

may influence the output of the untrained M1 through interhemispheric 

interactions, which would be in agreement with the “bilateral access” theory (23, 

66). 

Changes at the spinal level that increase the responsiveness of α-

motoneurons would also increase the output to the untrained muscles, thus 

contributing to CE. However, acute studies have shown that, in contrast with the 

increase in cortical excitability of the ipsilateral hemisphere during unilateral 

contractions, α-motoneuron excitability and presynaptic inhibition of the resting 

homologous muscles no change or increase, respectively (70). These acute studies 

suggest subtle modulations of the spinal pathway projecting to the resting 

homologous muscles, which agrees with the lack of change in the H-reflex of the 

untrained muscles after a period of unilateral RT (55, 326). Therefore, results 

suggest that CE is not mediated by changes at the spinal level of the pathways 

projecting to the homologous untrained muscles. 
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III - OBJECTIVES 

STUDY 1: 

- To determine the effects of acute resistance training load on the 

electromyographic responses and twitch forces evoked by transcranial magnetic 

and electric corticospinal tract stimulation on the trained biceps brachii. 

STUDY 2: 

- To systematically review the literature to determine the effects of the type 

of muscle contraction, training load, degree of fatigue and external pacing of 

muscle contractions during unilateral resistance training on the acute responses 

and chronic adaptations of the untrained hemisphere. 

- To detect the training variables in whose there is a lack of direct evidence 

about the effect of their modification on the acute responses and chronic 

adaptations in the untrained hemisphere. 

STUDY 3: 

- To determine the effects of acute unilateral resistance training load on the 

electromyographic responses evoked by transcranial magnetic stimulation on the 

trained and untrained BB. 

- To determine if the increases in corticospinal excitability after one session 

of resistance training are related to changes in intracortical circuits. 

STUDY 4: 

- To determine the effects of load during four weeks of unilateral resistance 

training on the magnitude of cross-education and the neural adaptations in the 

trained and the untrained leg extensors. 
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- To determine the effects of the degree of fatigue developed during the sets 

during four weeks of unilateral resistance training on the magnitude of cross-

education and the neural adaptations in the trained and the untrained leg 

extensors. 
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IV - HYPOTHESIS 

STUDY 1: 

- Acute responses to transcranial magnetic and electric corticospinal tract 

stimulation will increase in an intensity-dependent manner in the trained biceps 

brachii after a bout of unilateral resistance training. 

STUDY 2: 

- Training load, type of contraction, the degree of muscle fatigue and the 

strategy of pacing the movement during unilateral resistance training will affect 

the acute responses and chronic adaptations in the untrained hemisphere. 

Specifically, we hypothesize:  

o  Eccentric contractions will enhance untrained hemisphere acute 

responses and chronic adaptations to unilateral resistance training compared to 

isometric or purely concentric contractions. 

o  Training load will affect untrained hemisphere adaptations in a 

load-dependent manner. 

o  Greater levels of muscle fatigue during the set will enhance 

untrained hemisphere acute responses and chronic adaptations to unilateral 

resistance training. 

o  Externally pacing the movement during resistance training will 

enhance untrained hemisphere acute responses and chronic adaptations 

compared to self-paced movements. 

STUDY 3: 

- Unilateral resistance training will increase the corticospinal excitability of 

the trained and the untrained biceps brachii in an intensity-dependent manner. 
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- Acute increases in corticospinal excitability of the trained and the 

untrained BB will be associated with concomitant decreases in intracortical and 

corticospinal inhibition, and increases in intracortical facilitation. 

STUDY 4: 

- High-load resistance training and higher levels of fatigue will enhance 

neuromuscular adaptations in the untrained side. 

- High-load resistance training but not higher levels of fatigue will enhance 

neuromuscular adaptations in the trained side. 

- Maximal voluntary force improvements in the trained and the untrained 

leg will be accompanied by increases in corticospinal excitability. 
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V – STUDY 1: 

Contraction intensity-dependent variations in the responses to brain and 

corticospinal tract stimulation after a single session of resistance training 

in men 

5.1 ABSTRACT 

The aim of this study was to determine the effects of acute RT intensity on 

MEPs generated by TMS and on CMEPs produced by electrical stimulation of the 

corticospinal tract. In four experimental sessions, 14 healthy young men 

performed 12 sets of eight isometric contractions of the elbow flexors at 0 (Control 

session), 25, 50 and 75% of the MVC. Before and after each session, MEPs, CMEPs, 

and the associated twitch forces were recorded at rest. MEPs increased by 39% (P 

< 0.05 vs. 25% and control condition, ES = 1.04 and 1.76 respectively) after the 50% 

session and by 70% (P < 0.05 vs. all other conditions, ES = 0.91 - 2.49) after the 75% 

session. In contrast, CMEPs increased similarly after the 25%, 50%, and 75% 

sessions with an overall increase of 27% (P < 0.05 vs. control condition, ES = 1.34). 

The amplitude of the Mmax was unchanged during the experiment. The MEP- and 

CMEP-associated twitch forces also increased after RT, but training intensity 

affected only the increases in MEP twitch forces. The data tentatively suggest that 

the intensity of muscle contraction used in acute bouts of RT affects cortical 

excitability. 
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5.2 INTRODUCTION 

RT is widely used to improve MVC force and muscle mass. However, the 

mechanisms underlying the increases in MVC force following mechanical loading 

of healthy skeletal muscle remain incompletely understood. Because MVC force 

increases after a few sessions of RT, before functionally meaningful muscle 

hypertrophy could occur, the initial adaptations leading to this rapid increase in 

MVC force are probably of neural origin (24, 49, 252, 253). Indeed, a variety of 

forms of motor practice can cause rapid adaptations in central nervous system 

(75, 77, 244, 245, 260, 382-384). Therefore, the acute changes in the central nervous 

system after a single session of RT (75-77, 260, 383) could act as a trigger for long-

term adaptations following repeated training sessions.  

This trigger could be an increase in the efficacy of the corticospinal-

motoneuronal synapses, and increases in α-motoneuron and/or cortical 

excitability. In fact, a single session of isometric RT of the elbow flexors increased 

the size of MEPs and CMEPs measured at rest by TMS of the M1 and electrical 

stimulation of the corticospinal tract, respectively (77). CMEPs are affected by 

peripheral excitability, the efficacy of the corticospinal-motoneuronal synapses 

and α-motoneuron excitability, while MEPs are also affected by the excitability of 

motor cortical neurons. Furthermore, the amplitude of the twitch forces evoked 

by TMS and electrical cervicomedular stimulation also increased after a session of 

RT (77). Those involuntary contractions are the sum of the forces produced by 

different muscles activated by the same non-focal stimulus. Therefore, these 

increases in twitch forces towards the trained direction, together with the rise in 

the amplitude of MEP and CMEPs, suggest that a single session of RT 

preferentially strengthens the corticospinal-motoneuronal pathway projecting to 

the trained muscle (77). 

The effects of different forms of motor practice on CSE can still be present 

up to an hour after the session (244, 385-388) and 25 minutes after RT (77). This 

lasting increase in CSE has been interpreted as a marker of use-dependent 

corticomotor plasticity probably mediated by mechanisms similar to long-term 

potentiation (385, 386). 
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Most acute RT studies have used high-intensity muscle contractions as an 

exercise stimulus. However, low- compared to high-intensity (96) RT can also 

improve MVC force, albeit to a lesser extent.  Because the hypertrophy response 

to RT seems to be independent of intensity, the differences in the increases in 

MVC force brought about by low- and high-intensity RT may be related to 

differences in neural adaptations. 

Contraction intensity affects the magnitude of corticospinal tract activation 

(73, 179, 181, 389). At the spinal level, stronger contractions intensities implicate 

higher motoneuronal excitability through pre-and postsynaptic mechanisms, 

increased motor unit recruitment and higher firing frequencies (235). This leads to 

an increase in CMEP amplitude with contraction intensity until a decrease during 

very strong contractions, which is proposed to relate to α-motoneuron 

afterhyperpolarization trajectory (179). Similar to CMEP amplitude, MEP 

amplitudes also increase with contraction intensity (179, 181, 389), even though 

such responses to TMS tend to saturate and may even decrease before reaching 

100% of MVC force (179, 390). Spinal mechanisms (increased α-motoneuron pool 

excitability) could account for the increase in MEP amplitude, however the 

intensity of the contraction also influences the cortical output neurons and 

interneurons involved in generating the descending commands, as shown by 

neuroimaging studies and direct epidural recordings (73, 178). Additionally, the 

GABAergic mediated intracortical inhibition progressively decreases with the 

intensity of the contraction (190). It is thus conceivable that high- compared with 

low-intensity RT has a greater potential to induce neural adaptations. Whether 

the lasting effects on corticospinal and spinal α-motoneurons occur in a dose-

dependent manner after a single RT session using low skill, invariant isometric 

muscle contractions, are unknown. 

Therefore, the purpose of the present study was to determine the effects of 

acute RT intensity on the EMG responses (MEPs, CMEPs, Mmax) and twitch forces 

evoked by brain and corticospinal tract stimulation. We administered all tests at 

rest to control for α-motoneuron excitability and because measurements at rest 

are sensitive to RT-induced changes in the central nervous system (77). We 

compared these outcomes for up to 30 min following RT at 25%, 50%, and 75% 

MVC, and a control resting condition (CON). We hypothesized that MEPs, 
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CMEPs, and the associated twitch forces would increase in an intensity-

dependent manner after a bout of RT.  

5.3 MATERIAL AND METHODS 

5.3.1 Participants 

Healthy, right-handed, and recreationally active men (2-3h per week of 

recreational sports activities or aerobic training, age, 23.5 ±3.93 years, n = 16) 

without contraindications to TMS and currently not taking any medications, 

participated in the study. Data from two participants were excluded from the 

analyses because it was not possible evoke CMEPs with a constant latency > 

7.5ms. Participants came to the laboratory one week before the start of the 

experiments to become familiar with the MVC task, peripheral nerve stimulation, 

TMS, and corticospinal tract stimulation. Participants were asked to refrain from 

consuming caffeinated or alcoholic drinks and exercising 24 h before each testing 

session. The Institutional Review Board approved the protocol and the informed 

consent form, which all participants signed before the start of the experiments. 

The study was conducted in accordance with the latest version of the declaration 

of Helsinki.  

5.3.2 Set-up 

Participants were seated in a chair in front of a table with the right shoulder 

flexed at ~90º and the elbow flexed with forearms vertical (Fig. 1A). Right forearm 

was supinated and strapped at the wrist to a force transducer (NL63-200 Kg; 

Digitimer, Welwyn Garden City, United Kingdom) that measured voluntary and 

evoked twitch forces. The left arm rested on the table during the experiments. 

Visual feedback of voluntary elbow flexion force was displayed on a computer 

screen in front of the participant. 

EMG activity was recorded from the right and left BB using Ag-AgCl 

surface electrodes (5-8 cm inter-electrode distance) attached to the skin with a 

belly-tendon montage. EMG signals were amplified (x200 to x300), band pass 

filtered (10-1000 Hz) and sampled at 2 kHz with a Digitimer d440 isolated 
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amplifier (Digitimer, Welwyn Garden City, United Kingdom). Force recordings 

were band-pass filtered (5-2500 Hz), amplified (x2500), and sampled at 2 kHz 

using a Neurolog System (Digitimer, Welwyn Garden City, United Kingdom). 

Both EMG and force signals were simultaneously collected using an analog-

digital board CED Micro1401-3 (Cambridge Electronic Design, Cambridge, UK) 

for further analysis. 

5.3.3 Brachial Plexus stimulation 

Mmax of the right BB was obtained via single electrical stimuli delivered to 

the right brachial plexus (200-µs duration, DS7AH constant current stimulator; 

Digitimer, Welwyn Garden City, United Kingdom). The cathode (pre-gelled Ag-

AgCl electrodes) was positioned in the supraclavicular fossa and the anode on the 

acromion. Stimulation intensity (Range 40 - 168 mA) was set to 120% of what was 

needed to produce the Mmax in right BB. A supramaximal stimulus was used to 

reduce the probability that some axons would remain inactivated because of 

axonal hyperpolarization due to fatigue (138). Twitch forces associated with each 

Mmax were also recorded. 

5.3.4 Transcranial Magnetic Stimulation 

We generated MEPs in the right BB by placing a figure of eight coil (70 mm 

diameter; stimulator: DuoMag, Rogue Resolutions Ltd., UK) over an optimal spot 

of the left M1. The optimal site was obtained by exploring the estimated center of 

the BB motor cortical representation (4-7 cm lateral to the vertex). The hot spot, 

i.e., where a known supra-threshold intensity produced the largest responses, 

was marked on the scalp with a permanent marker. The coil was oriented with 

the handle pointing backward and laterally at around 45º to the midline. The 

stimulation intensity (58% - 100%) that induced an MEP of ~2-5% of the Mmax 

amplitude, was determined at rest and used to test the effects of acute RT on CSE. 

Such a measure is sensitive to RT-induced neural adaptations (77). Peak twitch 

forces associated with MEPs were also recorded. 
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5.3.5 Electrical stimulation of the corticospinal tract at the cervicomedullary 

junction 

Motor responses of the right BB were also obtained by electrically 

stimulating the corticospinal axons at the cervicomedullary junction. Pre-gelled 

Ag-AgCl electrodes were affixed over the left (cathode) and right (anode) mastoid 

process. Stimulation intensity (90 – 226 mA, 200-µs duration) was set to produce a 

CMEP of 10-20% of Mmax with the right BB at rest. Such a measure is sensitive to 

adaptations in α-motoneuron excitability or the efficacy of the corticospinal-

motoneuronal synapses induced by RT (77). Peak-to-peak twitch forces associated 

with each CMEP were also recorded. 

5.3.6 Experimental procedures 

5.4.6.1 Main experiment 

Each subject completed four experimental sessions separated by 5-7 days in 

a random order: isometric RT at 0%, 25%, 50%, and 75% of MVC. The 0% or 

control session consisted of 20 min of sitting at the table used for RT.  

Training consisted of 12 sets of eight, slowly ramped isometric contractions 

of the elbow flexors with four seconds of rest between contractions and one 

minute of rest between sets. Marked by a 2-s-long window, participants ramped 

up force to 25%, 50% or 75% of MVC represented by a horizontal line displayed 

on a monitor and relaxed as soon as they reached the target force at the end of the 

two seconds period (see Fig. 1B). The rate of force development was thus different 

between sessions. 

During each session, participants performed three measurements blocks 

involving noninvasive stimulation 15, 10 and five minutes before RT. 

Immediately after RT, participants performed one measurement block (POST-0’) 

that was repeated 5, 10, 15, 20, 25, and 30 min after POST-0’. The number of 

stimuli in each block was identical to a protocol reported previously (77): with 

two initial Mmax measurements, five CMEPs and five MEPs elicited in a random 

order with both arms at rest. EMG of both BBs was monitored and participants 

were repeatedly reminded to relax both arms. 
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After PRE measurements and before each intervention, all participants 

performed 2-3, 3-5-s-long isometric elbow flexion MVCs with 90 seconds of rest 

between trials. The highest value of all the attempts was used to determine the 

training intensity for that session. 

 

 

Figure 1. Schematic view of the set-up and protocol. (A) Participants completed the 

experiment comfortably seated with the elbow and the shoulder flexed to 90º in front of a screen 

showing the force feedback. (B) Raw traces of a contraction from each training session from a 

representative subject. In each training session the time in which participants have to steadily 

contract was identified with two vertical bars and the intensity required was marked with a 

horizontal line. (C) Motor evoked potentials and associated twitches were obtained before (PRE) 

and after (POST) each training (at 25, 50 or 75% of MVC) or control session (20 min of rest). 
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5.3.6.2 Complementary experiment 

While contraction intensity differed between sessions (25, 50, 75% of MVC) 

each session comprised 12x8, i.e., 96 contractions. Thus, the total amount of 

physiological work performed differed between sessions. In a complementary 

experiment we therefore examined the effects of the exercise volume on measures 

of neural adaptations. Participants (n = 8) performed an additional session at 25% 

of MVC but with twice the volume used in the main experiment (i.e. 2 x 12 = 24 

sets). Thus, the total amount of physiological work corresponded to work 

produced in the 50% session.  

5.3.7 Data analysis 

We measured the peak-to-peak amplitudes of Mmax, MEPs, and CMEPs and 

MEPs and CMEPs were normalized to Mmax within each measurement block and 

averaged. PRE measurements were represented as the average of all responses 

obtained in the three PRE blocks (i.e.: PRE -15, -10 and -5 min). We also measured 

the peak-to-peak twitch force amplitudes by calculating peak to peak values over 

a 200 ms time window after the stimulation.  

To assess neuromuscular performance, we averaged the root mean square 

amplitude of the EMG activity (EMGRMS) (normalized for Mmax recorded in each 

session) and the impulse (force x time) within each of four 500-ms-long window 

(from 0 to 2 sec; i.e.: 0-0.5; 0.5-1; 1-1.5; 1.5-2 sec) during every two-seconds 

contraction. 

5.3.8 Statistics 

Normality was confirmed using the Kolmogorov-Smirnov test. Intra-session 

and inter-session reliability for Mmax, MEPs, CMEPs, their associated twitches and 

stimulation intensities, was determined using intra-class correlation coefficients 

(ICCs) with 95% confidence intervals (95% CIs) from the mixed-effect model. The 

ICC was interpreted with values below 0.5, 0.5 to 0.75, 0.75 to 0.90, and > 0.90 

indicating, respectively, low, moderate, good, and excellent reliability (391). To 

analyze neuromuscular performance during each training session, a two-way 
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repeated measures analysis of variance (RM-ANOVA) was performed with SET 

(1-12) and INTERVAL (1st, 2nd, 3rd, 4th) as factors for the EMGRMS and the 

impulse (force area under the curve). A one-way RM-ANOVA with intensity as 

factor was performed for PRE-test measurements for Mmax, MEPs, CMEPs and 

their associated twitches to detect any between-group differences at baseline. 

Because there were no between-group differences in the baseline values, the 

subsequent analyses were performed with each session data normalized to its 

PRE values (i.e., on the Pre- to Post-trial change scores). A two-way RM-ANOVA 

was performed with TIME (Pre, POST-0’, POST-5’, POST-10’, POST-15’, POST-20’, 

POST-25’, POST-30’) and INTENSITY (CON, 25%, 50% and 75%) as factors for the 

Mmax, MEPs, CMEPs and their associated twitch forces (all normalized to PRE 

values). For the complementary experiment, a two-way RM-ANOVA was 

performed with TIME (PRE, POST-0’, POST-5’, POST-10’, POST-15’, POST-20’, 

POST-25’, POST-30’) and VOLUME as factor (25% and 25%x2) for Mmax, MEPs, 

CMEPs and their associated twitch forces. The main effect of INTENSITY or 

VOLUME was also analyzed independently of the other main effects or 

interactions in order to detect the overall effect of every session on each variable 

during the 30 minutes post intervention. If sphericity was violated (Mauchly’s 

test), degrees of freedom were corrected by Greenhouse-Geisser estimates of 

sphericity. Bonferroni correction was applied for post hoc analyses to account for 

multiple comparisons. Effect sizes are presented as partial eta square values (ηp2; 

small: 0.02; medium: 0.13; large: 0.26) (392). Unless indicated otherwise, data are 

reported as mean ±standard deviation. SPSS 20.0 software (SPSS, Chicago, 

Illinois) was used for statistical analysis. Statistical significance was set at P ≤ 0.05. 

5.4 RESULTS 

5.4.1 Main Experiment 

Reliability — Intra-session reliability of Mmax, MEPs, and CMEPs and the 

associated twitches was good to excellent (ICC = 0.88 to 0.99, Table 1). Inter-

session reliability for Mmax, MEPs, and CMEPs and the associated twitches and 

stimulation intensities was moderate to excellent (ICC = 0.67 to 0.98 Table 1). 
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Table 1. Mean PRE values for Mmax, MEP/Mmax and CMEP/Mmax and its associated 

twitches (mean ±SD) and intra-session and inter-session reliability. 

 

PRE values are expressed as means (SD). CI, confident interval; CMEP, cervicomedullary motor 

evoked potential; ICC, intraclass correlation coefficient; Mmax, maximal compound muscle action 

potential; MEP, motor-evoked potential. 

 Session Pre value Intra-Session 

ICC (95% CI) 

Inter- session 

ICC (95% CI)  

Mmax (mV) 

CON 5.99 ± 1.60 0.99 (0.97, 0.99) 

0.97 (0.93, 0.99) 
25 6.14 ± 1.59 0.99 (0.97, 0.99) 

50 5.84 ± 1.52 0.99 (0.99, 0.99) 

75 5.90 ± 1.78 0.99 (0.99, 0.99) 

MEP/Mmax (% 

Mmax) 

CON 5.59 ± 2.54 0.90 (0.76, 0.97) 

0.93 (0.87, 0.97) 
25 4.26 ± 1.87 0.94 (0.84, 0.98) 

50 5.69 ± 4.35 0.93 (0.84, 0.98) 

75 4.57 ± 2.31 0.93 (0.84, 0.98) 

CMEP/Mmax 

(% Mmax) 

CON 11.29 ± 5.12  0.82 (0.57, 0.94) 

0.67 (0.33, 0.88) 
25 10.93 ± 7.35 0.96 (0.91, 0.99) 

50 10.66 ± 5.55 0.95 (0.88, 0.98) 

75 9.87 ± 5.07 0.88 (0.72, 0.96) 

Mmax-twitch (N)  

CON 27.29 ± 7.79 0.96 (0.91, 0.99) 

0.94 (0.89, 0.98) 
25 29.53 ± 10.79 0.96 (0.91, 0.99) 

50 33.86 ± 8.81 0.96 (0.91, 0.99) 

75 31.56 ± 12.42 0.99 (0.97, 0.99) 

MEP-twitch (N) 

CON 2.36 ± 1.08 0.96 (0.90, 0.99) 

0.95 (0.91, 0.98) 
25 2.34 ± 1.38 0.94 (0.85, 0.98) 

50 2.55 ± 1.52 0.98 (0.95, 0.99) 

75 1.87 ± 0.98 0.95 (0.88, 0.98) 

CMEP-twitch 

(N) 

CON 6.43 ± 2.92 0.97 (0.94, 0.99) 

0.91 (0.82, 0.97) 
25 6.21 ± 2.20 0,98 (0,94, 0,99) 

50 6.07 ± 2.89 0.93 (0.83, 0.98) 

75 5.59 ± 2.15 0.96 (0.89, 0.98) 
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Neuromuscular performance — The two-way RM-ANOVA revealed that 

force impulse increased linearly from the beginning to the end of the contraction 

for all the intensities (Fig. 2A). Furthermore, the impulse remained unaltered 

across the sets. EMG activity normalized with the Mmax of each session, increased 

linearly from the beginning to the end of the contractions for each set and 

intensity and remained stable across the sets (Fig. 2B). 
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5.4.1.1 MEP amplitudes and associated twitch forces 

Figure 3 shows a representative individual example of MEPs and CMEPs 

obtained at rest after control, and acute RT at 25, 50 and 75% of MVC. MEP 

amplitudes increased more after RT at 75% compared to all the other sessions. 

Figure 4 shows that there were TIME (F (7, 91) = 10.14, P < 0.001; ηp2 = 0.44), 

INTENSITY (F (3, 39) = 20.17, P < 0.001; ηp2 = 0.61) and TIME x INTENSITY 

interaction effects (F (21, 273) = 3.55, P < 0.001; ηp2 = 0.21). Overall, MEPs 

consistently increased over the 30 minutes after RT compared to baseline only 

after 75% session. The 50% session increased MEPs from 0’ to 15’ but the 25% and 

control sessions did not affect MEP size. The 75% session compared with other 

sessions produced the largest increases in MEP size during the last 15’ (Fig. 4). 

Also, the INTENSITY main effect revealed greater sustained increases in MEPs 

after RT at 75% (+69.6%) compared with control (-5.3%, P = 0.001), 25 (+10.6%, P = 

0.001), and 50% (+39.2%, P = 0.026) of MVC and also after RT at 50% vs control (P 

= 0.008) and 25% (P = 0.024) MVC (Fig. 4B). 

MEP twitch forces increased more after RT at 75% than after the other 

sessions. There were TIME (F (2.84, 36.98) = 23.83, P < 0.001; ηp2 = 0.65), 

INTENSITY (F (1.49, 19.42) = 28.66, P < 0.001; ηp2 = 0.69) and TIME x INTENSITY 

interaction effects (F (21, 273) = 5.44, P < 0.001; ηp2 = 0.29). As with MEPs, MEPs 

twitch forces consistently increased over the 30 minutes of measurements after RT 

with 75% MVC compared to baseline. The 50% session also increased MEP twitch 

forces compared to baseline but only immediately after training (0’). No changes 

occurred after the 25% and control sessions relative to baseline. Increases after RT 

with 75% were larger compared to the other sessions during the last 15 minutes 

(Fig.5). Furthermore the main effect of INTENSITY showed that the increases in 

MEP-associated twitch forces were the greatest after the 75% session (+83.1%; 

Control session: -9.8%; 25% session: +18.2%; 50% session: +38.5%, all P < 0.001, see 

Fig. 5B). The overall increases in MEP-associated twitch forces were also greater 

after RT at 25% and 50% compared with control session (P = 0.016 and P = 0.009, 

respectively; see Fig. 5B).  
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Figure 3. Raw traces of MEPs and CMEPs in one subject after control session and isometric 

RT at 25%, 50% and 75% of MVC. PRE motor evoked potentials represents the average of all the 

evoked potentials obtained at 15, 10 and five minutes before training. POST-0, POST-15 AND POST-

30 represents the average of all evoked potentials obtained at each time point. Dashed line indicates 

the amplitude of PRE measurements. 

5.4.1.2 CMEP amplitudes and associated twitch forces 

CMEP amplitudes after acute RT were larger compared to the control 

session independently of the intensity. There were TIME (F (2.66, 34.53) = 4.30, P = 

0.014; ηp2 = 0.25) and INTENSITY (F (3, 39) = 7.15, P = 0.001; ηp2 = 0.34) main effects 

but no TIME x INTENSITY interaction (F (21, 252) = 1.24, P = 0.217; ηp2 = 0.09). 

Overall, there was an increase in CMEP amplitude after RT at any intensity (mean 

of +26.9%) compared to the control session (-14.9%, all P < 0.05 for all 

comparisons) but without differences between the other sessions (Fig. 4D). The 

increase after RT sessions was not different to baseline values at any point (Fig. 

4C). 

CMEP-associated twitch forces after acute RT were larger compared to the 

control session, independently of the intensity. There were TIME (F (3.33, 43.36) = 
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9.55, P < 0.001; ηp2 = 0.42), INTENSITY (F (3, 39) = 7.75, P < 0.001; ηp2 = 0.37) and a 

TIME x INTENSITY interaction (F (21, 273) = 3.53, P < 0.001; ηp2 = 0.21) effects. 

CMEP-associated twitch forces increased compared to baseline values only from 

0’ to 10’ after RT at 50% and 75% of MVC (Fig. 5C). The increase after 25%, 50%, 

and 75% sessions was only different compared to the control session during the 

first 20’ (Fig. 5C). Also, the main effect of INTENSITY showed that CMEP-

associated twitch forces after 25%, 50% and 75% sessions (mean of +31.3%) was 

larger than the increase after the control session (-5%, all P < 0.05 for all 

comparisons) but without statistical differences between training at 25%, 50%, 

and 75% of MVC (Fig. 5D). 

5.4.1.3 Maximal M-wave amplitudes and associated twitch forces 

Mmax amplitude did not change after any intervention (Fig. 4E, 4F). Mmax-

associated twitch forces increased immediately after acute RT and then returned 

to baseline values. There were TIME (F (2.25, 29.29) = 58.35, P < 0.001; ηp2 = 0.82) 

INTENSITY (F (3, 39) = 5.31, P = 0.004; ηp2 = 0.29) and TIME x INTENSITY 

interaction (F (21, 273) = 15.67, P < 0.001; ηp2 = 0.55) effects. Mmax twitch forces 

increased compared to baseline immediately after 25%, 50% and 75% sessions (0’ 

after RT, P = 0.003, P < 0.001, and P = 0.001, respectively). The increase in the Mmax-

associated twitch forces immediately after training (from 0’ after RT) was larger 

after the 50% and the 75% session compared to the control and 25% sessions. The 

INTENSITY main effect showed that Mmax twitch forces did not differ between 

sessions (P > 0.05, see Fig. 5F). 
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Figure 4. Time course of MEPs, CMEPs and Mmax after RT (n = 14 males). Left panel shows 

the time course (mean ±SD) of the MEP/Mmax (A), CMEP/ Mmax (C), and Mmax (E) of the right BB 

during the different RT sessions performed at 25%, 50%, and 75% of the MVC and during the CON 
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condition (Two-way RM-ANOVA with TIME and INTENSITY as factors). Each evoked potential 

was normalized to PRE values. Right panel shows the INTENSITY main effect for the MEP/Mmax (B), 

CMEP/ Mmax (D), and Mmax (F) of right BB. (*) shows a statistically significant difference (P < 0.05) to 

PRE values; (†) means statistically significant (P < 0.05) with respect to CON (P < 0.05); ($) shows 

statistically significant difference (P < 0.05) with respect to 25%; (#) means statistically significant 

difference with respect to 50%. 
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Figure 5. Time course of MEPs, CMEPs and Mmax twitch forces after RT (n = 14 males). Left 

panel shows the time course (mean ±SD) of the associated twitches of MEP (A), CMEP (C), and Mmax 

(E) of the right BB during the different RT sessions performed at 25%, 50%, and 75% of the MVC and 

during the CON condition (Two-way RM-ANOVA with TIME and INTENSITY as factors). Each 
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twitch was normalized to the PRE values. Right panel shows the INTENSITY main effect for the 

associated twitches of the MEP/Mmax (B), CMEP/ Mmax (D), and Mmax (F) of the right BB. (*) shows a 

statistically significant difference (P < 0.05) to PRE values; (†) means statistically significant (P < 0.05) 

with respect to CON (P < 0.05); ($) shows statistically significant difference (P < 0.05) with respect to 

25%; (#) means statistically significant difference with respect to 50%. 

5.4.2 Complementary experiment 

5.4.2.1 MEP amplitudes and associated twitch forces 

Doubling the volume of RT at 25% of MVC produced larger MEP 

amplitudes. There were TIME (F (7, 49) = 6.97, P < 0.001; ηp2 = 0.50) and VOLUME 

effects (F (1, 7) = 11.53, P = 0.012; ηp2 = 0.62) but not a TIME x VOLUME interaction 

(F (2.90, 20.29) = 2.10, P = 0.61; ηp2 = 0.23). The increase in MEP amplitude was 

larger after performing 24 sets instead of 12 sets at 25% of MVC (P = 0.012, see Fig. 

6A). However, pairwise comparisons for the main effect of time showed larger 

MEP amplitudes compared to baseline only at 0’ and 10’ after both training 

sessions (P = 0.047 and P = 0.022, respectively). 

Performing 24 sets instead of 12 at 25% of MVC produced also larger 

increases in MEP-associated twitch forces (P = 0.037, see Fig. 6B). There were 

TIME (F (2.35, 16.43) = 14.02, P < 0.001; ηp2 = 0.67), VOLUME (F (1, 7) = 6.64, P = 

0.037; ηp2 = 0.49) and TIME x VOLUME interaction (F (7, 49) = 3.29, P = 0.006; ηp2 = 

0.32) effects. However, pairwise comparisons showed that MEP-associated twitch 

forces were not significantly different compared to baseline after any training 

session. The increase in MEP-associated twitch forces was significantly larger 

after performing 24 sets compared to 12 sets at 25% only at 0’ after RT (P = 0.035).  

5.4.2.2 CMEP amplitudes and associated twitch forces 

CMEP amplitude and CMEP-associated twitch forces did not change after 

any intervention (Fig. 6C, 6D). 

5.4.2.3 Mmax amplitudes and associated twitch forces 

For Mmax obtained at rest, there was a VOLUME (F (1, 7) = 5.96, P = 0.045; ηp2 

= 0.46) main effect but not a TIME (F (1.92, 13.42) = 1.56, P = 0.171; ηp2 = 0.18) or 
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TIME x VOLUME interaction (F (3.41, 23.85) = 2.51, P = 0.77; ηp2 = 0.26) effect. 

Pairwise comparisons showed a statistically larger increase in Mmax after 

performing 24 sets compared to 12 sets at 25% (P = 0.045, see Fig. 6E). 

For Mmax-associated twitch forces, there was a main effect of TIME (F (3.09, 

21.62) = 12.93, P < 0.001; ηp2 = 0.65) but not VOLUME (F (1, 7) = 1.52, P = 0.257; ηp2 = 

0.18) or TIME x VOLUME interaction (F (7, 49) = 0.84, P = 0.557; ηp2 = 0.11) effect. 

Pairwise comparisons showed a statistically larger increase in Mmax twitch forces 

compared to baseline only at 0’ after RT independent of training volume (P = 

0.031). 

Figure 6. VOLUME main effect for MEPs, CMEPs and Mmax and associated twitches after low 

intensity and double volume low intensity RT (n = 8 males, two-way RM-ANOVA). Left panel 
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shows the overall net change (i.e.: average of all measures obtained after each training session 

normalized to PRE values (mean ±SD)) for the MEP/Mmax (A), CMEP/ Mmax (C), and Mmax (E) of right 

BB. Right panel shows the overall net change (i.e.: average of all measures obtained after each 

training session normalized to PRE values) for the associated twitches of the MEP/Mmax (B), CMEP/ 

Mmax (D), and Mmax (F) of the right BB. ($) shows statistically significant difference (P < 0.05) with 

respect to 25%. 

5.5 DISCUSSION 

5.5.1 Main experiment 

The data show for the first time that the intensity of acute isometric RT of 

the elbow flexors affects cortical excitability measured at rest in healthy men. In 

agreement with the hypothesis, MEP amplitude and the associated twitch forces 

increased with RT intensity but, contrary to the hypothesis, the changes in CMEP 

amplitude and twitch forces were independent of RT intensity. Also the duration 

of the effect on TMS responses increased with RT intensity. The data suggest that 

the intensity of muscle contraction used in acute bouts of RT affects cortical 

excitability.  

Our results expand previous data by showing dose-response effects of RT 

intensity on CSE measured at rest. Acute bouts of RT can increase the responses 

to stimulation of the corticospinal tract at cortical (75-77, 260, 383) and spinal 

levels (77), suggesting an increase in cortical or α-motoneuron excitability or an 

increase in the efficacy of the corticospinal-motoneuronal synapse. Our results 

show that CMEPs and associated twitch forces increased after RT independent of 

training intensity in comparison to the control session. However, CMEPs were 

not different to baseline after RT (Fig. 4C), suggesting that spinal adaptations 

measured at rest after acute RT do not always occur (47).  

Regarding responses to TMS, our data show that MEPs measured at rest 

increased by 95%, 64%, and 35% just a minute after the last contraction of an acute 

bout of isometric RT at 75%, 50%, and 25% of MVC and that the increase after RT 

at 75% was larger compared with the increases after RT at lower intensities. 

Considering the 75% condition, the 95% increase was smaller than the 242% 

increase reported previously (77), a difference that could be related to the position 
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of the shoulder being flexed to 90º and forearm supinated vs. shoulder abducted 

and forearm pronated (77). Such differences in joint positions could affect the 

responses to TMS and cervicomedullary stimulation (166, 167). Also in our study 

the rate of force development (RFD) systematically increased with contraction 

intensity and could confound the observed dose effects. However, RFD does not 

seem to be a determinant of corticospinal responses to acute RT (75, 77).  

When normalized to Mmax, the responses to M1 stimulation by TMS involve 

cortical and spinal mechanisms (176). However, α-motoneuron excitability and 

the efficacy of the corticospinal-motoneuronal synapse are the mechanisms 

involved in CMEPs normalized to Mmax, which did not vary with RT intensity. 

Furthermore, contrary to MEPs, CMEPs did not increase immediately after RT. It 

thus seems that the intensity-dependent TMS responses to RT reflect cortical 

involvement. Indeed, Dai et al. (73) showed that higher forces led to correlated 

increases in activation of motor cortical neurons and interneurons to generate the 

desired motor output. Furthermore, there is additional evidence for a lack of 

adaptation at the spinal level after short duration high-intensity RT as measured 

by cervicomedullary stimulation (47) and H-reflex (43). Thus, the emerging 

picture is that initial neural adaptations to RT are localized at a supraspinal level 

(43). The increases in MEP size after RT are probably a reflection of changes in 

excitatory-inhibitory balance toward greater efficacy of the excitatory input to the 

trained muscles. One way this can happen is that cortical excitability increases 

while the efficacy of GABAergic inhibitory interneurons decreases, or both (76, 78, 

265).  

The MEP- and CMEP-associated twitch forces also increased after RT, but 

training intensity affected only the increases in MEP twitch forces. Twitch forces 

evoked by non-focal stimulation like TMS or corticospinal tract electrical 

stimulation reflect the sum of the forces of different muscles around the joint, 

including the antagonist elbow extensors (77). Therefore, although not intensity-

dependent, the increase in the twitch force elicited by cervicomedullary electrical 

stimulation during the first 10 minutes reflects some increase in α-motoneuron 

excitability or the efficacy of the corticospinal-motoneuronal synapse (77) 

occurring preferentially in the α-motoneurons projecting to the elbow flexors. 

Also, the intensity-dependent increase in the twitch forces evoked by TMS reflects 

that the intensity of training influenced the increase in the output of the cortical 
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neurons projecting mainly to the elbow flexors. Some potentiation at the 

peripheral level also occurred because the Mmax-associated twitch forces increased 

immediately after the protocol. This potentiation could have influenced the 

increase in MEP- and CMEP-associated twitch forces after RT during the first 10 

minutes but probably did not influence the rest of measurements (77). 

Our results show that not only did RT intensity affect the magnitude of 

increases in cortical excitability, it also affected its duration. This longer lasting 

effect is probably related to the larger increase produced by the higher intensities 

immediately after RT ended. However, as was the case for magnitude, the 

duration of the effect of RT in CMEPs was independent of exercise intensity. The 

dose-dependent lasting rise in cortical excitability could be related to use-

dependent corticomotor plasticity mediated by LTP-like mechanisms (385, 386), 

which can be present up to an hour after motor practice is stopped (244, 385-388). 

However, previous studies questioned the role of plastic changes in the 

corticospinal pathway measured by TMS in the neural adaptations to simple RT 

tasks (31). Therefore, it is possible that the characteristics of the task, generating 

progressively higher force in response to the visual cue, and not RT per-se, could 

underlie the acute corticospinal responses we observed. Indeed, CSE increases 

and cortical inhibition decreases after skill training and metronome paced RT but 

not self-paced RT (31, 76). This suggests that synchronization to a visual or 

audible cue could be more important to modulate the neural mechanisms than 

contraction intensity per se. However, our results show that in a task in which 

participants increase force by tracking a visual template, cortical responses to 

TMS scale with contraction intensity, leading to an effort-dependent sensitization 

of cortico-cortical cells in M1 that strengthens the intracortical neuronal 

ensembles generating outputs towards the trained muscles (385). 

The increase in the net excitatory output from M1 measured by single pulse 

stimuli could be related to a compensatory mechanism to counteract peripheral 

fatigue (260). However, although we cannot discard the presence of some 

peripheral fatigue, it was probably low, since there were no significant decreases 

in Mmax associated twitch forces during the 30 minutes after the interventions. 

Furthermore, the EMGRMS amplitude during the training sets remained constant, 

suggesting that a compensatory increase in central drive was not needed to 

counteract reductions in muscle contractile properties or α-motoneuron 
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excitability. Regarding central fatigue, although our data cannot discard the 

possibility of increased cortical inhibition, MEPs tended to remain depressed for 

over 10 minutes when recorded at rest after fatiguing contractions (393). This 

depression contrasts with the increase in MEPs size and associated twitch forces 

for 25-30 minutes after RT ended (Fig. 4A and 5A). Also, if fatigue had affected α-

motoneuron excitability, it would have reduced the responses to 

cervicomedullary electrical stimulation at rest (393), which is also in contrast with 

our findings. As a limitation to our study we did not measure MVC after RT and, 

therefore, we cannot unequivocally rule out the effects of fatigue on the outcome 

measures. 

Nonetheless, the acute changes in corticospinal response to a single bout of 

RT likely reflect initial neural adaptations to RT (75, 77) rather than a 

compensation for fatigue. Thus, our finding of a contraction intensity-dependent 

effect on cortical excitability could explain the absence of chronic neural 

adaptations (59, 97) (i.e., no changes in EMG, V-wave, voluntary activation) and 

the smaller MVC force increases that occur with low- compared to high intensity 

RT (96). 

5.5.2 Complementary experiment 

High compared with low exercise volume tends to produce greater 

increases in performance (394) and muscle mass (292). We found that a doubling 

of exercise volume increased MEP and associated twitch forces compared with 

the responses after the 25% intensity protocol without differences in CMEP size 

and associated twitch forces. Our data agree with a study reporting that training 

duration affected the involuntary twitch responses generated by TMS toward the 

training direction after ballistic training (245). These results suggest that the 

volume of an acute isometric RT session of the elbow flexors also affected cortical 

excitability at rest in healthy men. However, we must be cautious with this 

conclusion because samples size was small in our complementary experiment.  
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5.6 LIMITATIONS 

We did not match the size of MEPs and CMEPs, invalidating any 

comparisons between the two responses. However, as has been also argued (77), 

the time course of changes in MEP and CMEPs was different, with marked 

increases in MEP amplitude immediately after training in contrast to no changes 

in CMEPs at 10 minutes post-training. Also, the larger baseline size of CMEPs 

(10% of Mmax) could have reduced the potential for change. However, this is 

unlikely because CMEPs of larger baseline size (15-20% of Mmax) increased to a 

greater extent after high intensity RT (27) compared with the changes we 

observed. Future studies should match the size of MEPs and CMEPs, an approach 

that would make it possible to determine more accurately if the site of neural 

adaptation to RT is at the spinal or cortical level.  

5.7 CONCLUSION 

Collectively our data tentatively suggest that the intensity of muscle 

contraction used in acute bouts of RT affects cortical excitability. The dose effects 

are probably related to the heightened cortical activation, resulting in greater 

adaptive processes in M1. Additionally, volume of acute RT also seems to 

contribute to the acute changes in cortical excitability. Future studies will 

determine if there is a dose-response relationship between MVC force and 

neuronal excitability after chronic RT.  
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VI – STUDY 2 

Effects of acute and chronic resistance training variables on ipsilateral 

motor cortical excitability and cross-education: A systematic review 

6.1 ABSTRACT 

Objective: The increase in voluntary force of an untrained limb (i.e. CE) after 

unilateral RT is believed to be a consequence of cortical adaptations. However, 

studies measuring neurophysiological adaptations with TMS found inconsistent 

results. One unexamined factor contributing to the conflicting data is the 

variation in the type and intensity of muscle contractions, fatigue, and the 

strategies of pacing the movement. Therefore, the purpose was to analyze how 

those unilateral RT variables affect the adaptations in ipsilateral M1 and CE. 

Methods: We performed a systematic literature review, using the databases 

MEDLINE (via PubMed) and Web of Science with the search terms with Boolean 

conjunctions: “Transcranial magnetic stimulation” AND “Ipsilateral cortex” AND 

“Resistance training”. Results. The 11 acute and 12 chronic studies included 

partially support the idea of increased cortical excitability and reduced 

intracortical inhibition in the ipsilateral M1, but the inconsistency between studies 

was high. Conclusions: Differences in type and intensity of contraction, fatigue, 

and strategies of pacing the movement contributed to the inconsistencies. The 

tentative conclusion is that high intensity eccentric or externally-paced 

contractions are effective to increase the ipsilateral M1 excitability but CE can 

occur in the absence of such changes. Thus, the mechanism of the CE examined 

with TMS remains unclear.  
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6.2 INTRODUCTION 

Unilateral muscle contractions activate contralateral but also ipsilateral 

brain structures (73). Such ipsilateral brain activation occurs during the execution 

of simple motor skills requiring little effort and parametrically increases with the 

intensity of isometric and dynamic muscle contraction (115, 181, 199). However, 

the source of this ipsilateral brain activation is not entirely clear. Because the 

delay between the activation in the two hemispheres is in the millisecond range, a 

part of the activation is likely to occur simultaneously and inadvertently, while 

there is a temporal element of this activation that is due to interhemispheric 

actions acting on intracortical circuits in the ipsilateral hemisphere (203). 

Short-term unilateral RT produces not only increases in voluntary muscle 

force of the trained muscle but also in the non-practice homologous muscle, a 

phenomenon known as CE (19). Although short-term motor skill training also 

leads to interlimb transfer of skill (395, 396), the present review focuses only on 

the CE of voluntary muscle force. Typically, CE is muscle-specific but without (or 

little) peripheral adaptations in the untrained muscle itself (321). By default, CE 

after unilateral RT was assumed to have a neural origin (67). At least two neural 

mechanisms can (partly) explain CE after unilateral RT. One is related to the 

possibility that the repeated activation of the ipsilateral brain structures by the 

unilateral muscle contractions during unilateral RT serves as the training stimulus 

for adaptations in the ipsilateral brain areas. Such a mechanism is supported by 

the increase in the number of corticospinal neurons recruited in the untrained 

limb (109, 325, 337) and reductions in intracortical inhibition (39, 89, 327, 336). In 

other words, cross-activation during unilateral contractions leads to neuroplastic 

changes in both cortices (66, 67) that increase the output produced by the motor 

command, potentially explaining behavioural gains in the untrained limb. A 

second potential mechanism is an altered interhemispheric communication after 

unilateral RT (325) that can also influence SICI and long intracortical inhibition 

circuits in the transfer hemisphere (115) and, thus, be the basis for CE.  

However, despite the solid theoretical foundation for this hypothesis, there 

are many inconsistencies in the effects of acute or chronic unilateral RT on 

ipsilateral M1 excitability quantified by ipsilateral CSE, ipsilateral intracortical 
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inhibition, and ipsilateral facilitation, making it difficult to determine the neural 

mechanisms underlying CE. It is possible that the inconsistencies are due to the 

differences between studies with respect to training variables such as the intensity 

(199) and the type of muscle contraction (112), the degree of fatigue, and the 

external pacing of muscle contraction (76), which can affect the adaptations in the 

ipsilateral M1. Thus, it is probably that those training variables per se affect the 

acute and chronic adaptations in the ipsilateral M1 excitability, and hence CE. 

Therefore, the purpose of this review is to determine the effects of the type 

of muscle contraction, the training intensity, the degree of fatigue and the external 

pacing of muscle contractions on the ipsilateral M1 adaptations. Also to 

determine if ipsilateral M1 adaptations are related to the effectiveness of the 

motor command, producing correlated increases in CE following acute and 

chronic unilateral RT in healthy adults. 

6.3 METHODS 

The present systematic review was performed according to the ‘Preferred 

Reporting Items for Systematic Review and Meta-Analysis Protocols’ (PRISMA-P) 

2015 guidelines (397).  

6.3.1 Search strategy 

A systematic literature review included papers published between January 

1950 and March 2018 in the online databases MEDLINE (via PubMed) and Web of 

Science. The main search terms were “Transcranial magnetic stimulation”, AND 

“Ipsilateral cortex”, AND “Resistance training”, and its synonyms. Tracking of 

cited studies and hand searching of relevant articles were also completed. The 

literature search was conducted by DCP. The authors were contacted to provide 

the data missing from original papers but needed for the review. 

6.3.2 Eligibility criteria and study selection  

After removal of duplicates, the remaining studies were screened manually 

based on title, abstract, and full-text. To guide the exclusion and inclusion criteria 

we followed the PICOS guidelines (Population, Intervention, Comparator, 
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Outcomes, and Study)  (398).The following PICOS criteria were applied. (i) 

Population: healthy adults (free of orthopaedic and neurological conditions) age 

18 to 55 years. (ii) Intervention: Unilateral RT session was considered as a 

unilateral repetitive task at a given percent of 1RM, absolute load (Kg), if the task 

was dynamic, or percent MVC, if the task was isometric, while the other limb was 

at rest. Duration of unilateral RT was defined as a minimum of two sessions per 

week for at least two weeks for the chronic studies. (iii) Comparator: For chronic 

studies, a control group that did receive no intervention or a no-intervention 

control period for the experimental group served as comparators. For acute 

studies, not control intervention was required. (iv) Outcomes: Adaptations in the 

ipsilateral M1 had to be measured with TMS using different stimulation 

protocols. At least one of the following outcome parameters measured in the 

ipsilateral M1 was necessary for inclusion of the respective study: MEP 

amplitude, SICI, IHI, ICF or contralateral SP before and after unilateral RT. (v) 

Study: randomized trial were included.  

Studies were excluded that used sustained unilateral muscle contractions to 

fatigue or to a time limit, used electrical muscle stimulation, or direct/placebo 

stimulation of the corticospinal tract (EMS, a-tDCS, PAS, rTMS...). A consensus 

among three of the authors (DCP, GM, and TH) guaranteed that the studies 

included in the review met the inclusion. 

6.3.3 Coding  

We coded the data for authors, publication date, sample size, participants’ 

characteristics (age, limb dominance), muscle group trained, details of RT 

intervention (duration, sessions, volume, intensity, exercise type), key outcome 

(TMS measurements and strength measures for case of chronic studies), and 

results of the study regarding the key outcomes. 

6.3.4 Assessment of methodological quality  

We computed the PEDro score to assess the methodological quality of the 

included studies (399). The scale consists of 11 criteria, of which the first is not 

included in the total score. Each criterion is rated “yes” or “no,” and a “yes” 
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should only be awarded when a criterion is clearly satisfied. If all criteria are 

satisfied, the maximum score of 10 can be given. Included studies with a PEDro 

score of ≥ 6/10 were considered of high quality, whereas a score of 5/10 or lower 

was considered as low methodological quality. Two researchers (DCP, SRA) 

independently assessed the methodological quality and discrepancies were 

resolved by discussion until consensus was reached. Additionally we also 

assessed the methodological quality of the acute studies without control group 

using the ‘Quality assessment tool for before-after studies with no control group’ 

(400), a 12-question tool which rates the methodological quality of the studies as 

“good”, “fair” or “poor” (7 studies). The raters were not blinded to study authors, 

place of publication, and results. 

6.4 RESULTS 

6.4.1 Search results 

Figure 7 shows the flow diagram of the systematic review. The search 

identified 687 studies. After duplicates, 518 studies were left. After checking the 

titles, abstracts, and the full-text as needed, 22 studies met the inclusion criteria, 

11 to analyse the acute effects, and 12 studies to analyse for chronic effects (one 

study was included in both analysis). 



DAVID COLOMER POVEDA 112 

 

Figure 7. Flow diagram of studies identified, excluded, and included in the systematic 

review. 

6.4.2 Quality assessment  

Tables 2 and 3 show the quality scores. 75% of the studies revealed a high 

quality PEDro score (≥6 points). The methodological quality of the before-after 

studies without a control group was “fair”. 
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6.4.3 Participants and study characteristics 

6.4.3.1 Acute studies. 

Table 2 summarize the study characteristics using dynamic and isometric 

muscle contraction as a training stimulus. The 11 studies were published between 

2002 and 2015. The sample size per study ranged between eight and 32 (mean 

15.4, total N = 174), and participants’ age was 19 to 55 years. Two of the 11 studies 

reported subjects’ training status, with one including a mix of sedentary, 

endurance, and resistance-trained participants (401), and the other including 

subjects with no experience in strength training of the fingers (325). Most 

participants were right handed, whereas in four studies there were both, right 

and left handed subjects (total of 11 left handed subjects) (76, 401-403).  

All but one study (404) trained an upper extremity muscle. Participants 

trained the dominant (n = 7 studies) (325, 401-406) or the non-dominant limb (n = 

4 studies) (76, 407-409). Studies included dynamic (76, 401, 405, 408) and static 

(325, 402-404, 406, 407, 409) muscle contractions. Five studies included at least one 

situation in which the specified training was performed until they could no 

longer complete the movement (401, 405, 408), achieve the desired force level 

(409) or even until they could no longer exert any force (complete exhaustion) 

(407). In eight studies, there was at least one intervention without an explicit 

intention to perform contractions until complete exhaustion (76, 325, 402-404, 

406). Regarding training intensity, six studies used low intensity contractions (1%-

30% of 1RM or MVC) (401, 404-406, 408, 409), four studies used medium intensity 

(31-60% of 1RM or MVC) (402, 403, 407, 409), and two studies used high intensity 

contractions (> 61% of 1RM or MVC) (76, 325).  
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6.4.3.2 Chronic studies. 

Table 3 summarize chronic studies, published between 2011 and 2018 using 

dynamic or isometric contractions during training. The studies used a pre-post 

design, with all but one study  including a no-intervention control group or 

control period (89). The sample size ranged from four (410) to 34 (332) subjects 

(mean 21.08 ± 8.2, n = 253). Participants were untrained (74, 90, 109, 325, 327, 336, 

337, 410) or training status was not reported. 248 of 253 subjects were right-

handed with an age of 18 to 35 years (but see (410)). 

Nine chronic studies trained an upper extremity muscle (74, 89, 109, 325, 

327, 332, 336, 337, 410) and three targeted a leg muscle (39, 90, 335). Training 

duration lasted for three to eight weeks with nine to 24 sessions. All but two 

studies (325, 332) used dynamic contractions. All studies used an intensity of 70% 

to 100% of 1RM, with a median of 80% of 1RM.  
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6.4.4 Primary outcomes 

6.4.4.1 Acute studies 

Measured at rest (401, 405) or during a weak test contraction of the 

untrained muscle pair (76, 408), ipsilateral CSE increased by 54.9% (± 16.4) (76, 

405), decreased by 26 to 60.6% (401, 405) or did not change (76, 408) after an acute 

session of dynamic unilateral RT.  

In acute studies using isometric training contractions, ipsilateral CSE, 

measured at rest (325, 402, 403, 407, 409) or during a weak test contraction of the 

trained (406) or untrained muscle pair (404) remained unchanged or decreased by 

15% five to 15 minutes after the intervention (407). 

Ipsilateral SICI measured at rest (325, 403, 407, 409) or while contracting the 

untrained muscle pair (76) did not change or decreased by 39.2% (± 6.62) (76, 407) 

after acute bouts of unilateral RT. 

Ipsilateral ICF decreased by 27.3-96.7% (403, 409) immediately after training 

or did not change (325, 407, 409). 

IHI in the untrained muscle pair during low-intensity isometric contraction 

did not change (408), while it was acutely diminished (8.8 ± 3.9%) when measured 

at rest (325). 

6.4.4.2 Chronic studies 

Ipsilataeral CSE increased (74, 89, 90, 109, 325, 335-337) or remained 

unchanged (39, 327, 332, 336, 410) after periods of chronic unilateral RT when 

measured at rest (89, 325, 332) or while the trained (89, 325) or untrained muscle 

was weakly contracted (39, 74, 90, 109, 327, 332, 335-337, 410). After chronic 

unilateral RT, ipsilateral CSE increased by 27.7% (± 34.3). This mean change is 

based on data in nine studies that measured ipsilateral CSE at 20% of maximal 

stimulator output above AMT (39, 74, 327, 335) and 130% of AMT intensity (336, 

337) during low intensity contraction of the untrained muscle, and also on 

changes in ipsilateral CSE measured at 120% of the AMT intensity during trained 

limb contraction (89) or at rest (325, 332). 

Ipsilateral SICI was measured at rest (89, 325, 332) and while subjects 

contracted the trained (89) or untrained muscle pair (90, 109, 327, 335, 336). SICI in 
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the ipsilateral M1 decreased by 32.9 ± 10.7% (89, 90, 109, 335, 336) or remained 

unchanged (89, 109, 325, 327, 332, 336) after chronic unilateral RT. Additionally, 

SP was unchanged (74, 410) or became shorter by 21 to 26 ms, (39, 337) after 

chronic unilateral RT. SP revealed large variation because it remained unchanged 

or shortened depending on contraction type (109), limb dominance (327) or visual 

feedback (89) used in the chronic unilateral RT. 

IHI measured at rest decreased (30.9 ± 3.8%) after 20 sessions of unilateral 

RT of the right first dorsal interosseous (325), increased (89) or remained 

unchanged after 12 sessions of unilateral RT (332). Chronic unilateral RT did not 

modify ICF (325, 332). 

The mean CE after chronic unilateral RT was 23.3 ± 14.4%. Figure 8 shows 

that data from the same nine studies used to calculate mean ipsilateral CSE 

changes correlated r = 0.649 (P < 0.01) with increases in maximal voluntary force 

of the untrained limb.  

 

Figure 8. Correlation between changes in ipsilateral corticospinal excitability and maximal 

voluntary force of the untrained limb. 
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6.5 DISCUSSION 

Results from the present review show that chronic unilateral RT leads to 

increased ipsilateral CSE (n = 8 studies), and reduced ipsilateral SICI (n = 5 

studies), SP (n = 5 studies), and IHI (n = 1 study). Such findings partially support 

the cross-activation model, by which the activation of the ipsilateral brain 

structures by the unilateral muscle contractions during unilateral RT, serves as 

the training stimulus for chronic adaptations in the ipsilateral brain areas. 

However, such cross-activation of the ipsilateral M1 does not to lead to similar 

response after an acute session of unilateral RT, in which the pattern of change in 

ipsilateral CSE (increased, n = 2 of 11), ipsilateral SICI (decreased, n = 2 of 5), or 

IHI (did not change, n = 1) was much more variable. 

The ipsilateral M1 adaptations after chronic unilateral RT may reflect 

changes in the membrane properties of the corticospinal neurons, increases in the 

efficacy of the excitatory synapses, a decrease in the excitability of the GABAergic 

inhibitory interneurons, and/or reductions in the interhemispheric inhibition 

input from contralateral to ipsilateral cortex (325, 335).   

Such adaptations could be increasing the effectiveness of the motor 

command, thus contributing to CE after chronic unilateral RT. Figure 8 shows 

that increases in ipsilateral CSE and CE correlate r = 0.649 (P < 0.01, n = 9 studies), 

suggesting that the change in ipsilateral CSE could be one of the mechanisms 

explaining the increase in maximal voluntary force in the untrained limb (39, 74, 

89, 325, 327, 332, 335-337). However we must be cautious with this interpretation 

because it is hampered by a lack of correlation reported in individual studies 

between changes in ipsilateral CSE and CE (336, 337), and whether or not the 

level of ipsilateral CSE at baseline drives this relationship (411). Indeed, a recent 

review reported zero association between skill learning and changes in CSE based 

on individual data (n = 251) from 11 studies (412). In addition, results revealed 

high variability in the ipsilateral M1 excitability measured after a bout or a period 

of unilateral RT, with several chronic studies (n = 4 for ipsilateral CSE, n = 3 for 

SICI, n = 2 for SP, and n = 2 for IHI) reporting no changes in measures of 

ipsilateral M1 excitability. However, the source of this variation may be related to 

differences in the training variables between studies such as the type of 

contraction, the intensity of training, the degree of fatigue or the external pacing 

of the movement, as discussed underneath.  
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6.5.1 Contraction type and intensity 

Cross activation of the ipsilateral M1 is greater during dynamic eccentric 

than dynamic concentric or static unilateral voluntary muscle contractions, 

leading to higher ipsilateral CSE, and reduced ipsilateral SICI, and IHI in the 

ipsilateral M1 (112, 113). It is probably that this higher cross-activation is due to 

greater neural resources needed for programming and planning eccentric 

contractions in comparison to static or concentric contractions (172), or because of 

inhibitory and facilitatory influences from the dorsal premotor and posterior 

parietal cortices in the involved M1 and the ipsilateral M1 (413, 414). Therefore, if 

unilateral eccentric muscle contractions lead to greater activation of the ipsilateral 

brain areas in comparison to static or pure concentric contractions, following the 

cross-activation model it is possible that eccentric or mixed (concentric and 

eccentric) contractions during unilateral RT could serve as a greater training 

stimulus for ipsilateral M1 adaptations.  In this regard, results from the acute 

studies show that those sessions that increased ipsilateral CSE and reduced SICI 

comprised dynamic contractions (76, 405). Furthermore, the chronic studies 

reporting reductions in SICI and SP (39, 89, 90, 109, 327, 335-337) used dynamic 

unilateral RT. For example, CE after chronic unilateral RT was greater after 

eccentric compared with concentric training and was accompanied by greater 

increases in ipsilateral CSE, and reductions in ipsilateral SICI and SP duration 

(109). It thus seems that chronic unilateral RT comprising a movement element 

through eccentric or concentric muscle contractions compared with static efforts, 

contributes to increases in ipsilateral M1 excitability. 

Still, the results are not entirely consistent, as some acute (408) and chronic 

studies (39, 74, 109, 327, 410) found no effects of dynamic unilateral RT on 

measures of ipsilateral M1 excitability. Furthermore, a recent meta-analysis 

observed no discernible effects of contraction type on chronic ipsilateral CSE and 

SICI adaptations (63). We thus tentatively suggest that the specific modulation of 

the ipsilateral M1 during dynamic, in particular eccentric voluntary muscle 

contractions, due to higher neural resources needed and the differential activation 

of brain areas subserving the ipsilateral M1 (112), is likely to increase the 

ipsilateral M1 excitability. However, factors other than contraction type may also 
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contribute to changes in ipsilateral M1 excitability after acute and chronic 

unilateral RT.  

Training intensity can be one such training variable. Indeed strength gains 

seem to scale with contraction intensity used in RT (96). Likewise, ipsilateral CSE 

parametrically increases (199), and ipsilateral SICI and IHI decrease during high 

intensity contractions (115). Therefore, based on the cross-activation model, the 

higher ipsilateral brain activation because of the repeated high intensity 

contractions during unilateral RT, could serve as a greater training stimulus for 

ipsilateral M1 adaptations in comparison with lower intensities.  This prediction 

is compatible with the greater ipsilateral M1 adaptations and CE occurring after 

chronic eccentric-based unilateral RT compared to concentric unilateral RT (109), 

because it is known that the torque performed during maximal eccentric 

contractions is 20-30% higher than during concentric actions (415). However, a 

direct comparison of the effect of the intensity of chronic unilateral RT in the 

ipsilateral M1 adaptations with the included studies is not possible because all 

used high intensities between 70% and 100% of RM (dynamic studies) or MVC 

(static studies). Regarding acute studies, few showed an increase in ipsilateral 

CSE or a reduction in ipsilateral SICI without a clear relationship of those changes 

with the intensity used during training. Therefore, although high intensity muscle 

contractions evoke greater ipsilateral brain activation (199), an experimental 

confirmation of the effect of this phenomenon in ipsilateral M1 adaptations and 

CE is lacking. 

6.5.2 Effect of fatigue 

During prolonged submaximal contractions, α-motoneuron recruitment 

increase because of an increase in the excitatory drive to the motor units of the 

training muscle in compensation for reductions in muscular efficiency (235). In 

addition, the amount of fatigue in the training limb is, together with the intensity, 

an important factor determining the presence and magnitude of associated EMG 

in the contralateral homologous muscle (207). Because the associated EMG is 

probably a result of descending volleys generated by the cross-activation of the 

ipsilateral M1 (208), it is likely that contractions leading to muscle failure (or near 

failure) would not only increase associated EMG but also ipsilateral M1 



DAVID COLOMER POVEDA 126 

activation. Therefore, according to the cross activation hypothesis (67), the higher 

concurrent activation of the ipsilateral M1 with the contralateral M1 during 

fatiguing contractions could serve as a better training stimulus for increases in 

ipsilateral M1 excitability and by extension for CE.  

However, contrary to this hypothesis, Humphry, Lloyd-Davies (405) 

observed a reduction of ipsilateral CSE when healthy volunteers performed an 

acute bout of dynamic unilateral RT to failure. Furthermore, they also found 

ipsilateral CSE facilitation when the set was performed until 25% of the volume 

needed to failure. In addition, other studies found that ipsilateral CSE decrease 

when subjects exercised to the point so that they were unable to perform the 

movement (401, 405) or exert any force (407). With regards to other variables like 

ipsilateral SICI, IHI, and ipsilateral ICF, no clear differences were found 

depending on the level of fatigue achieved during the training session (i.e.: 

leading or not to muscle failure). Furthermore, no studies have addressed yet the 

neuroplastic changes produced by chronic unilateral RT leading or not to muscle 

failure, which in terms of a regular weightlifting program is an essential variable 

(307). Therefore, more research is needed to determine the effects of fatigue in the 

training limb caused by acute and chronic unilateral RT on ipsilateral M1 

adaptations and CE. 

6.5.3 Externally- vs. self-paced training 

Practice of a simple or a skilled task with external compared with internal 

pacing of the movement leads to higher facilitation of CSE of the trained side (416, 

417). The greater increase in CSE it is thought to be a consequence of the repeated 

arrival of afferent auditory inputs from the auditory cortex (through projections 

from the ipsilateral premotor and supplementary motor cortex to the M1) 

synchronized with the activation of corticospinal cells in the M1 during the 

muscle contractions, that lead to increased synaptic efficacy according to Hebbian 

principles (418). Furthermore, intracortical inhibition is decreased during 

synchronized contractions to an external auditory signal (419) and remains 

diminished after an acute or chronic period of externally paced unilateral RT in 

the trained limb (76, 336). 
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Results from recent studies suggest that not only contralateral M1 but also 

ipsilateral M1 plasticity is affected by the pacing strategy during unilateral RT, 

with externally paced movements leading to greater increases in ipsilateral M1 

excitability and reductions in SICI after both, acute and chronic unilateral RT (76, 

336). However, externally paced chronic unilateral RT also produced mixed 

results with respect to ipsilateral M1 adaptations, as in some studies there were 

no changes in ipsilateral M1 excitability or SP decreased after chronic unilateral 

RT with the dominant limb but remained unchanged after non-dominant limb 

training despite the inclusion of externally paced unilateral RT (327). Therefore, 

the data are mixed in support of greater increases in ipsilateral M1 excitability 

after externally- vs. internally paced unilateral RT. Furthermore independent of 

its effect on ipsilateral M1 adaptations, there is no evidence to suggest that CE is 

preferentially greater after externally- vs. internally-paced chronic unilateral RT. 

In fact, a recent study reported that externally- vs. internally-paced chronic 

unilateral RT, did result in higher ipsilateral M1 adaptations, however such 

changes were not coupled with greater strength increases in the trained and the 

untrained limb when compared to internally-paced training 

6.6 CONCLUSIONS 

In conclusion, results from the present review show a high heterogeneity in 

the response of the ipsilateral M1 to an acute bout, but also after a chronic period 

of unilateral RT. It can not be ruled out that the contradictory effects on the 

ipsilateral M1 could be a consequence of the methodology approach. For 

example, as described in the results section, one of the main variations in the 

measurement of ipsilateral CSE and SICI is the situation in which they were 

measured (during contraction or at rest). It is likely that in order to detect possible 

neurophysiological adaptations after a training period, the task in which 

measures are performed, should be similar, if not equal, to the task done during 

training (32). Furthermore, a more homogeneous methodology of measurements 

could facilitate the comparison of results between studies, thus helping to 

determine the differential effect of training variables like those discussed in this 

review on the ipsilateral M1 measurements and its relation to CE. 
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However, apart from the methodology approach, the high heterogeneity in 

the response of the ipsilateral M1 to acute and chronic unilateral RT seems to be 

related to the training configuration itself, which could trigger different ipsilateral 

M1 adaptations. In this regard, the tentative conclusion is that high intensity, 

eccentric or externally paced muscle contractions are the more effective training 

variables to increase ipsilateral M1 excitability. Notwithstanding, CE can occur in 

the absence of such changes whereby, the mechanism of CE examined with TMS 

remains unclear. Maybe structures other than ipsilateral M1 that TMS cannot 

probe and that are bilaterally activated during unilateral contractions, like 

supplementary motor area, sensory regions, prefrontal, premotor, cingulate and 

parietal cortices, or cerebellum (73) could also be related to CE (23, 66). However, 

further research should shed more light on the effects of intensity (i.e.: comparing 

low-load to heavy-load unilateral RT) and fatigue (i.e.: comparing unilateral RT 

using sets leading or not to muscle failure) on CE and its underlying neural 

mechanism. This is important in order to maximize the benefits of the unilateral 

RT as a tool to reduce asymmetries in different athletic samples, as well as in 

patients with orthopaedic or neurological impairments. 
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VII – STUDY 3 

Training intensity-dependent increases in corticospinal but not 

intracortical excitability after acute strength training 

7.1 ABSTRACT 

The purpose of this study was to determine if the increases in CSE observed 

after one session of unilateral isometric strength training (ST) are related to 

changes in intracortical excitability measured by TMS in the in the trained and the 

contralateral untrained BB and if such changes scale with training intensity. On 

three separate days, 15 healthy young men performed one ST session of 12 sets of 

eight isometric contractions of the right elbow flexors at 0 (Control session), 25, or 

75% of the MVC in a random order. Before and after each session separated at 

least by one week, MEP amplitude, SICI, contralateral SP and ICF generated by 

TMS, were measured in the trained and the untrained BB. Compared to baseline, 

MEPs recorded from the trained BB increased by ~47% after training at 75% of 

MVC (P < 0.05) but not after training at 0% (~4%) or 25% MVC (~5%, both P > 

0.05). MEPs in the untrained BB and SICI, SP, and ICF in either BB did not change. 

Therefore, acute high- but not low-intensity unilateral isometric ST increases CSE 

in the trained BB without modifications in intracortical inhibition or facilitation. 

Thus, increases in corticospinal neurons or α- α-motoneuron excitability could 

underlie the increases in CSE. Regardless of contraction intensity, acute isometric 

ST did not modify the excitability of the ipsilateral M1 measured by TMS. 
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7.2 INTRODUCTION 

Strength training (ST) is an effective means to increase maximal voluntary 

MVC force and muscle mass (39, 40, 49). The chronic increases in MVC force after 

ST are usually accompanied by neural adaptations at a supraspinal (39, 40) and 

spinal level (49). However, little is known about how fast such neural adaptations 

occur after beginning a ST program. Recent studies have shown that even just a 

single ST session can evoke spinal and cortical modulations (75, 77, 420) as 

determined by electrical stimulation at the mastoid process and TMS over the 

contralateral M1, respectively. Indeed, acute ST increased the synaptic efficacy of 

neural transmission in the corticospinal tract, α-motoneuron excitability and/or 

contralateral M1 excitability (77, 420). Furthermore, there are indications for 

contraction intensity-dependent effects of ST on CSE measured by TMS because 

high versus low training loads produced more pronounced and longer-lasting 

changes in neuronal excitability (420). However, changes in spinal excitability 

measured by cervicomedullary electrical stimulation did not produce such 

intensity-dependent effects (420). This suggests that the contralateral M1 is more 

sensitive to the intensity of muscle contraction used in acute ST compared to α-

motoneurons, supporting the hypothesis that short-term neural adaptations to ST 

occur at the supraspinal level. 

A dose-response relationship in the responses to corticospinal but not spinal 

stimulation following acute ST could reflect the involvement of contralateral M1 

circuits (76). Intracortical circuits can inhibit or facilitate the responses to TMS in 

the contralateral M1 (144). GABA is the main inhibitory neurotransmitter in M1, 

which acts mainly through interneurons with GABA-A receptors, responsible for 

fast synaptic inhibition, and GABA-B receptors, responsible for slower but longer-

lasting inhibition (421). Both forms of inhibition can be measured with paired- 

and single-pulse TMS, respectively (140, 145). Although both forms of inhibition 

are mediated by different populations of interneurons, these project to higher-

threshold circuits that activate the corticospinal tract neurons, ultimately reducing 

M1 excitability (144). Therefore, although there is still no evidence of a 

relationship between chronic changes in intracortical inhibition and the force of a 

muscle contraction, decreases in the efficacy of those inhibitory intracortical 
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circuits can release M1 from inhibition, increasing M1 excitability, the efficacy of 

the motor command, and the drive to muscles to contract more forcefully. In fact, 

chronic ST tends to decrease SICI and SP duration (40, 422), suggesting that a 

release of intracortical inhibition could be one mechanism underlying the chronic 

increases in M1 excitability and in the effectiveness of the motor command to 

increase MVC force. However, the time course of such adaptations is unclear 

because results from acute studies are inconsistent (76, 260, 261, 383). In addition 

to reductions in SICI or SP, an increase in ICF could also contribute to the increase 

in CSE. ICF is thought to involve corticocortical pyramidal cells with 

glutaminergic synapses projecting to the cortical neurons that activate the 

corticospinal tract (423). However, little is known about changes in ICF after an 

acute session of ST, with two studies showing little or no changes (260, 261). 

Therefore, because spinal mechanisms cannot fully account for the changes 

in CSE in relation to the ST intensity (420), changes in intracortical circuits could 

be the main mechanisms modulating CSE. Indeed, contrary to what happens with 

CSE, which increases with contraction intensity (up to a limit), SICI tends to 

decrease with the intensity of the voluntary drive (190). We could thus expect that 

high- compared with low-intensity ST would have a greater potential to modify 

intracortical circuits, accounting for the greater responses to TMS after a single 

session of high- vs. low-intensity ST (420). 

A unilateral voluntary muscle contraction can also activate ipsilateral brain 

areas (73, 115). Such cross-activation could be the source of adaptations in the 

untrained hemisphere, underlying increases in MVC force in the untrained 

homologous muscle when unilateral muscle contractions are repeated for a 

period of at least three weeks (39, 89, 325). However, it is unknown if, akin to the 

trained side (75, 77, 420), neural modulations in the untrained hemisphere are 

already present after just one session of ST, or if more training sessions are 

needed for neural changes to occur. Furthermore, because the excitability of the 

M1 ipsilateral to the contracting muscle increases during discrete unimanual 

muscle contractions in an intensity-dependent manner (70, 115), we hypothesize 

that acute ST would also induce intensity-dependent changes in the ipsilateral M1 

excitability.  

Therefore, the purpose of the present study was to determine if the increase 

in CSE after one session of ST is related to changes in SICI, SP, and ICF and if 



DAVID COLOMER POVEDA 134 

such changes would occur in an intensity-dependent manner in the trained and 

the untrained BB. A detailed understanding of the time course of adaption to ST 

and its dependency on contraction intensity has important implications for 

patients with neuromuscular conditions and older adults who might be unable to 

participate in high-intensity ST protocols. 

7.3 MATERIAL AND METHODS 

7.3.1 Participants 

Healthy, right-handed, and recreationally active men (2-3h per week of 

recreational sports activities or aerobic training, age, 23.93 ± 4.65 years, n = 15) 

with no reported contraindications to TMS and not currently taking any 

medications volunteered to participate in the study. One week before the start of 

the experiments, participants were familiarized with peripheral nerve 

stimulation, TMS, and MVC protocols. Participants were asked to refrain from 

consuming alcoholic or caffeinated beverages and from exercising for at least 24h 

before each experimental session. The Institutional Review Board of the Catholic 

University of Murcia approved the protocol. Written informed consent was 

obtained from all participants before the start of the study. The experiments were 

performed in accordance with the latest version of the declaration of Helsinki. 

7.3.2 Experimental procedures  

Each subject completed in a random order each of the three ST sessions at 

zero (CON), 25, and 75% of MVC, one intensity per session, with each session 

separated by one week. The CON session consisted of 20 minutes of rest in the 

posture used in training. ST sessions consisted of 12 sets of eight isometric right 

elbow flexor contractions ramped to 25% or 75% of MVC over two seconds. After 

reaching the target force, participants relaxed the elbow flexors and rested for 

four seconds. There was one minute of rest between sets.  

Before (PRE) and after (POST) each intervention, one block of 

measurements with TMS (single- and paired-pulse) and brachial plexus 

stimulation was obtained from both arms during a low-level contraction of 5% of 
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MVC. POST measurements started always in the left arm around 30 seconds after 

the last training set. Each block of measurement consisted of eight Mmax), 20 

single-pulse MEPs and 40 paired-pulse stimulations (20 for SICI and 20 for ICF). 

All stimuli were separated by five seconds, and 30 seconds of rest were given 

after 15 pulses to avoid fatigue, so each block lasted for ~7 minutes. Additionally, 

five single-pulse MEPs at 120% of AMT (MEP25%/Mmax) and its respective SP were 

obtained in both BBs during 3-second-long contractions at 25% of MVC 

immediately before training or control period and at POST (approximately 10-15 

minutes after training or control period ended) (see Figure 9.). Single pulse 

stimulation during 25% vs. 5% of MVC contractions allowed us to obtain clearer 

SPs. 

Before measurements, participants performed three MVCs with each arm 

separately. MVCs lasted for three seconds with 120 seconds of rest between trials. 

The posture during MVC tests and main measurements was identical. All trials 

were measured with two force transducers (Neurolog System, Digitimer, Welwyn 

Garden City, United Kingdom) firmly attached to the left or right wrist with a 

rigid strap. The highest MVC in each arm was used to determine the subsequent 

target force during measurements (5% and 25% of MVC) and training (25% or 

75% of MVC). 

7.3.3 Set-up 

During testing participants sat in a chair in front of a table with both 

shoulders flexed at 90º and the elbows flexed with forearms supinated and 

vertical (Fig. 9). In this position, both forearms were fastened with a rigid strap to 

a force transducer (NL63-200 Kg; Digitimer, Welwyn Garden City, United 

Kingdom) to measure voluntary force, which was displayed on a computer 

monitor in front of the participants. 
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EMG was recorded from the right and left BB with Ag-AgCl surface 

electrodes in a belly-tendon montage (5-8 cm inter-electrode distance). EMG was 

amplified (x200 or x300 depending on the Mmax amplitude), band pass filtered (10-

1000Hz) and sampled (2kHz) with a Digitimer d440 isolated amplifier (Digitimer, 

Welwyn Garden City, United Kingdom). Force recordings were band-pass 

filtered (5-2500 Hz), amplified (x2500) and sampled at 2kHz using a Neurolog 

System (Digitimer, Welwyn Garden City, United Kingdom). Both EMG and force 

recordings were simultaneously collected using an analog-digital board CED 

Micro1401-3 (Cambridge Electronic Design, Cambridge, UK) for further analysis. 

Figure 9. Schematic view of the set-up and protocol. (A) Participants completed the 

experiment seated with the elbow and the shoulder flexed to 90º. Visual feedback of the force was 

provided on a screen in front of the participants. (B) Raw traces of a contraction from each training 

session from a representative subject. In each training session the participants steadily contracted 

their BB until the required intensity marked with a horizontal line during a two second period 

identified with two vertical bars. (C) Motor evoked potentials were obtained before (PRE) and after 

(POST) each session (CON, 25, or 75% of MVC). 
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7.3.4 Brachial Plexus stimulation 

For recording the Mmax in each BB, single pulse stimulation (200µs duration) 

was delivered to the brachial plexus with a DS7AH constant current electrical 

stimulator (Digitimer, Welwyn Garden City, United Kingdom). The cathode (pre-

gelled Ag-AgCl electrodes) was positioned in the supraclavicular fossa and the 

anode on the acromion. After defining the stimulation intensity needed to evoke 

the Mmax in each BB, the intensity was set to 120% of this value for the 

measurements (range 42 - 186 mA).  

7.3.5 Transcranial Magnetic Stimulation 

Single- and paired-pulse TMS was delivered to left (contralateral M1) and 

right (ipsilateral M1) motor cortices with a figure of eight coil (70mm diameter) 

connected to two DuoMag (Rogue Resolutions Ltd., UK) magnetic stimulators. 

The coil was oriented with the handle at ~45º postero-laterally to the midline and 

the optimal stimulation location in each M1 was obtained by exploring the 

estimated center of the BB motor cortical representation. The point where 

stimulation produced the largest MEP in the contralateral BB was marked directly 

on the scalp with a permanent marker. AMT was defined as the lowest 

stimulation intensity needed to obtain three out of five MEPs of a peak-to-peak 

amplitude greater than 200µV during a 5% MVC force, displayed as target on the 

monitor in front of the participant. To measure SICI and ICF, a paired-pulse 

protocol was used in which the CS and the TS set at 80% and 120% of the AMT, 

respectively. The interstimulus interval was set to 3ms (SICI) and 10ms (ICF).  

7.3.6 Data analysis 

The peak-to-peak amplitudes of Mmax and MEPs were measured. MEP 

amplitudes were normalized to Mmax within each measurement block and 

averaged (MEP5%/Mmax and MEP25%/ Mmax). Pre-stimulus EMGRMS activity was 

determined in a 150ms window prior to each electrical or magnetic stimulus. 

Trials with EMGRMS larger or lower than the mean of each measurement block ± 

2SDs were removed from the analysis. The SP duration was quantified as the time 
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between the stimulus and the time at which the post-stimulus EMG returned to 

the 50% of the mean of the pre-stimulus (150ms time-window) background EMG 

activity (424). 

7.3.7 Statistics 

All data were first screened for normality using a Kolmogorov-Smirnov 

test. Inter-session reliability of baseline Mmax, single-, and paired-pulse TMS 

responses across sessions was determined using intra-class correlation coefficients 

(ICC (2, 1) two-way mixed effect model) with 95% confidence intervals (95% CIs). 

The ICC was interpreted with values below 0.5 indicating low reliability, values 

between 0.5 and 0.75 indicating moderate reliability, values between 0.75 and 0.9 

indicating good reliability, and values higher than 0.90 indicating excellent 

reliability (391). Then, a two-way RM-ANOVA was performed with TIME (PRE 

and POST) and INTENSITY (CON, 25% and 75%) as factors for pre-stimulus 

EMGRMS, Mmax, MEP5%/Mmax, MEP25%/ Mmax, SP, SICI and ICF. Limb was not 

included as a factor in the RM-ANOVA because post measurements in the trained 

and the untrained were not simultaneous (immediately after versus ~7 minutes 

after, respectively). If sphericity was violated (Mauchly’s test), degrees of freedom 

were corrected by Greenhouse-Geisser estimates of sphericity. When a non-

significant main effect or interaction had a medium ES (ηp2 > 0.13), paired 

comparisons and Cohen’s d effect sizes were also computed. Effect sizes are 

presented as partial eta square values (ηp2; small: 0.02; medium: 0.13; large: 0.26). 

Unless indicated otherwise, data are reported as mean ± standard deviation. SPSS 

20.0 software (SPSS, Chicago, Illinois) was used for statistical analysis. Statistical 

significance was set at P ≤ 0.05. 
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7.4 RESULTS 

7.4.1 Reliability 

Inter-session reliability for Mmax, MEP5%/Mmax, SICI (%TS), ICF (%TS), SP, 

and MEP25%/Mmax was good to excellent (ICC = 0.79 to 0.94, Table 4) in the 

trained and the untrained BB. 

 

Table 4. PRE measurements inter-session reliability of Mmax, MEP5%/ Mmax, 

SICI, ICF, SP and MEP25%/ Mmax. 

ICC: Intraclass correlation coefficient; CI: Confident interval; Mmax: maximal compound 

muscle action potential; MEP: Motor evoked potential; SICI: Short-interval intracortical inhibition; 

ICF: Intracortical facilitation; SP: Silent period. 

7.4.2 Trained side 

One subject was excluded from the statistical analysis only for the SICI 

variable because a consistent facilitation of more than 40% in both BBs. Pre-

stimulus EMGRMS remained constant during all training sessions (See Supporting 

information 1 (Annex 1)). MEP5%/Mmax amplitudes increased by +46.7% (P = 0.04, 

ES = 0.43, 95% CI = 0.31, 0.58) only after ST at 75% MVC but not after ST at 25% 

MVC (+4.8%, P = 0.44, ES = 0.08, 95% CI = -0.18, 0.25) or CON (+4.4%, P = 0.76, ES = 

 
Trained Inter-

Session ICC 

(95% CI) 

Untrained Inter-

Session ICC  

(95% CI) 

Mmax 0.90 (0.77, 0.96) 0.83 (0.60, 0.94) 

MEP5%/ Mmax 0.80 (0.52, 0.90) 0.82 (0.56, 0.93) 

SICI (%TS) 0.82 (0.58, 0.93) 0.94 (0.85, 0.98) 

ICF (%TS) 0.86 (0.66, 0.95) 0.85 (0.64, 0.94) 

SP 0.79 (0.52, 0.92) 0.89 (0.73, 0.96) 

MEP25%/ Mmax 0.91 (0.78, 0.97) 0.92 (0.82, 0.97) 
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0.04, 95% CI = -0.38, 0.36) (Figure 10). Baseline (PRE) MEP5%/Mmax amplitudes 

were equal between sessions (CON vs 25% P = 0.46, CON vs 75% P = 0.99, 25% vs 

75% P = 0.19), however training at 75% of MVC produced higher post-training 

MEP5%/Mmax amplitudes than the CON session (P = 0.04, ES = 0.32, 95% CI = -0.01, 

0.77) and revealed a trend towards significance compared to 25% session (P = 

0.06, ES = 0.54, 95% CI = 0.29, 0.87). 

A single session of ST at 0, 25, and 75% MVC did not affect MEP25%/Mmax, 

SP, ICF and Mmax (Supporting information 1 (Annex 1)). However, although RM-

ANOVA did not show significant effects or interactions for SICI, there was a 

medium effect size for the Time*Session interaction (P = 0.09, ηp2 = 0.17) that 

revealed a small increase in SICI after the 75% of MVC ST session (from 76.8% to 

69.1% of TS, P = 0.01, ES = -0.26, 95.0% CI = -0.41, -0.13). 

7.4.3 Untrained side 

Pre-stimulus EMGRMS remained constant during all training sessions. A 

single session of ST at 0, 25, or 75% MVC did not modify MEP5%/Mmax, 

MEP25%/Mmax, SP, SICI, ICF and Mmax in the untrained BB (See Supporting 

information 2 (Annex 2)). 
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Figure 10. MEP5%/Mmax, Mmax, and SICI change after strength training (n = 15). Left panel 

shows the change (mean ±SD) in the MEP5%/Mmax (A), SICI (C) and Mmax (E) of the right trained BB 

after the ST sessions performed at 25% and 75% of the MVC and the CON condition. Right panel 

shows the change (mean ±SD) in the MEP5%/Mmax (B), SICI (D) and Mmax (F) of the left untrained BB 

after the ST sessions performed at 25% and 75% of the MVC and the CON condition. (†) shows a 

statistically significant difference (P < 0.05) to PRE values. 
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7.5 DISCUSSION 

We determined the effects of acute unilateral isometric ST of the right elbow 

flexors at 0, 25, and 75% MVC on CSE, SICI, ICF and SP in the trained and 

untrained arm. Only acute ST training at 75% MVC did increase CSE in the 

trained BB measured during a 5% background MVC. Contrary to the hypothesis, 

the increases in CSE were not accompanied by a decline in intracortical inhibition 

or an increase in intracortical facilitation. The effects of a single session of ST at 0, 

25, and 75% MVC was limb-specific, as no changes occurred in any of the TMS 

measures obtained in the ipsilateral M1. 

7.5.1 Trained side 

A single session of ST increases the responses to corticospinal tract 

stimulation at rest (75, 77, 420) or during low level isometric contractions (76, 260) 

suggesting, increases in cortical or α-motoneuron excitability or an increased 

efficacy of the corticospinal-motoneuronal synapse (77, 420). Our results are in 

line with previous studies by showing ~47% increase in CSE measured at 5% 

background MVC in the BB of the trained arm only after ST at 75% MVC. The 

present data confirm the previously described effect of intensity (420) by showing 

a 75%-MVC intensity-threshold of acute ST to produce meaningful changes in 

CSE, suggesting that training intensity is a determinant of acute corticospinal 

plasticity in response to a bout of isometric ST.  

Although the coil of TMS is placed over M1, the response to single pulse 

TMS is not only affected by cortical neurons excitability. Single pulse TMS reflects 

the excitability of corticospinal neurons and interneurons projecting onto these 

neurons in M1 as well as the excitability of α-motoneurons in the spinal cord, the 

neuromuscular junctions and the muscle (126). Therefore, an increase in CSE 

measured by TMS could be due to changes at any or all of these structures. 

However, spinal mechanisms are unlikely to mediate the increases in CSE after 

acute ST (420). Previous studies showed that ST intensity affected CSE but not 

spinal excitability measured by cervicomedullary electrical stimulation (420). 

Furthermore, increases in corticospinal transmission and/or α-motoneuron 
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excitability after acute ST are not always present (257). For that reason, 

mechanisms other than spinal changes were proposed to explain the increases in 

CSE after acute ST. Increases in corticospinal neurons excitability or reductions in 

the efficacy of the intracortical inhibitory circuits can both increase the efficacy of 

the excitatory input to α-motoneurons thereby increasing the response to TMS. 

However, we found no reductions in GABA-A- or GABA-B-receptor mediated 

cortical inhibition.  

Although two-way RM-ANOVA revealed a non-significant interaction 

between factors for SICI (P = 0.09, ηp2 = 0.17), paired comparisons showed a small 

increase in SICI (i.e., reduced CS/TS ratio) after 75% of MVC ST session (from 

76.8% to 69.1% of TS, p = 0.01, ES = -0.26, 95.0% CI = -0.41, -0.13). This small 

increase in SICI after high-intensity acute ST could be related to a methodological 

issue, i.e., the test pulse MEP size. The amount of inhibition increases with 

increasing test pulse MEP size (425). Because we used PRE stimulation intensity 

during the POST measurements, the increase in the test pulse MEP size after 

high-intensity ST could have led to the slight, non-significant increase in SICI. 

Although this could be viewed as a limitation, the efficacy of SICI is related to the 

population of cortical circuits activated by the test pulse (143). The variable that 

determines which circuits are activated by TMS is the stimulation intensity and 

not changes in excitability (143). Therefore, reductions in stimulation intensity to 

adjust the test pulse size after a ST session could act as a confounding factor by 

affecting the cortical circuits activated the test stimulus and reducing the 

estimates of SICI because of a higher contribution of early indirect-waves to the 

MEP, which are less affected by intracortical inhibition. Future studies should 

include both approaches (adjusted and not adjusted test pulse size) to further 

understand the effects of an acute ST session on SICI. Notwithstanding, the small 

increases in SICI in the present study partially agree with those from a recent 

meta-analysis showing that SICI is not modulated consistently following a single 

session of ST (265), which could be also related to different approaches used to 

measure SICI after a single session of ST (adjusted and not adjusted TS size).  

Regarding SP, past results have been inconsistent with studies showing 

increases set by set during an ST session (383) and decreases (260) after an acute 

ST session. Here, we found no change after unilateral acute ST at a low or high 

intensity. These results combined with the SICI data suggest that, although 
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chronic ST could lead to reductions in SICI and SP (422), just a single session of 

isometric ST does not reduce the efficacy of the GABA-A- and GABA-B-receptor 

mediated inhibitory intracortical circuits projecting to the cortical excitatory 

neurons. Acute reductions in intracortical inhibition could be a compensatory 

mechanisms to diminish the effect of peripheral fatigue on force output (260). 

However, the ramped isometric contractions we used did not require participants 

to hold the target force, minimizing any peripheral fatigue (discussed below). 

Therefore, acute modifications in the efficacy of the inhibitory intracortical 

circuits could be more related to the level of peripheral fatigue attained during 

the training session than to the intensity of training (260). Also other ST 

characteristics could influence the acute modulation of the responses to TMS after 

a single session of ST. For example, dynamic ST paced by an audible cue leads to 

increased CSE accompanied by increased ICF and reduced intracortical inhibition 

whereas internally paced ST did not (258). This greater acute neural modulation 

could be related to higher auditory afferent input from the auditory cortex 

synchronized with the activation of corticospinal neurons during muscle 

contractions, which lead to an increased synaptic efficacy according to Hebbian 

principles (418). Thus, it seems that the acute neural modulation after an acute ST 

session could be affected by different ST characteristics like intensity, level of 

peripheral fatigue, the type of contraction or the strategy of pacing the movement 

or even the volume of exercise. 

Therefore, combined results from the present and past studies (420) suggest 

that spinal mechanisms or changes in intracortical circuits are not the main 

mechanisms underlying the acute increase in CSE after an acute bout of ST. Then, 

it is likely that the increases in the net excitatory output from M1 to the muscle 

after an acute bout of ST are related to changes in the membrane excitability of the 

corticospinal neurons receiving input from the corticocortical neurons activated 

by the single pulse TMS.   

A methodological difference between the present and past studies is that we 

measured corticospinal changes at 5 or 25% background MVC and not at rest. 

Measuring responses to TMS during contraction represents more faithfully the 

adaptations that occur during training compared to the same measures obtained 

at rest (32). The increased MEP size after training during contraction could thus 

reflect plasticity associated with the task unlike the CSE measured at rest. 
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Nevertheless, we found that a session of high- but not low-intensity ST increased 

the CSE of the trained arm when measured during 5% of MVC contractions to a 

similar extent as when CSE was measured at rest in previous studies (420) (+47% 

during contraction vs +76% at rest). The differences in the magnitude of change 

between both studies (420) could be related to differences in the size of the 

baseline MEPs (7.05% of Mmax vs 4.57% of Mmax). However in both studies the 

absolute increase was similar (to a 10% vs to a 8% of Mmax). This suggests that the 

increased responses to TMS after training have not became more facilitated by the 

muscle contraction compared to rest, suggesting that acute changes after ST 

occurred in the intrinsic properties of the cortical neurons that could be already 

measured at rest. Nevertheless, we did not find any increases in CSE when 

measured during 25% of MVC contractions. MEP size in BB tends to be 

progressively facilitated up to a 40-50% of MVC (426). However, independent of 

contraction intensity, MEP size tends to peak at an amplitude around 60-70% of 

Mmax (426). Therefore, a lack of change in MEPs during 25% of MVC after the 

high-intensity ST session could be related to the high baseline size of MEPs 

(~50%). The fact that baseline MEPs were already close to its maximum means 

that single pulse TMS before training already recruited almost all of the excitable 

cortical neurons, limiting the scope for further increases. Also, because 

measurements were obtained during contractions, it is unknown if spinal changes 

would have behaved in a similar manner as at rest (420). Therefore, a direct 

comparison with previous studies is not possible and we cannot discard a 

concomitant increase in α-motoneuron excitability contributing to the increase in 

CSE after high-intensity acute ST seen here. However short-term ST periods have 

failed to produce adaptations at the spinal level measured by cervicomedular 

electrical stimulation (47) and H-reflexes (43). This strengthens the support for the 

hypothesis that short-term increases in α-motoneuron discharge rate that lead to 

increases in MVC force are mediated by increases in the net excitatory input to 

the α-motoneuron pool from supraspinal centers (255).  

Because we did not measure MVC force after ST, we cannot discard the 

possibility that fatigue has influenced our results. However, there is indirect 

evidence to suggest that fatigue was low or altogether absent. For example, we 

found no changes in the pre-stimulus EMGRMS, suggesting that any increase in 

neural drive was needed to maintain the force output as a consequence of 
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reductions in muscle or α-motoneuron excitability. Also in a previous study with 

an identical training, resting Mmax associated twitch forces did not decrease during 

the 30 minutes after the intervention, suggesting that there were no reductions in 

muscle contractile properties as a consequence of fatigue (420). Another factor 

that can potentially influence our results is central fatigue. The best indicator for 

the assessment of central fatigue is voluntary activation. Unfortunately, we did 

not measure voluntary activation in this study. However, as intracortical 

inhibition did not increase, we assume that central fatigue was low or altogether 

absent. 

7.5.2 Untrained side 

The central nervous system adapts quickly to motor practice in the trained 

and the untrained muscle (427). Therefore, several studies have examined if the 

acute changes occurring after a single session of unilateral ST in the trained 

hemisphere (75, 77, 260, 383, 420) would also occur in ipsilateral, untrained brain 

structures (76, 325). Notwithstanding, results from those studies are 

contradictory, with one study showing increases in CSE and reductions in SICI 

after a session of dynamic ST (76), whereas another study reported no effects of 

an acute unilateral isometric ST session on  CSE, SICI, ICF and IHI of the 

untrained hemisphere (325). Our results agree with these latter data, showing no 

effects of a single session of isometric unilateral ST of the elbow flexors on TMS 

outcomes in the ipsilateral iM1. Furthermore, despite cross-sectional studies 

demonstrating that ipsilateral M1 excitability increases and intracortical inhibition 

decreases more during high- compared to low-intensity contractions (70, 115), our 

results revealed no intensity effects on the responses to TMS in ipsilateral M1 

after a single session of unilateral isometric ST. 

Discrepancies between the effects of a session of unilateral ST on the 

ipsilateral M1 could be related to the type of contractions used during training. 

Eccentric compared to concentric contractions activate the ipsilateral M1 more 

strongly (112). This higher cross-activation is probably a consequence of the 

greater neural resources needed for programming and planning eccentric 

compared with static or concentric contractions (172), or related to inhibitory and 

facilitatory influences from the dorsal premotor and posterior parietal cortices in 
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the contralateral and ipsilateral M1 (414). Another important aspect with regard 

to cross-activation is the intensity of a contraction. It is known that contractions 

need to be at moderate-high intensity to result in cross-activation of the ipsilateral 

hemisphere (70, 115). The slowly ramped isometric contractions used in the 

current study result in relatively short periods of contractions at moderate-high 

intensity (> 50% MVC). These short periods at moderate-high intensity might in 

turn have resulted in limited cross-activation during the contractions, reducing 

the scope for modulation of the corticospinal tract projecting to the untrained BB. 

Therefore, the absence of changes in the ipsilateral M1 after a unilateral isometric 

ST session could be related to an insufficient level of cross-activation during 

progressive isometric contractions, compared to unilateral dynamic ST mixing 

high intensity eccentric and concentric contractions. 

Therefore, although ipsilateral M1 adaptations occur after chronic periods 

of ST (39, 89, 325), even with isometric contractions (325), the time course of those 

adaptations is longer than a single session, even if the intensity of ST is high. 

Indeed, previous studies showed that interlimb transfer of voluntary force and 

correlated increases in ipsilateral M1 excitability to occur might require at least 10 

sessions or 500 isometric contractions (325). Therefore, it is not possible to infer 

the long-term effectiveness of different ST configurations (i.e.: intensity, volume, 

etc.) based on the effects of just one session of ST. Consequently, longitudinal 

studies will be needed to determine the effectiveness of different ST 

configurations on ipsilateral M1 plasticity. Furthermore, acute and chronic 

changes may occur in other ipsilateral structures that single coil TMS cannot 

probe that are also bilaterally activated during unilateral contractions, like 

supplementary motor area, sensory regions, prefrontal, premotor, cingulate, and 

parietal cortices, or cerebellum (73). 

7.6 CONCLUSIONS 

High- but not low-intensity isometric ST of the elbow flexors increased CSE 

in the BB when measured at a background MVC of 5%. However, such increases 

were not accompanied by decreases in intracortical inhibition or increases in 

intracortical facilitation. These results suggest that increases in corticospinal 

neurons or α-motoneuron excitability are the main mechanisms underlying the 
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increases in CSE. In contrast, no effects on CSE and intracortical circuitry occurred 

in the untrained hemisphere, suggesting that more than one session of unilateral 

isometric ST is needed to evoke adaptations in the untrained corticospinal tract 

independent of training intensity. 

7.7 PERSPECTIVES 

Peripheral and neural adaptations to ST have different time-courses. 

Adaptations in the central nervous system usually precede changes in the muscle 

and tend to underlie most of the early gains in MVC force. Therefore, it is 

important for coaches training healthy individuals and also patients with 

neuromuscular conditions or older adults, to know how modifications in training 

variables, such as training intensity, could affect early adaptations to ST. We show 

that training intensity is a key determinant of the acute increases in cortical or α-

motoneuron excitability occurring in the early stages of training, which could 

explain the better effectiveness of chronic high-intensity ST in producing MVC 

force increases. However, just one session of unilateral isometric ST does not lead 

to acute changes in the ipsilateral M1. 
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VII – STUDY 4  

Training load but not fatigue affects cross-education of maximal 

voluntary force  

8.1 ABSTRACT 

The purpose of this study was to determine the effects of training load (25% 

vs. 75% of one repetition maximum (1RM)) and fatigue (failure vs. non-failure) 

during four weeks of unilateral knee extension resistance training (RT) on 

maximal voluntary force in the trained and the untrained knee extensors. Healthy 

young adults (n=42) were randomly assigned to control (CON, n=9, 24±4.3y), low-

load RT to failure (LLF, n=11, 21±1.3y, three sets to failure at 25% of 1RM), high-

load RT to failure (HLF, n=11, 21±1.4y, three sets to failure at 75% of 1RM), and 

high-load RT without failure (HLNF, n=11, 22±1.5y, six sets of five repetitions at 

75% of 1RM) groups. Before and after the four weeks of training, 1RM, maximal 

voluntary isometric force (MVIC) and corticospinal excitability (CSE) were 

measured. 1RM in the trained (20%, d=0.70, 15%, d=0.61) and the untrained knee 

extensors (5%, d=0.27, 6%, d=0.26) increased only in the HLF and HLNF groups, 

respectively. MVIC force increased only in the trained leg of the HLF (5%, d=0.35) 

and HLNF groups (12%, d=0.67). CSE decreased in the VL of the HLNF group (-

19%, d=0.44) and no changes occurred in the RF. In conclusion, high- but not low-

load RT improves maximal voluntary force in the trained and the untrained knee 

extensors and fatigue did not further enhance these adaptations. Voluntary force 

improvements were unrelated to CSE changes in both legs. 
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8.2 INTRODUCTION 

Voluntary force is a determinant of sport performance, closely related to the 

risk of falls in older adults, and is also a strong predictor of mortality and 

hospitalization (428). Therefore, it is important to determine the resistance 

training (RT) protocol that is most efficacious in increasing maximal voluntary 

force. 

A number of variables can be manipulated during RT such as load (96), 

volume (98), and fatigue (reaching or not muscle failure) (103, 107) to maximize 

RT-induced increases in maximal voluntary force. For example, it seems that 

heavy compared with light loads, even at the same total volume and all the sets 

performed to concentric muscular failure, are more effective in increasing 

maximal voluntary force (96). Another training variable contributing to the 

adaptive responses to RT is fatigue that develops during the exercise bout or set. 

Some studies suggest that training to concentric muscular failure, i.e., the inability 

to perform one further concentric repetition, could enhance RT adaptations (107) 

by increasing metabolic stress and motor unit activation (235). However, there is 

also evidence suggesting that muscle failure during training may not be necessary 

to increase maximal voluntary force (103).  

Unilateral RT can also increase maximal voluntary force in the untrained 

limb, producing cross-education (CE) (67). However, unlike in the trained limb, 

how RT variables, including load or fatigue, affect CE is unclear (111). Because CE 

occurs without muscle hypertrophy, it is generally accepted that neural 

mechanisms underlie CE (63, 67, 325). Specifically, it is believed that CE arises 

from neural adaptations in the untrained hemisphere, induced by the 

simultaneous but lower activation of this hemisphere along with the active 

hemisphere during forceful unilateral contractions (67). This concurrent ipsilateral 

hemisphere activation is greater during strong and also during low-force but 

fatiguing unilateral muscle contractions (70, 71, 115). Therefore, the magnitude of 

the load or fatigue during the RT set could affect the magnitude of CE through 

the level of ipsilateral hemisphere activation (111). This prediction is supported 

by the observation that, for example, eccentric compared with other types of 
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muscle contraction is associated with heightened activation of the ipsilateral 

hemisphere (112), resulting in greater CE of voluntary force (108). 

However, most studies examining RT-induced CE used training loads >50% 

of MVIC or 1RM (39, 63, 74, 89, 325, 327) and the few studies using low-load RT 

reported inconsistent results (59, 340), as low-load RT for 3-4 weeks with or 

without blood flow restriction produced 26% (59) or no CE (340), respectively. 

Differences could be related to blood flow restriction increasing fatigue in the 

trained leg, which in turn increases activation in the ipsilateral hemisphere and 

subsequent CE. This theory is supported by a recent study showing that CE was 

higher after five weeks of elbow flexors training using a traditional set 

configuration (5x6 with a 10 repetition maximum load) compared with a cluster 

training set configuration (30 repetitions with 18.5 s of rest between each rep) 

(342), suggesting a role of fatigue in CE. 

It thus appears reasonable to hypothesize that high loads and fatigue, 

respectively, during the RT set could facilitate CE. This is because RT with high 

loads and/or high levels of fatigue would strongly activate the ipsilateral motor 

areas in the brain, acting as training stimulus for the untrained limb. Therefore, 

the purpose of the present study was to determine the effects of training load 

(25% vs 75% of one repetition maximum (1RM)) and fatigue (failure vs non-

failure) during unilateral RT on maximal voluntary force increases in the 

untrained knee extensors (i.e. CE) in healthy untrained males after four weeks of 

unilateral RT. In addition, we also examined the effect of training load and fatigue 

on the maximal voluntary force adaptations of the trained limb, and the potential 

neural correlates underlying these adaptations in both limbs in the form of 

corticospinal excitability (CSE) using transcranial magnetic stimulation (TMS). 

A detailed understanding of how load and fatigue affect adaptations to RT 

in the untrained limb is relevant for the rehabilitation of patients with weakness 

in one limb that cannot train bilaterally. 
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8.3 MATERIAL AND METHODS 

8.3.1 Participants 

Healthy, recreationally active men (n=42, 21.8±2.4y, 6 left-legged) without 

experience in RT and lower limb injury history, volunteered for the study. 

Recreational activities included 2-3 h/wk of sports or aerobic training. Participants 

reported no contraindications to TMS and were not currently taking any 

medications. Participants gave written informed consent for the experimental 

procedures approved by the university Institutional Review Board. The study 

was performed in accordance with the latest Declaration of Helsinki. Participants 

visited the laboratory one week prior to the beginning of the experiment for 

familiarization with the testing procedure. Participants were asked to refrain from 

consuming alcohol, caffeine, and from exercising at least 48h before each testing 

session. During the experiment, participants were reminded to keep their daily 

habits and not take nutritional supplements or start new training programs.  

8.3.2 Study design and training 

Fig. 1 shows the design. All participants came to the laboratory three times 

before the start of RT. One session was for familiarization and two additional 

identical sessions were for pre-test sessions (PRE-1, PRE-2). Sessions were 

separated by one week of rest. After four weeks of RT, participants came to the 

laboratory for the final post-test (POST, 96-120h after last training session). Each 

testing session started with maximal voluntary isometric contractions (MVIC), 

followed by measurements of CSE and ended with 1RM testing of the knee 

extensors of each leg separately.  

After the pre-test sessions, participants were randomly assigned to four 

groups: control (CON, n=9, 23.5±4.3y), low-load RT to concentric muscular failure 

(LLF, n=11, 20.8±1.3y), high-load RT to concentric muscular failure (HLF, n=11, 

21.4±1.4 y), and high-load RT without failure (HLNF, n=11, 21.8±1.5 y). CON 

continued with their daily habits during four weeks between PRE-2 and POST. 

The training groups performed unilateral knee extension RT with the dominant 
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leg (self-reported) four times per week for four weeks (Monday, Tuesday, 

Thursday, Friday). We choose a high frequency RT (4d/wk) to increase the total 

number of training sessions based on a previous study showing that minimizing 

rest days between training sessions during short RT periods may improve CE 

when increases in voluntary force of the trained limb are not the main focus (339). 

Before each training session, participants performed a short warm-up 

consisting of 10 repetitions with a load of 25% of 1RM. Training in the LLF and 

HLF groups consisted of three sets of unilateral dominant knee extensions to 

concentric muscular failure with a load corresponding to the 25% and 75% of 

1RM, respectively. Concentric muscular failure was defined as the moment when 

participants were unable to complete one additional repetition through the full 

range of motion. The HLNF group trained with a load corresponding to the 75% 

of 1RM but without reaching concentric muscular failure. Because a 75% of 1RM 

corresponds to a load that could be lifted ~10 times (i.e., 10RM), participants in 

the HLNF group performed six sets of five repetitions, half of the maximal 

number of repetitions that could be done with that load. Therefore, to equate the 

volume between HLF and HLNF, the HLNF group performed six sets instead of 

three. Load was maintained constant during the four weeks. Because the number 

of repetitions of the HLF group increased across the training sessions, the number 

of repetitions in each set in the HLNF group increased from 5 to 6 after the 2nd 

week to maintain similar volumes. Participants performed each knee extension as 

fast as possible in the concentric phase and controlled eccentric phase supervised 

by the investigators with an inter-set rest period of two minutes. The only 

instruction given related to the non-training leg was not to push with the leg 

against the load, but participants were not instructed explicitly to relax this leg. 

After each set, the number of repetitions completed and the ratings of perceived 

exertion (RPE) was registered using the OMNI-RES scale (0-10), where 0 is 

extremely easy and 10 represents an extremely hard effort (429). Participants were 

familiarized with the OMNI-RES scale before the initiation of the study. The daily 

average number of repetitions, volume (reps*Kg) and RPE was calculated for each 

group. 
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8.3.3 Set-up 

Participants sat in a custom made chair with the hip, knee and ankle at 90º, 

and the torso restrained with belts to avoid displacement (Fig. 1A). Both legs were 

fastened with two rigid straps around the ankle to two force transducers (NL63, 

200kg; Digitimer, Welwyn Garden City, UK) to measure voluntary force (band-

pass-filtered 5-2,500Hz, amplified x1,000 and sampled at 2kHz).  

Surface electromyography (EMG) was recorded from the right and left 

vastus lateralis (VL) and rectus femoris (RF) using Ag-AgCl surface electrodes (2 

cm interelectrode distance) attached to the skin according to SENIAM 

recommendations. EMG signals were amplified (x600-1000 depending on the 

baseline Mmax amplitude at PRE-1), bandpass filtered (10-500Hz), and sampled (2 

kHz) with a Digitimer d440 isolated amplifier (Digitimer). EMG and force 

recordings were simultaneously collected using an analog-digital board CED 

Micro 1401-3 (Cambridge Electronic Design, Cambridge, UK) for further analysis. 

Figure 11. Schematic view of the set-up and protocol. (A) Subjects sat in a custom made chair 

with the hip, knee and ankle at 90º and the torso restrained with belts to avoid displacement during 

isometric contrations. (B) Schematic representation of the experimental design. 
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8.3.4 Maximal voluntary force tests 

At the beginning of the testing sessions, in the position described above 

(Fig. 1A), participants performed two unilateral three-to-five seconds MVIC with 

each leg. In each trial participants contracted as hard and fast as possible. MVIC 

measurements started always with the dominant leg and every attempt was 

performed one minute after the trial of the other leg so participants rested around 

two minutes between trials of the same leg. The mean peak-to-peak value of the 

two attempts of each leg was used to determine the target force for submaximal 

torque contraction during the CSE measurements. The maximal EMGRMS of the 

VL (VL-EMGRMSmax) and the RF (RF-EMGRMSmax) was computed offline in a 

time window of 500ms around the peak force and normalized to the amplitude of 

the Mmax. 

Maximal unilateral voluntary dynamic force of the knee extensors was 

measured using a standard unilateral 1RM test in a commercial seated knee 

extension machine (Technogym, Cesena, Italy). Before the first attempt, every 

participant performed a warm-up consisting on ten, eight, four and two 

repetitions with a load equivalent to the 20, 40, 60 and 80% of their estimated 

1RM, respectively. After warming-up, participants performed trials of one 

repetition with increasing loads (~10-20% steps) until they were not able to 

complete one repetition through the full range of motion (from 90º to 180º of 

extension). Three minutes of rest were given between trials and the entire 

protocol was performed with the dominant and non-dominant leg, in that order. 

A single set to failure was done with the dominant limb to test the maximal 

number of repetitions with the 75% of 1RM in PRE-2.Verbal encouragement was 

given in each attempt of maximal dynamic voluntary force. The highest load 

lifted in each session was used as the 1RM. 

8.3.5 Transcranial magnetic stimulation 

Single-pulse TMS was delivered to the left and right motor cortices (M1) 

using a concave double-cone coil (120 mm) which induced a posterior-anterior 

intracranial current connected to a DuoMag (Rogue Resolutions Ltd, Cardiff, UK) 
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magnetic stimulator. The optimal stimulation point of each leg was obtained by 

exploring the estimated centre of the quadriceps muscles cortical representation. 

The point at which motor evoked potentials (MEP) were the largest in each 

session was marked on the scalp with a permanent marker.  

To measure CSE a recruitment curve (RC) was measured in both legs 

during a unilateral contraction of a 5% of the MVIC force. Stimulation intensity 

started with a subthreshold intensity of 30% of the stimulator output and 

increased in steps of 10% until 90% of the stimulator output. Four pulses were 

given at each stimulation intensity. The peak-to-peak amplitude of MEPs 

obtained in the VL and RF of each leg was measured offline and used to calculate 

the total area under the recruitment curve (AURC) using the trapezoidal 

integration method. The root mean square of the EMG (EMGRMS) during the 

150ms previous to the pulse was also measured and averaged for each session.  

8.3.6 Peripheral nerve stimulation 

The maximal compound muscle action potential (Mmax) of both legs was 

obtained via single-pulse electrical stimulation (200µs duration) delivered to the 

femoral nerve with a DS7AH constant current electrical stimulator (Digitimer). 

The cathode (pregelled Ag-AgCl electrodes) was located over the femoral triangle 

and the anode midway between the greater trochanter and the iliac crest. The 

intensity for stimulation was set at 120% of the stimulation intensity needed to 

elicit a maximum VL and RF Mmax. Five pulses were obtained in each leg at the 

beginning of each session during a contraction of 5% of MVIC force. The peak-to-

peak amplitude of the Mmax was measured and averaged. The average Mmax value 

of each testing session was then used for normalization procedures of all the other 

EMG variables. 

8.3.7 Statistics 

The normality and homogeneity of variables was tested with Kolmogorov-

Smirnov and Levene tests, respectively. Intersession reliability of measurements 

obtained in PRE-1 and PRE-2 was determined using intraclass correlation 

coefficients (ICC (2, 1) two-way mixed effect model) with 95% confidence 
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intervals. To determine baseline differences between PRE-1 and PRE-2, paired T-

test analysis were performed for all variables. When no significant differences 

were found between PRE-1 and PRE-2, the mean value was used for subsequent 

analysis (PRE). A one-way ANOVA with group (LLF, HLF, HLNF) as factor was 

performed for the training variables (REPs/d, VOL/d and RPE/d). A three-way 

repeated measures analysis of variance (RM-ANOVA) was performed with time 

(PRE and POST), leg (trained and untrained), and group (CON, LL, HLF, HLNF) 

as factors for the following variables: 1RM, MVIC force, VL-EMGRMS, RF-EMGRMS, 

VL-AURC, RF-AURC and VL and RF Mmax. When significant interactions or main 

effects were found, Bonferroni correction was applied to account for multiple 

comparisons in the post-hoc analyses.  ES are presented as partial eta-squared 

values (ηp2; small: 0.01; medium: 0.06; large: 0.14) for the factors of the RM-

ANOVAs and as Cohen’s d for the paired comparisons. When needed, 

correlations were determined by using Pearson correlation analysis. Data are 

presented as mean ± standard deviation (SD) in the text and figures. SPSS 20.0 

software (SPSS, Chicago, IL) was used for statistical analysis. Statistical 

significance was set at P ≤ 0.05. 

8.4 RESULTS 

8.4.1 Reliability 

Intersession reliability ranged from 0.65 to 0.96 for all variables (See Table 

5). 
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Table 5. PRE-1 and PRE-2 mean raw values, absolute and relative changes 

from PRE-1 to PRE-2, paired T-test P value, Cohen’s d effect size and inter-session 

reliability for all variables (n = 42). 

 

d: Cohen’s d effect size; ICC: Intraclass correlation coefficient; CI: Confident interval; 1RM: one repetition 

maximum; MVIC: maximum voluntary isometric contraction; VL: vastus lateralis; EMGRMS: maximum 

electromyography root mean square; RF: rectus femoris; MEP: Motor evoked potential; AURC: area under the 

curve; Mmax: Maximal compound muscle action potential. 

 

 
 

PRE-1 PRE-2 Δ, abs Δ, % 
T-Test ,  

P value 
d 

Inter-Session 

ICC (95% CI) 

Trained:        

 
1RM (kg) 

57.12 ± 

11.15 

57.93 ± 

10.35 
0.81 1.40 0.08 0.07 

0.96 

(0.93, 0.98) 

 
MVIC (N) 

595.29 ± 

95.91 

603.08 ± 

97.62 
7.80 1.31 0.11 0.08 

0.94 

(0.89, 0.97) 

 VL-EMGRMS 

(%Mmax) 

0.087 ± 

0.033 

0.088 ± 

0.035 
0.002 1.84 0.56 0.03 

0.87 

(0.77, 0.93) 

 RF-EMGRMS 

(%Mmax) 

0.107 ± 

0.043 

0.109 ± 

0.044 
0.002 2.12 0.35 0.05 

0.94 

(0.89, 0.97) 

 VL-AURC 

(a.u) 

96.09 ± 

56.79 

95.34 ± 

59.36 
-0.75 -0.78 0.82 0.01 

0.93 

(0.88, 0.96) 

 RF-AURC 

(a.u) 

164.42 ± 

96.31 

160.54 ± 

94.88 
-3.89 -2.36 0.61 0.04 

0.87 

(0.77, 0.93) 

 
VL-Mmax (mV) 4.99 ± 1.54 4.91 ± 1.52 -0.08 -1.65 0.54 0.05 

0.84 

(0.72, 0.91) 

 
RF-Mmax (mV) 3.80 ± 1.40 3.82 ± 1.43 0.02 0.56 0.84 0.01 

0.89 

(0.80, 0.94) 

Untrained:        

 
1RM  (Kg) 

58.90 ± 

10.43 

59.48 ± 

10.19 
0.57 0.97 0.23 0.06 

0.96 

(0.92, 0.98) 

 
MVIC (N) 

592.72 ± 

101.18 

597.03 ± 

100.38 
4.31 0.72 0.38 0.02 

0.95 

(0.91, 0.97) 

 VL-EMGRMS 

(%Mmax) 

0.078 ± 

0.030 

0.080 ± 

0.031 
0.002 2.40 0.64 0.06 

0.65 

(0.43, 0.79) 

 RF-EMGRMS 

(%Mmax) 

0.108 ± 

0.047 

0.107 ± 

0.038 
-0.001 -0.88 0.83 0.02 

0.79 

(0.64, 0.88) 

 VL-AURC 

(a.u) 

96.47 ± 

49.67 

104.73 ± 

52.00 
8.25 8.55 0.057 0.16 

0.84 

(0.72, 0.91) 

 RF-AURC 

(a.u) 

158.96 ± 

70.35 

163.07 ± 

71.28 
4.11 2.59 0.57 0.06 

0.78 

(0.63, 0.88) 

 
VL-Mmax (mV) 5.18 ± 1.92 5.12 ± 1.91 -0.07 -1.32 0.60 0.03 

0.88 

(0.78, 0.93) 

 
RF-Mmax (mV) 3.31 ± 1.14 3.37 ± 1.05 0.05 1.50 0.62 0.05 

0.83 

(0.70, 0.90) 
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8.4.2 Training variables 

The mean number of repetitions done at 75% of 1RM before training was 

9.3±3.2. The daily number of repetitions was higher in LLF (117±17 reps/day) 

compared with HLF (34±3 reps/day, d=6.9, P=0.001) and HLNF (33±0.8 reps/day, 

d=7.0, P=0.001) without differences between the HLF and HLNF (d=0.1, P=0.99). 

However, the total volume was not different between LLF (1877±533 Kg/d), and 

HLF (1504±335 Kg/d, d=0.84, P=0.112), and HLNF (1470±297 Kg/d, d=0.94, 

P=0.072) or between HLF and HLNF (d=0.1, P=0.99). The groups training to 

failure reported a higher RPE (LLF: 9.5±0.5, HLF: 9.6±0.4) than HLNF (6.2±0.7, 

d=5.14 and 5.81, respectively, both P=0.001). 

8.4.3 Voluntary dynamic force (1RM) 

Before training, 1RM values were similar between groups in each leg (all 

P>0.05). After four weeks of RT, 1RM of the trained leg increased in HLF (20%, 

d=0.70, P=0.001) and HLNF (15%, d=0.61, P=0.001) but not in LLF (2%, d=0.09, 

P=0.59) or CON (2%, d=0.01, P=0.73). 1RM of the untrained leg also increased in 

the groups that trained with high load (HLF: 5 %, d=0.27, P=0.001; HLNF: 6 %, 

d=0.26, P=0.009) but not in LLF (0.6%, d=0.01, P=0.74) or CON (0.2%, d=0.01, 

P=0.93) (Fig. 12, see Table 6 and 7 for raw values, main effects and interactions). 

The increase in 1RM of the trained and untrained leg correlated r=0.34 (P=0.028). 
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Table 6. PRE-POST mean raw values and Cohen’s d effect size for each 

group and variable. 

 

d: Cohen’s d effect size; 1RM: one repetition maximum; MVIC: maximum voluntary isometric contraction; 

VL: vastus lateralis; EMGRMS: maximum electromyography root mean square; RF: rectus femoris; MEP: 

Motor evoked potential; AURC: area under the curve; Mmax: Maximal compound muscle action potential. 

 

 PRE POST d  PRE POST d 

Trained    Untrained    

 1RM (kg)     1RM (kg)    

 CON 56.44 ± 6.71 57.33 ± 6.71 0.01  CON 59.22 ± 6.06 59.33 ± 8.66 0.01 

 LLF 57.19 ± 10.28 58.27 ± 13.42 0.09  LLF 59.18 ± 8.83 59.54 ± 9.68 0.01 

 HLF 58.09 ± 12.86 69.73 ± 19.76 0.70  HLF 59.18 ± 10.49 62.18 ± 11.43 0.27 

 HLNF 58.18 ± 12.53 66.64 ± 15.17 0.61  HLNF 59.18 ± 14.47 63.00 ± 14.72 0.26 

 MVIC (N)         

 CON 618.21 ± 64.27 624.33 ± 79.28 0.08  CON 628.78 ± 82.01 632.81 ± 96.97 0.04 

 LLF 586.06 ± 110.81 570.32 ± 118.94 0.14  LLF 589.39 ± 104.76 590.75 ± 107.17 0.01 

 HLF 615.06 ± 99.40 650.98 ± 103.05 0.35  HLF 593.26 ± 90.32 595.31 ± 85.97 0.02 

 HLNF 580.88 ± 103.21 651.77 ± 107.01 0.67  HLNF 574.22 ± 120.73 595.74 ± 121.31 0.18 

 VL-

EMGRMS 

(%Mmax) 

    
VL-

EMGRMS 

(%Mmax) 

   

 CON 0.075 ± 0.020 0.075 ± 0.026 0.01  CON 0.074 ± 0.016 0.076 ± 0.024 0.07 

 LLF 0.087 ± 0.026 0.084 ± 0.035 0.09  LLF 0.078 ± 0.034 0.068 ± 0.036 0.28 

 HLF 0.084 ± 0.030 0.094 ± 0.040 0.30  HLF 0.077 ± 0.033 0.072 ± 0.026 0.17 

 HLNF 0.101 ± 0.046 0.107 ± 0.052 0.12  HLNF 0.083 ± 0.026 0.093 ± 0.039 0.29 

 RF-

EMGRMS 

(%Mmax) 

    
RF-

EMGRMS 

(%Mmax) 

   

 CON 0.084 ± 0.029 0.097 ± 0.031 0.43  CON 0.113 ± 0.039 0.102 ± 0.026 0.32 

 LLF 0.106 ± 0.043 0.120 ± 0.039 0.34  LLF 0.111 ± 0.036 0.110 ± 0.035 0.04 

 HLF 0.118 ± 0.044 0.133 ± 0.046 0.33  HLF 0.103 ± 0.037 0.098 ± 0.024 0.15 

 HLNF 0.119 ± 0.049 0.135 ± 0.054 0.32  HLNF 0.106 ± 0.052 0.100 ± 0.030 0.14 

 VL-

AURC 

(a.u) 

    
VL-

AURC 

(a.u) 

   

 CON 86.84 ± 62.86 102.58 ± 63.23 0.25  CON 75.41 ± 29.04 87.65 ± 46.78 0.31 

 LLF 89.38 ± 65.70 71.58 ± 46.21 0.31  LLF 99.75 ± 61.63 91.49 ± 53.90 0.14 

 HLF 89.70 ± 48.05 80.88 ± 54.97 0.17  HLF 104.57 ± 50.55 93.05 ± 47.78 0.23 

 HLNF 115.33 ± 54.77 89.69 ± 63.69 0.43  HLNF 118.09 ± 40.84 100.49 ± 35.22 0.46 

 RF-AURC 

(a.u) 
    

RF-AURC 

(a.u) 
   

 CON 156.63 ± 68.50 162.55 ± 75.57 0.08  CON 151.07 ± 58.77 149.29 ± 48.77 0.03 

 LLF 209.41 ± 117.86 171.83 ± 99.93 0.34  LLF 160.21 ± 81.87 151.18 ± 73.85 0.11 

 HLF 114.28 ± 68.72 102.63 ± 78.85 0.16  HLF 164.28 ± 75.58 164.00 ± 82.01 0.01 

 HLNF 168.55 ± 86.74 137.91 ± 66.90 0.39  HLNF 166.71 ± 54.80 151.75 ± 62.34 0.25 

 VL-Mmax 

(mV) 
    

VL-Mmax 

(mV) 
   

 CON 5.30 ± 0.67 4.70 ± 2.01 0.40  CON 4.63 ± 1.66 4.34 ± 1.31 0.19 

 LLF 5.28 ± 1.69 5.67 ± 1.59 0.23  LLF 5.50 ± 1.98 5.47 ± 1.46 0.02 

 HLF 4.37 ± 1.40 5.18 ± 3.30 0.32  HLF 5.24 ± 1.98 5.37 ± 2.46 0.06 

 HLNF 4.92 ± 1.74 5.21 ± 1.47 0.17  HLNF 5.13 ± 1.91 5.28 ± 1.80 0.08 

 RF-Mmax 

(mV) 
    

RF-Mmax 

(mV) 
   

 CON 4.54 ± 1.32 3.57 ± 1.88 0.59  CON 3.11 ± 1.02 3.20 ± 0.91 0.09 

 LLF 3.47 ± 1.35 3.67 ± 1.47 0.14  LLF 3.12 ± 1.08 3.78 ± 2.11 0.39 

 HLF 3.41 ± 1.14 4.01 ± 1.14 0.52  HLF 3.73 ± 1.11 3.96 ± 0.88 0.23 

 HLNF 3.94 ± 1.55 3.98 ± 1.59 0.02  HLNF 3.36 ± 0.98 3.60 ± 1.30 0.21 
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Table 7. RM-ANOVA main effects and interactions. 

1RM: one repetition maximum; MVIC: maximum voluntary isometric contraction; VL: vastus lateralis; 

EMGRMS: maximum electromyography root mean square; RF: rectus femoris; MEP: Motor evoked potential; 

AURC: area under the curve; Mmax: Maximal compound muscle action potential. 

8.4.4 Voluntary isometric force and EMG 

Before training, MVIC force and VL and RF-EMGRMS were similar between 

groups for both legs (all P>0.05). MVIC force increased in the trained leg in HLF 

(6%, d=0.35, P=0.001) and HLNF (12 %, d=0.67, P=0.001) but not in LLF (-3%, 

d=0.14, P=0.12) or CON (1%, d=0.08, P=0.58). No changes occurred in the 

untrained leg MVIC force (CON: 0.6%, d=0.35, P=0.74; LL: 0.2%, d=0.35, P=0.90; 

HLF: 0.3%, d=0.35, P=0.85; HLNF: 4%, d=0.35, P=0.053) (Fig. 12, Table 6 and 7). 

The increase in MVIC force of the trained leg correlated with the increase in the 

trained leg 1RM (r=0.42, P=0.006) and the changes in untrained leg MVIC force 

(r=0.46, P=0.002).  

 

 Leg Leg*Group Time Time*Group Leg*Time Leg*Time*Group 

1RM (kg) 

F (1, 38) = 0.14;  

 P = 0.91; ηp
2 = 

0.01 

F (3, 38) = 1.41;  

P = 0.25; ηp
2 = 

0.10 

F (1, 38) = 29.00;  

P = 0.001; ηp
2 = 

0.43 

F (3, 38) = 6.85;  

P = 0.001; ηp
2 = 

0.35 

F (1, 38) = 9.61; 

P = 0.004; ηp
2 = 

0.20 

F (3, 38) = 2.54; 

P = 0.07; ηp
2 = 

0.17 

MVIC (N) 

F (1, 38) = 2.04;  

P = 0.16; ηp
2 = 

0.05 

F (3, 38) = 2.47;  

P = 0.08; ηp
2 = 

0.16 

F (1, 38) = 12.68;  

P = 0.001; ηp
2 = 

0.25 

F (3, 38) = 6.98;  

P = 0.001; ηp
2 = 

0.36 

F (1, 38) = 8.50; 

P = 0.006; ηp
2 = 

0.18 

F (3, 38) = 6.86; 

P = 0.001; ηp
2 = 

0.35 

VL-EMGRMS 

(%Mmax) 

F (1, 38) = 6.07;  

P = 0.02; ηp
2 = 

0.14 

F (3, 38) = 0.70;  

P = 0.56; ηp
2 = 

0.05 

F (1, 38) = 0.10;  

P = 0.75; ηp
2 = 

0.01 

F (3, 38) = 0.60;  

P = 0.62; ηp
2 = 

0.05 

F (1, 38) = 0.74;  

P = 0.39; ηp
2 = 

0.02 

F (3, 38) = 0.79; 

P = 0.51; ηp
2 = 

0.06 

RF-EMGRMS 

(%Mmax) 

F (1, 38) = 2.70;  

P = 0.11; ηp
2 = 

0.07 

F (3, 38) = 3.22;  

P = 0.03; ηp
2 = 

0.20 

F (1, 38) = 1.53;  

P = 0.22; ηp
2 = 

0.04 

F (3, 38) = 0.09;  

P = 0.96; ηp
2 = 

0.01 

F (1, 38) = 16.13;  

P = 0.001; ηp
2 = 

0.30 

F (3, 38) = 0.14; 

P = 0.94; ηp
2 = 

0.01 

VL-AURC 

(a.u) 

F (1, 38) = 0.99;  

P = 0.32; ηp
2 = 

0.03 

F (3, 38) = 1.25;  

P = 0.31; ηp
2 = 

0.09 

F (1, 38) = 3.40;  

P = 0.07; ηp
2 = 

0.08 

F (3, 38) = 3.07;  

P = 0.039; ηp
2 = 

0.19 

F (1, 38) = 0.19;  

P = 0.66; ηp
2 = 

0.01 

F (3, 38) = 0.28; 

P = 0.83; ηp
2 = 

0.02 

RF-AURC 

(a.u) 

F (1, 38) = 0.19;  

P = 0.67; ηp
2 = 

0.03 

F (3, 38) = 3.83;  

P = 0.02; ηp
2 = 

0.23 

F (1, 38) = 3.81;  

P = 0.06; ηp
2 = 

0.09 

F (3, 38) = 0.94;  

P = 0.43; ηp
2 = 

0.07 

F (1, 38) = 1.23;  

P = 0.27; ηp
2 = 

0.03 

F (3, 38) = 0.46; 

P = 0.71; ηp
2 = 

0.03 

VL-Mmax 

(mV) 

F (1, 38) = 0.05;  

P = 0.83; ηp
2 = 

0.01 

F (3, 38) = 0.97;  

P = 0.41; ηp
2 = 

0.07 

F (1, 38) = 0.22;  

P = 0.64; ηp
2 = 

0.01 

F (3, 38) = 0.68;  

P = 0.57; ηp
2 = 

0.05 

F (1, 38) = 0.42;  

P = 0.52; ηp
2 = 

0.01 

F (3, 38) = 0.36; 

P = 0.79; ηp
2 = 

0.03 

RF-Mmax 

(mV) 

F (1, 38) = 3.55;  

P = 0.07; ηp
2 = 

0.08 

F (3, 38) = 1.46;  

P = 0.24; ηp
2 = 

0.10 

F (1, 38) = 1.13;  

P = 0.29; ηp
2 = 

0.03 

F (3, 38) = 2.30;  

P = 0.09; ηp
2 = 

0.15 

F (1, 38) = 2.34;  

P = 0.13; ηp
2 = 

0.06 

F (3, 38) = 1.70; 

P = 0.18; ηp
2 = 

0.12 
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VL-EMGRMS did not change in either leg. The RF-EMGRMS increased from 

baseline in the trained leg of all groups (13%, d=0.33, P=0.005) (Table 6 and 7). The 

changes in RF-EMGRMS correlated with those obtained in the trained leg MVIC 

force (r=0.31, P=0.049). 

 

Figure 12. Trained (left column) and untrained (right column) mean and individual changes 

in 1RM (upper row) and MVC (lower row). (*) shows a statistically significant difference (P < .05) to 

PRE values. 

8.4.5 Corticoespinal excitability 

Before training, AURC-VL, AURC-RF were similar between groups in both 

legs (all P>0.05). Four weeks of RT reduced the AURC-VL in both legs in HLNF (-

19%, d=0.44, P=0.011) but not in CON (17%, d=0.27, P=0.13), LLF (-14%, d=0.23, 

P=0.12) or HLF (-10%, d=0.20, P=0.22) (Figure 13, Table 6 and 7). No changes 
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occurred in the AURC-RF (Figure 14, Table 6 and 7). Changes in CSE in the VL or 

the RF were not related to changes in 1RM (r=-0.10 and r=-0.11, respectively, all 

P>0.05) or MVIC (r=-0.03 and r=-0.06, respectively, all P>0.05). 

Figure 13. Trained (left column) and untrained (right column) leg vastus lateralis recruitment 

curve of each group. (*) shows a statistically significant (P < .05)  difference between PRE to POST in 

the area under the recruitment curve. 
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Figure 14. Trained (left column) and untrained (right column) leg rectus femoris recruitment 

curve of each group. 
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8.4.6 Responses to peripheral nerve stimulation 

Before training, VL or RF Mmax were similar between groups in both legs (all 

P>0.05). Mmax did not change in any muscle, leg or group (Table 6 and 7).  

8.5 DISCUSSION 

We determined the effects of training load and fatigue on maximal 

voluntary force and markers of neural adaptations in the trained and untrained 

knee extensors. In partial agreement with the hypothesis, high-but not low-load 

RT improved maximal voluntary force in the trained and the untrained leg but 

fatigue did not further enhance these adaptations. Furthermore, voluntary force 

improvements were unrelated to CSE changes in both legs. 

Recommendations highlight the use of training loads above a 70% of 1RM 

to maximize voluntary force and hypertrophy (96). However, recently it has been 

shown that training loads below 60% of 1RM can also increase maximal voluntary 

force albeit to a lesser extent than high-load RT (96). Our results support the 

greater effectiveness of high-load RT but do not support low training loads (25% 

of 1RM) as a training stimulus to increase maximal voluntary force in the trained 

leg. A recent study reported that six but not three weeks of low-load RT increased 

1RM and MVIC force of the knee extensors (97), Therefore, this suggests that 

when low-loads are used during RT, increases in maximal voluntary force may 

occur more slowly and longer training periods may be needed compared with 

high-load RT, which could explain a lack of changes after 4 weeks in the present 

study. Furthermore, the high frequency (4d/wk) used in our training protocol 

aiming to maximize CE could have hindered the increases in maximal voluntary 

force of the trained leg in the LLF group. The combination of training to failure, 

which is associated with high levels of muscle damage (430), and the high 

frequency of training allowing a shorter time for recovery between training bouts, 

could have had a cumulative effect that may have led to greater levels of muscle 

damage affecting the force-generating capacity even after 96-120h of rest. 

Regarding the untrained limb, this is the first study investigating the effects 

of training load on the CE of maximal voluntary force. Unilateral RT at 70-100% of 
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maximum voluntary force produced 27% (±20%) CE (63). CE of maximal 

voluntary force was smaller in the present study and occurred only after RT with 

high loads. CE of maximal voluntary force is probably related to the training 

stimulus arising from the concurrent activation of the untrained hemisphere 

during unilateral contraction of the knee extensors (67). The intensity of the 

muscle contraction is a strong modulator of the ipsilateral hemisphere activation, 

with strong contractions leading to greater ipsilateral hemisphere activation (70, 

115) and intensity-dependent reductions in intracortical inhibition and 

interhemispheric inhibition from the contralateral to the ipsilateral hemisphere 

(115). Therefore, RT load may influence the magnitude of CE (111) 

Notwithstanding, most of the previous studies used training loads above 70% of 

the maximum force. In addition, the few studies that used low-load unilateral RT 

reported inconsistent results (59, 340), limiting any conclusion about the effect of 

training load on CE. Our results agree with previous studies showing that very 

low training intensities (25% of 1RM) do not produce CE of maximal voluntary 

force (340). There is a correlation between force improvements in the trained and 

untrained limb in previous studies (39, 325), which is also present in the current 

results (r=0.34 and r=0.46 for 1RM and MVIC force, respectively). From this 

correlation could be argued that if low-load RT produces lower increases in 

voluntary force of the trained limb, a lower CE of voluntary force could be 

expected. Therefore, the present results suggest that low-load RT has low 

effectiveness in producing CE. This could be due to low activation of the 

ipsilateral hemisphere during unilateral low-load contractions, producing a sub-

threshold stimulus for CE (420, 431). 

Muscle fatigue during the set could also enhance RT adaptations in the 

trained limb (432) by increasing metabolic stress and motor unit activation (235). 

Despite our results show higher levels of perceived exertion in LLF and HLF 

compared with HLNF, suggesting greater levels of fatigue during the training 

session, four weeks of unilateral knee extensions at 75% of 1RM increased the 

trained-limb maximal force independent of muscle failure. These results agree 

with previous studies showing that fatigue during RT is not a necessary stimulus 

for increasing maximal voluntary force.(103) However, as discussed above, the 

high frequency of training used in our training protocol plus leading sets to 

muscular failure could have had a cumulative effect leading to an overtraining 
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that may have hindered any advantages of training to failure in the trained leg. 

Notwithstanding, the novel element of the present study was the determination 

of the effects of muscle fatigue during the set on CE. As it was the case for 

training load, fatiguing unilateral contractions can also increase the level of 

activation of the ipsilateral hemisphere (71). Thus, we hypothesized that RT to 

failure would increase the stimulus to the untrained hemisphere, increasing the 

magnitude of CE. Most CE studies used training protocols leading the sets to or 

close to muscle failure (39, 74, 89, 327, 337). Only one study compared the effects 

of two training programs associated with different levels of fatigue during the 

training session on CE (342). The results showed that the high- vs. low-fatigue 

program produced greater CE, suggesting that the level of fatigue attained during 

the set in the trained limb influence the magnitude of CE (342). However, our 

results show that reaching muscle failure in each set did not further increase CE. 

Differences in the training protocols between studies could explain the discrepant 

data. The low-fatigue protocol (342) consisted of 30 repetitions performed 

continuously with 18.5 s of rest between repetitions, which has been associated 

whit low levels of fatigue and the maintenance of the power level during the 

whole training session (343). However, the high-fatigue protocol (342) (5x6, 

10RM) was very similar to our HLNF protocol (6 sets x 5-6 reps, 75% of 1RM). 

Therefore, the high-fatigue protocol in our study (i.e., HLF), reaching muscle 

failure in each set, represents the protocol leading to the greater amount of 

fatigue. Taken together, these observations suggest that a minimum threshold of 

fatigue is needed to maximize CE with high-load RT (342), but levels of fatigue 

above this threshold do not further enhance CE. However, the present results 

agree with those from a previous complementary study with a small sample size 

that also found that CE of the knee extensors is not modulated by fatigue during 

RT (42). These results suggest that sensitivity of CE to fatigue in the trained limb 

may depend on the trained segment, being greater in muscles of the upper limbs. 

It is believed that neural adaptations underlie the increases in maximal 

voluntary force after RT (67). Increases in CSE may lead to a better efficacy of the 

motor command through a greater neural drive from corticospinal neurons to the 

motoneurons. Recent meta-analysis suggest that RT increase CSE in the trained 

limb when measured during contraction (62), but do not change in the untrained 

limb (63). However, our results do not support the role of an increased CSE as a 
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mechanism to improve force in either leg, which agrees with previous studies that 

also found no changes (39, 327, 433) or even decreases (31) in CSE when measured 

at rest and during contraction in the trained limb, or no changes at rest or during 

contraction in the untrained limb (63). Furthermore, our results show that 

changes in CSE after 4 weeks of RT are not related to changes in maximal 

dynamic or isometric voluntary force. Independently of the direction and 

magnitude of the change in CSE, only one previous study reported a correlation 

between changes in maximal force and increases in CSE in the untrained limb (74) 

and none in the trained limb. Other study reported a correlation between CSE in 

the untrained limb measured during contraction of the trained limb and CE (325). 

An increase in the activation of the untrained hemisphere during contractions of 

the trained limb due to lower interhemispheric inhibition would mean a greater 

stimulus to the untrained hemisphere, allowing a greater CE (325). However, the 

lack of correlation between changes in maximal force and CSE of the 

corresponding limb (either trained or untrained) agrees with previous reports of 

absence of correlation between CSE and performance in ballistic contractions 

(412) and casts doubts about the role of CSE as a mechanism contributing to force 

increases. It is possible that force increases may be related to adaptations in other 

descending tracts with a role in force generation (433), like the reticulospinal tract 

(434, 435), which could not be detected by TMS of the motor cortex. 

Collectively the data suggest that high- but not low-load RT improves 

maximal voluntary force in the trained and untrained leg and fatigue did not 

further enhance these adaptations. Furthermore, voluntary force improvements 

were unrelated to CSE changes in both legs. Therefore, high levels of fatigue 

during high-load RT sessions aiming to improve maximal voluntary force of the 

untrained limb could be avoided, reducing the levels of perceived exertion and 

delayed day-to-day recovery while maintaining the magnitude of CE. 
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IX – SUMMARY AND GENERAL DISCUSSION 

The present thesis aimed to determine the effects of the modification of 

training load and fatigue during unilateral RT on the CE of voluntary force that 

occurs with unilateral RT. For that purpose, we focused on the effect of those 

variables on two levels. In the first level we focused on the effect of training load 

on the acute neural changes occurring after a single session of unilateral RT. 

Those acute neural changes have been suggested to be the trigger for long-term 

adaptations occurring after short RT periods in both, the trained and untrained 

side (75, 77, 118). Therefore, knowing how training load affects those acute neural 

changes could inform about the potential of different training loads to produce 

long-term neural and functional adaptations. The second level was the actual 

effect of training load and fatigue during unilateral RT on chronic neural and 

functional adaptations in the trained and the untrained side. 

For that purpose, we performed four studies whose results show that 1) the 

responses to transcranial but not corticospinal tract stimulation after a single 

session of RT are load-dependent in the trained side (420); 2) training variables 

like the type of contraction, load, fatigue, and strategies of pacing the movement 

may affect the acute and chronic adaptations in the untrained hemisphere 

contributing to inconsistencies found in the literature (111); 3) an acute bout of RT 

leads to load-dependent increases in corticospinal but not intracortical excitability 

in the trained but not the untrained side (431); 4) training load but not the degree 

of fatigue influences voluntary force increases in the trained and untrained side 

after four weeks of unilateral RT (436). 

Based on a previous model that found an acute increase in CSE after a 

single session of isometric unilateral RT (77), we performed an initial study to 

determine the effects of RT load on the acute responses to TMS and corticospinal 

tract stimulation in the trained side. Results show that the training load of an 

acute bout of isometric unilateral RT affects CSE measured by TMS but does not 

affect the responses to corticospinal tract stimulation (420). Furthermore, results 

show that training load not only affected the magnitude of the increases in BB 
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CSE but also the duration of the effect. The disparate effects of load on TMS and 

cervicomedullary responses suggest that load-dependent changes occur at cortical 

or corticospinal level but not at the α-motoneuron level (420). It is likely that the 

increase in CSE is related to use-dependent corticomotor plasticity mediated by 

LTP-like mechanisms (385, 386, 420).  

The results from the complementary experiment suggest that exercise 

volume also affects the acute responses measured with TMS after a single session 

of unilateral RT (420). Therefore, the results from the first study show that the 

manipulation of the training load or volume impacts the acute responses to a 

single bout of RT in the trained side. Although it is still unknown if this dose-

response relationship between the training load and acute corticospinal changes 

lead to similar dose-response adaptations after chronic periods of RT, the present 

results could explain why high-load RT is more effective than low-load RT 

eliciting the neural adaptations underlying the increases in maximal voluntary 

force (97).  

Because the main focus of the present thesis was on the neuromuscular 

acute changes and adaptations in the untrained side, the next step was to detect 

the training variables with a greater potential influence on the acute changes and 

chronic neural adaptations underlying CE whose effect has not been 

systematically investigated. Thus, the aim of the systematic review was to 

determine the effects of training variables on the acute responses and chronic 

adaptations measured with TMS in the untrained hemisphere after unilateral RT 

(111). Independently of the training variables, the present systematic review 

found no clear results regarding the effects of a single session of RT on the 

untrained hemisphere CSE, intracortical inhibition or IHI (111). However, 

although not consistently, results from the chronic studies show an increase in 

CSE (n = 8 studies), a reduction in intracortical (i.e. SICI, n = 5 studies) and 

corticospinal inhibition (i.e. SP, n = 5 studies) in the untrained hemisphere, and 

reduced IHI from the trained to the untrained side (n = 1 study), supporting the 

neural origin of CE (63, 64, 66, 67, 69, 111).  

Although inconsistency in the results could be related to differences in the 

methodology used to measure neural adaptations, it also seems to be related to 

the training protocol used in each study (111). The systematic review revealed 

that most of the acute and chronic studies that found increased CSE, and/or 
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reduced intracortical (i.e. SICI) or corticospinal inhibition (i.e. SP), included 

dynamic RT combining eccentric and concentric contractions (39, 89, 90, 109, 111, 

327, 335-337). Eccentric contractions are associated with greater neural resources 

needed for programming and planning the movement compared to static or 

concentric contractions (172), leading to a greater concurrent activation of the 

untrained hemisphere (112, 113). Therefore, it is likely that this greater concurrent 

activation of the untrained hemisphere serves as a greater training stimulus, thus 

explaining the greater neural and functional adaptations in the untrained limb 

after eccentric unilateral RT (108, 109). The review also shows that externally 

pacing dynamic RT with an external auditory cue could enhance acute responses 

(76) and chronic neural adaptations (74, 90, 335-337) in the untrained hemisphere. 

These greater adaptations with external auditory cues could be related to the 

synchronized arrival of afferent inputs from the auditory cortex with the 

activation of the corticospinal cells in the M1, leading to an enhancement of 

synaptic efficacy due to Hebbian principles (418).  

However, the present review highlights the lack of direct evidence about 

the effect of critical variables such as load or fatigue on the acute responses and 

chronic adaptations in the untrained hemisphere (111). The amount of concurrent 

activation of the untrained hemisphere increases with the muscle contraction 

intensity (114, 193), leading to parametric increases in CSE and reductions in SICI 

and IHI from the active to the resting hemisphere (70, 115, 181, 198-200). 

Similarly, high levels of fatigue in the active limb lead to a higher activation of the 

ipsilateral hemisphere (71). Therefore, greater adaptations in the untrained 

hemisphere could be expected with high-load contractions and greater levels of 

fatigue in the contracting limb during unilateral RT. However, the present review 

could not compare the effect of RT load on the acute and chronic neural 

adaptations of the untrained hemisphere because all the studies used training 

loads > 70% of the maximum force in the trained movement (111). Regarding 

fatigue, one study found results contrary to our hypothesis, showing a decrease in 

ipsilateral CSE after a set of low-load RT until failure (405). However, no other 

acute or chronic study (at the time of submission) had addressed the effects of 

fatigue during unilateral RT on the responses and adaptations of the untrained 

hemisphere or CE. Therefore, in the subsequent studies we focused on the effects 

of different training loads (low vs high) and the level of fatigue during unilateral 
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RT on the CE and their associated neural mechanisms. A detailed understanding 

of the effect of the manipulation of those variables on the acute changes and 

adaptations on the untrained limb, could help to optimize exercise prescription 

and maximize the benefits of unilateral RT.  

Therefore, in the third study we determined the effect of training load 

during a single unilateral RT session on acute changes in CSE, and its relation 

with changes in intracortical inhibitory and facilitatory circuits in the trained and 

the untrained hemisphere (431). As with the trained side (75, 77, 118, 420), acute 

changes in the untrained corticospinal tract could be the trigger for the sustained 

adaptations leading to increases in maximal force of the untrained limb (111). 

Therefore, in this study we replicated the RT model used in the first study (420) 

with two purposes. First, to further delimit the origin of the load-dependent 

increases in CSE found in the trained hemisphere in the first study (420). The 

increase in the response to single pulse TMS (420) could be related to changes in 

intracortical circuits that influence the indirect activation of the corticospinal 

neurons and could be tested with paired pulse TMS. Second, to determine if the 

concurrent activation of the untrained hemisphere during unilateral contractions 

leads to similar load-dependent acute changes in the untrained corticospinal tract, 

which could inform on the potential effect of training load on CE. Despite the 

systematic review detected a lack of knowledge about the role of load and fatigue 

during RT on the adaptations in the untrained limb, we did not include fatigue as 

a variable in the present study. The main reason was that we wanted to replicate 

in the untrained BB the model that showed a load-dependent effect on CSE in the 

trained BB (420). 

In line with the first study, the results showed that high- but not low-load 

RT increased CSE in the trained BB. Changes in α-motoneuron excitability or in 

the efficacy of the corticospinal-motoneuronal synapse are unlikely to underlie 

the load-dependent increases in CSE (420). This is supported by the first study of 

this thesis showing no load-dependent increases in CMEPs (420), and by previous 

studies showing that increases in CMEPs after a single session of RT do not 

always occur (257).  However, contrary to the hypothesis, the results of the 

present study show that a single session of isometric RT does not reduce the 

efficacy of GABA-A (measured with SICI) and GABA-B (measured with SP) 

receptor-mediated inhibitory intracortical circuits projecting to cortical excitatory 
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neurons. Intracortical circuits leading to SICI or ICF affect mainly the size of the 

late I-waves that compose the MEP (134). Therefore, the change in the MEP 

amplitude without changes in SICI or ICF may be related to an increase in the 

efficacy of the monosynaptic conections responsible of the early I-waves, which 

are not affected by SICI or ICF (437). Indeed, a recent study showed that the 

excitability of supragranular layer neurons that lead to the early I-waves is 

sensitive to the level of torque generated by a muscle contraction, probably 

because the afferent feedback coming from muscle is integrated at this level (438). 

Therefore it could be the case that high-load RT leads to greater afferent input 

during training, leading to a greater input from the supragranular layer neurons 

to corticospinal neurons, which may lead to a transient increase in the synaptic 

efficiency. Consequently this would increase the output from the α-motoneurons 

to the trained BB, leading to greater MEP amplitudes despite the same 

stimulation intensity and without affecting SICI or ICF (437, 438) 

Regarding the untrained BB, we hypothesized that the concurrent activation 

during unilateral RT would also lead to an increase in CSE (431). Specifically, 

based on the load-dependent increase found in the trained BB in the first study 

(420), we thought that the lower concurrent activation in the untrained 

hemisphere, representing a lower training stimulus, would increase CSE in the 

untrained BB to a lower magnitude compared to the trained BB and only after 

high-load RT. However, the results show that contrary to what happens in the 

trained BB, a single session of isometric unilateral RT does not affect CSE or the 

efficacy of intracortical circuits regardless of RT load (431). This lack of change 

adds to the inconsistencies found in the systematic review regarding the effect of 

just one session of unilateral RT on the corticospinal and intracortical responses of 

the untrained hemisphere (111).  

The lack of change in CSE could be related to the magnitude of the 

concurrent activation of the untrained hemisphere not reaching a critical 

threshold to produce lasting changes. The combined results from the first and the 

present study suggest that, in the trained hemisphere, this threshold of activation 

is somewhere between the activation produced by a contraction of 25% (not 

producing changes) and 50% (increasing CSE) of the MVC (420, 431). Therefore, it 

seems that unilateral isometric progressive contractions of 75% of MVC does not 

lead to an enough concurrent activation of the untrained hemisphere to surpass 
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this threshold. In fact, when no feedback about the untrained limb is given to the 

subjects, a unilateral MVC leads to inadvertent activation of the untrained 

homologous muscle (208). This inadvertent activation in the untrained BB 

produces a EMG amplitude equivalent to the level of EMG present during a 

voluntary contraction of a 17 ± 14% of the MVC of the untrained BB (208). This 

suggests that the concurrent activation of the untrained hemisphere during 

progressive isometric unilateral contractions is likely well below the activation 

threshold (between 25-50% of MVC in the trained BB) needed to produce 

changes.  

Discrepancies with other studies that found increases in the response to 

TMS in the untrained hemisphere could be related to the influence of other 

training variables like the type of muscle contraction (76, 111). The inclusion of 

dynamic contractions could have had an additive effect with the high-load used 

in those studies, increasing the activation of the untrained hemisphere compared 

to the progressive isometric contractions of the present study (111-113). However, 

chronic unilateral RT using isometric contractions also led to long-term neural 

and functional adaptations in the untrained limb in previous studies (325). 

Therefore, it seems that it is not possible to infer the long-term effectiveness of a 

RT protocol to produce neural and functional adaptations in the untrained limb 

based just on one session of unilateral RT. 

Following the last conclusion, we therefore focused the fourth study on the 

long-term effects of training load (75% vs 25% of 1RM) and the level of fatigue 

during the set (reaching failure or not), on neuromuscular adaptations of the 

trained and untrained leg extensors (436). The effect of both variables has been 

extensively studied in the trained side (96, 103, 107). However, despite the greater 

activation of the untrained hemisphere during high intensity contractions (114, 

193) and high degrees of fatigue (71), and therefore the potential to influence the 

untrained limb adaptations, evidence about the effect of manipulating this 

training variables on CE is scarce. In partial agreement with the hypothesis, the 

results of the last study of the present thesis showed that increases in maximal 

force in the untrained and trained leg occur only with high-load unilateral RT and 

are not affected by the magnitude of fatigue during training (i.e.: sets leading or 

not to muscle failure). Results also show that those increases in force are 

unrelated to changes in CSE in both legs (436). 
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The lack of increases in maximal force of the trained limb after low-load RT, 

could be related to high levels of muscle damage derived from the combined 

effect of training to failure (430) and the high training frequency (4d/wk.) used in 

the present study (436). However, the present results in the trained leg are in 

accordance with previous studies suggesting a lower effectiveness of low-load RT 

versus high load RT (96, 97), and add new information regarding the effect of 

load on CE and associated neural adaptations. Overall, the present results suggest 

that high-load RT is required to maximize the increases in maximal voluntary 

force in the trained and the untrained limb. Thus, low-load RT is not suitable to 

be used on unilateral RT models aiming to increase the force of the untrained 

limb, probably because of a low concurrent activation of the untrained 

hemisphere during low intensity unilateral contractions (70, 115). However, it 

could be the case that, as occurs in the trained side (97), low-load RT requires 

more time and training sessions to increase maximal voluntary force in the 

untrained limb. Therefore, the present results and the correlations between the 

force improvements in the trained and the untrained side (18), suggest that the 

magnitude of CE may depend on the effectiveness of the training protocol to 

produce increases in maximal voluntary force of the trained limb. This would 

explain why high-loads and eccentric contractions lead to greater increases in 

maximal force in the trained (268), and as a consequence, in the untrained side 

(108, 109).  

Regarding fatigue, our results in the trained limb agree with previous 

results suggesting that muscle failure is not a necessary stimulus to maximize the 

increases in maximal voluntary force (103, 104, 106). However, due to the 

increased untrained hemisphere activation that occurs with higher levels of 

fatigue (71), we hypothesized that this variable could have some benefit in the 

untrained limb. Notwithstanding, in contrast with a previous study looking at the 

effect of fatigue during the set on CE (342), our results do not support this 

hypothesis. However, this discrepancy could be related to the different level of 

fatigue achieved in the training protocols of both studies (low-fatigue vs medium 

fatigue (342), and medium fatigue vs high fatigue (failure) (436). Therefore, the 

combined results of both studies suggest that a minimum threshold of fatigue 

may be needed to maximize CE with high-load RT, but greater levels of fatigue 
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(reaching or close to muscle failure) do not have further benefits on the untrained 

limb. 

Finally, regarding neural adaptations, contrary to our hypothesis we found 

a decrease in the CSE in the VL of the HLNF group, without any change in the 

CSE of the RF in any group. It has been proposed that increases in CSE after RT 

would increase the neural drive to the α-motoneurons and ultimately muscle 

force (62, 422, 439). However, the lack of change (HLF) and the decrease (HLNF) 

in CSE do not support the role of an increase in CSE as a mechanism to enhance 

the force in either leg. Furthermore, there was no correlation between changes in 

CSE and maximal voluntary force in any leg, in accordance with most of the 

studies that did not report correlation between changes in force and CSE or even 

between other behavioural outcomes and CSE (30-42, 44, 45, 62, 74, 327, 332, 335, 

377, 440, 441). This may suggest that CSE is not an optimal measurement to prove 

functional adaptations in the neuromuscular system. Because large increases in 

muscle mass are unlikely after just four weeks of RT, increases in maximal 

voluntary force may be related to other neural adaptations not probed with single 

pulse TMS, such as decreased intracortical inhibition (376), decreased antagonist 

co-activation (355, 356), or adaptations in other descending tracts or supraspinal 

structures with a role in force generation that can not be tested with TMS (433-

435). 

To sum up, the present thesis aimed to determine the effects of the 

manipulation of training load and fatigue during RT on the acute neural changes 

and the chronic neural and functional adaptations on the untrained side. At the 

acute level, the overall results from the present thesis show that training load 

influences the acute increases in CSE in the trained but not the untrained side. 

Specifically, results suggest that stronger muscle contractions have a greater 

impact on corticospinal excitability. However, caution should be taken when 

inferring the effect of modification of training variables on long-term adaptations 

from those acute changes because there is no study showing any relation between 

acute changes and long-term functional or neural adaptations. In fact, despite the 

increase in CSE after high-load RT agrees with results of other studies (76-78, 258-

260, 262, 263, 265), there are also studies showing no changes (31, 263) or 

reductions in CSE (261) immediately after a dynamic heavy-load RT with a 

training protocol compatible with the ones recommended by RT guidelines to 
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increase maximal voluntary force (442).  It is unlikely that the training protocols 

used in those studies did not lead to increases in maximal voluntary force if 

repeated in time despite the acute decreases in CSE. Also, there are studies 

showing that the acute corticospinal response to unilateral RT could be enhanced 

by pacing the movement with a metronome auditory signal (76). However, 

chronic studies found that metronome-paced RT does not result in enhanced 

maximal voluntary force increases in the trained or the untrained limb (44, 336). 

Furthermore, in the second study of the present thesis we found a lack of 

modulation of the untrained hemisphere CSE or intracortical circuits after a single 

session of isometric RT, while several studies have shown that chronic unilateral 

isometric RT lead to long-term functional (325, 332, 333) and neural adaptations 

(325) in the untrained limb. Finally, in the third study of this thesis we found no 

changes in CSE of the RF and a decrease in the the CSE of the VL even after four 

weeks of high-load RT (436). This suggest that the acute increases in CSE that may 

be present after a single session of RT, as seen in the BB in the first and third 

study of this thesis (420, 443), do not necessarily lead to chronic increases in CSE 

accompanying voluntary force improvements. However, differences in the 

muscles tested and the training protocols used between the acute and the chronic 

studies of this thesis may have influenced the results (upper vs. lower limb). 

Indeed a recent study found that RT of the lower limbs do not increase 

corticospinal excitability after a single bout or after short-term RT (433), in 

contrast with several findings of acute increases in CSE after a single bout of RT in 

upper limb muscles (75-77, 257, 258, 420, 443). So, overall these results suggest an 

independence of long-term functional adaptations from the acute changes in CSE, 

which is not surprising given the lack of correlation even between chronic 

changes in CSE and maximal force adaptations in the trained or the untrained 

limb. Therefore other neural adaptations may be the mechanisms underlying 

voluntary force improvements other than just an increase in CSE. 

At the chronic level, the results of the fourth study of the present thesis 

show that increases in maximal force in the untrained and trained leg occur only 

after high-load RT and are not affected by the magnitude of fatigue during 

training. Therefore, the results suggest that high levels of fatigue (muscle failure) 

in the trained side can be avoided during unilateral training, reducing exercise 

perceived effort and discomfort (444), muscle damage (430), and delayed day-to-



182 DAVID COLOMER POVEDA 

day recovery in the trained limb (430), with no detrimental effects on functional 

adaptations in the untrained limb. 
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X – CONCLUSIONS  

STUDY 1 

- The electromyographic responses and twitch forces evoked by transcranial 

magnetic stimulation (i.e.: MEPs) but not corticospinal tract stimulation (i.e.: 

CMEPs) of the biceps brachii increase in a load-dependent manner after an acute 

bout of resistance training. 

- The selective influence of training load only on trasncranial magnetic 

stimulation responses suggest that the load-dependent effect is due to changes 

upstream of the α-motoneuron level and the motoneuronal-corticospinal synapse. 

STUDY 2 

- Although with high heterogeneity between studies, chronic unilateral 

resistance training leads to increased corticospinal excitability, reduced short-

interval intracortical inhibition and silent period in the untrained M1, and 

reduced interhemispheric inhibition from the trained to the untrained 

hemisphere. 

- Acute responses in the untrained hemisphere after unilateral resistance 

training are inconsistent 

- Unilateral dynamic resistance training including eccentric contractions 

may enhance untrained hemisphere chronic adaptations due to a greater 

concurrent activation of the untrained hemisphere. 

- Externally pacing the movement during unilateral resistance training 

enhances acute responses and chronic adaptations in the untrained hemisphere 

compared to self-paced movements. 

- Evidence about the effects of training load and fatigue during resistance 

training on the untrained hemisphere acute responses and adaptations is scarce 
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STUDY 3 

- The acute increases in corticospinal excitability in the trained limb 

occurred only after high-load isometric unilateral resistance training. 

- Acute increases in corticospinal excitability in the trained limb were not 

related to changes in intracortical circuits and may be related to increases in 

corticospinal neurons excitability. 

- The acute increases in corticospinal excitability after a session of unilateral 

isometric resistance training are limb-specific, as no change occurred in the 

untrained limb. 

STUDY 4 

- High-load resistance training but not higher levels of fatigue enhance 

neuromuscular adaptations in the trained and the untrained leg extensors. 

- Maximal voluntary force improvements were not related to changes in 

corticospinal excitability. 
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XI – LIMITATIONS 

STUDY 1 

- The lack of a measurement of the MVC after each intervention prevents us 

from discarding the presence of fatigue and rule out its effect on the outcome 

measures. 

- MEPs and CMEPs size were not matched therefore direct comparisons are 

not possible. However, the different time course of changes in MEPs and CMEPs 

allow to suggest that the load-dependent increase in MEPs was due to 

supraspinal mechanisms. However, future studies should match the size of MEPs 

and CMEPs to allow a more accurate determination of the site of neural changes 

after acute RT.  

- The higher baseline size of the CMEPs could have reduced the potential 

for change after acute RT although it seems not likely based on previous studies 

in which CMEPs of larger baseline size increased to a greater extent than in the 

present study. 

STUDY 2 

- The differing TMS methodology (situation of measurement and 

stimulation parameters) used to study acute and chronic adaptations in the 

untrained hemisphere between studies could have contributed to the 

inconsistencies in the results, limiting the conclusions about the effects of training 

variables on the untrained hemisphere acute changes and adaptations. 

- Other RT variables different from the discussed in the present review (e.g.: 

training volume, training frequency, muscles trained…) could also affect 

untrained hemisphere adaptations. 
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STUDY 3 

- The stimulation intensity during paired-pulse protocols was not adjusted 

during POST measurements to match the pulse test MEP size to the size before 

training, which could have limited the changes in SICI or ICF. 

- The stimulation intensity during contractions at 25% could have led to a 

MEP size close to its maximum size in BB, limiting the scope for change in this 

situation. 

- The slowly ramped isometric contractions used results in relatively short 

periods of contraction at intensities above 50% of MVC, which could have limited 

the concurrent activation of the untrained hemisphere, reducing the potential for 

modulation of the untrained corticospinal tract.  

STUDY 4 

- The high training frequency (4d/wk.) choose to favour adaptations in the 

untrained leg extensors combined with training to concentric muscular failure 

could have had a cumulative effect leading to greater levels of muscle damage. 

This could have led to a decrease in the force-generating capacity of the trained 

leg that may have obscured neuromuscular adaptations.   
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XII – PRACTICAL APPLICATIONS 

The CE phenomenon as a result of unilateral RT has no relevance for a 

healthy person who could train both limbs with the main goal of increasing 

maximal voluntary force symmetrically. However, people with unilateral 

dysfunction due to stroke or orthopaedic injuries could benefit from unilateral RT 

as an adjuvant to standard rehabilitation programs (79, 81, 318, 319, 338, 410, 445, 

446). Therefore, it is relevant to determine which modifications in training 

variables are required for the adaptations in the untrained limb to occur and 

which modifications, if any, could maximize those adaptations. 

The experimental data from the present thesis show that short-training 

periods with very low loads (25% of 1RM) do not lead to a CE effect and therefore 

high-loads are required to increase the force of the untrained leg extensors after 

four weeks of unilateral RT (436). From a practical point of view, the requirement 

of high-loads could limit the use of some exercises or materials during training. 

For example, rehabilitation programs usually include home-based exercise 

programs including exercises with portable materials such as elastic bands due to 

equipment limitations (341). By using this kind of material it could be difficult to 

obtain the required load for some exercises like leg extensions, which could be 

useful for unilateral leg bone’s fractures or anterior cruciate ligament injuries, for 

example (319, 447). Therefore, the means and the exercise prescription should 

allow an appropriate loading of the trained muscles in order to obtain the 

potential benefits of unilateral RT in the untrained homologous muscles. 

We initially hypothesized that one way of increasing the concurrent 

activation of the untrained hemisphere, which potentially represents the training 

stimulus that leads to the CE of voluntary force, is to increase the fatigue during 

the set, therefore reducing the requirements of high loads. However, our data 

shows that low-loads does not lead to a CE effect even when performed until 

concentric muscular failure. Even when performed with high-loads, no further 

benefits are obtained from training to failure when compared with a training 

protocol with equal volume in which sets are stopped away from failure (~50% of 
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total possible repetitions with a 75% of 1RM) (436). High levels of fatigue 

(reaching failure) during RT are associated with greater levels of muscle damage 

and delayed onset of muscle soreness (430), greater levels of perceived effort and 

discomfort during training (444, 448), and delayed day-to-day recovery (430). 

Those greater levels of discomfort during training and increased pain post-

exercise, affecting delayed neuromuscular performance in the trained limb (i.e. 

non-injured or less affected limb), could be less tolerable, affecting the adherence 

of patients to rehabilitation programs (449). Therefore, training to concentric 

muscle failure during unilateral RT aiming to improve the maximal voluntary 

force of the untrained limb could be avoided in favour of less demanding 

programs in which sets are stopped away from failure, which could be especially 

relevant in those patients with already high self-reported fatigue (116, 117). 

Additionally, the systematic review found that dynamic contractions, 

especially eccentric contractions, along with externally pacing the movement with 

auditory feedback, can enhance the adaptations in the untrained hemisphere in 

the form of increased CSE and decreased SICI and IHI (111). Notwithstanding the 

relationship of those changes with CE of voluntary muscle force is not clear (63). 

Eccentric contractions lead to a greater CE than concentric or isometric 

contractions (108, 109). Therefore, rehabilitation training programs using 

unilateral RT to obtain benefits in the untrained limb should preferentially 

include dynamic contractions incorporating eccentric contractions. However, 

despite externally-pacing the movement could enhance neural adaptations in the 

untrained hemisphere (44, 76, 336), it does not increase the magnitude of the CE 

effect compared to self-paced RT programs (336), casting doubts about the need 

to include externally-paced movements during rehabilitation programs. 

However, externally pacing the movement could help to emphasize the load 

control through the eccentric portion of the movement during not supervised 

training (i.e. home-based training programs) which is in fact more relevant for CE 

than pacing per-se. 

By last, regarding the data of the studies looking at the effects of just one 

session of RT, our results show that the training load affect the acute increases in 

CSE in the trained side but not the untrained side, adding to the inconsistencies 

found in the systematic review regarding the effects of an acute session of 

unilateral RT on the untrained hemisphere (111, 420, 431). Therefore, our results 
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suggest that the corticospinal acute changes that have been suggested to trigger 

the neural adaptations in the untrained hemisphere leading to CE of voluntary 

force are not detectable after just one training session (431). Thus, results of acute 

studies should be interpreted with caution when trying to predict the effect of the 

manipulation of one training variable on the long-term functional and neural 

adaptations in the untrained sides. 
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XIII – FUTURE LINES OF INVESTIGATION 

The results of the present thesis are only applicable to healthy subjects and 

could not be extrapolated to patients. However, the CE phenomenon derived 

from unilateral RT is a model thought to be applied with patients unable to train 

bilaterally such as strokes or orthopaedic unilateral injuries. Those pathologies are 

associated with reductions in the excitability state of the brain controlling the 

affected limb (82-87). Therefore, modifications in training variables affecting 

untrained hemisphere activation could have different effects on CE in patients. 

For example, despite fatigue during the set does not further benefit CE in healthy 

adults (436), in which the excitability state of both cortices is normal, it could 

benefit subjects in which basal M1 excitability is inhibited, as occur in orthopaedic 

injuries (82-85). However, fatiguing RT may not be the best approach in 

neurologic patients with already high self-reported fatigue. Therefore, future 

research should focus on clinical trials aiming to determine which RT protocol 

might work better in different patients based on research on healthy subjects, 

such as the presented in this thesis and previous research. 

Furthermore, in addition to clinical trials aiming to determine how CE 

could be optimized, there is a need to further determine who might benefit from 

CE. Clinical trials in stroke patients have found promising results regarding the 

application of unilateral RT as a tool to improve force in the more-affected limb 

(81, 88, 338). However, results regarding the utility of CE as an adjuvant to 

standard rehabilitation for orthopaedic injuries are contradictory (319, 445, 447, 

450). Therefore, more clinical trials with patients are needed before stating the 

usefulness of unilateral RT to restore the force of the untrained more-affected 

limb. 

In addition, even when the training protocol is optimized to increase CE, 

interlimb transfer of voluntary muscle force may be of small clinical relevance, 

still more in situations in which the excitability of the untrained hemisphere is 

impaired, as may occur in patients. Therefore, previous studies have tried to 

increase CE through increased sensory input to the untrained hemisphere, such as 
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mirror-training, whole body vibration or somatosensory electrical stimulation (89-

91, 451, 452). However, the usefulness of these techniques to increase CE of 

voluntary muscle force has only been proved in healthy subjects and, when used 

in patients, it has been case reports (n = 1) (88) or focused more on skill training 

(453). The same occurs with techniques that increase the excitability of the M1, 

such as anodal transcranial direct current stimulation. This technique could 

enhance CE of voluntary muscle force in healthy adults by increasing the 

activation of the untrained hemisphere during unilateral contractions (92-94, 454). 

However, its utility has not been proved in patients. Therefore, future studies 

should prove in patients the utility of those strategies that increase CE in healthy 

subjects. In addition, although muscle force is relevant for many activities of daily 

living, motor skill should also be a target for CE. Therefore future CE research in 

patients should focus on how to combine RT and motor skill training to maximize 

the transfer of force and motor skill to the affected limb that allow a better 

functional recovery. 

By last, CE of voluntary force seems to be related to adaptations in the 

untrained hemisphere induced by the simultaneous but lower activation of this 

hemisphere during forceful unilateral contractions (18, 64, 66-69). In some 

subjects, and under some circumstances like high-intensity contractions or long 

and fatiguing contractions, this concurrent activation of the untrained hemisphere 

leads to the inadvertent activation of the homologous resting muscles, a 

phenomenon called associated activity (208). Although participants are usually 

asked to actively relax the untrained limb, suppressing this associated activity 

(325), increases in maximal voluntary force in the untrained homologous muscles 

may be related or enhanced by this associated activity. It is thought that this 

associated activity could arise from the failure of a network of cortical areas that 

are involved in restricting the motor output to the contralateral muscles such as 

the supplementary motor area, dorsal premotor cortex, the anterior cingulate 

cortex or the precuneus (214-216, 455). In fact, when the dorsal premotor cortex is 

disturbed by repetitive TMS there is an increase in ipsilateral M1 excitability and 

associated activity in the resting homologous muscle during unilateral 

contractions of the contralateral muscle (214, 215). Therefore, future studies 

should focus on determining if temporal disruption of these key cortical areas 
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before unilateral RT could enhance the associated activity in the untrained 

muscles and therefore CE of voluntary muscle force. 
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XIV – MENCIÓN INTERNACIONAL 

Con el objetivo de cumplir con los criterios especificados en el Real Decreto 

99/2011 para la obtención de la Mención Internacional en el Título de Doctor, se 

presentan las conclusiones del presente compendio de estudios en un idioma 

distinto al utilizado en la restante tesis. 

 

ESTUDIO 1 

- Las respuestas del bíceps braquial a la estimulación magnética 

transcraneal, pero no a la estimulación eléctrica del tracto corticoespinal, 

aumentaron tras un entrenamiento de fuerza en función de la intensidad de 

entrenamiento. 

- La influencia selectiva de la intensidad de entrenamiento únicamente 

sobre las respuestas a la estimulación magnética transcraneal, sugiere que los 

mecanismos que provocan el aumento de la respuesta se sitúan por encima de las 

motoneuronas-α y de la sinapsis corticoespinal-motoneuronal. 

ESTUDIO 2 

- Aunque con una gran heterogeneidad entre estudios, el entrenamiento de 

fuerza unilateral provoca aumentos en la excitabilidad corticoespinal, 

disminuciones en la inhibición intracortical de corta latencia y el periodo de 

silencio en la corteza motora primaria no entrenada, y en la inhibición 

interhemisférica del hemisferio entrenado al no entrenado. 

- Las respuestas agudas del hemisferio no entrenado tras una sesión de 

entrenamiento de fuerza son inconsistentes. 

- El entrenamiento de fuerza dinámico incluyendo contracciones excéntricas 

podría aumentar las adaptaciones crónicas en el hemisferio no entrenado, 

probablemente debido a una mayor activación concurrente del mismo. 
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- Controlar el tempo de las contracciones de forma externa, con un 

metrónomo que emita señales auditivas, aumenta las respuestas agudas y  las 

adaptaciones crónicas del hemisferio no entrenado en comparación a un tempo 

autorregulado. 

- La evidencia sobre el efecto de la intensidad de entrenamiento de fuerza y 

la fatiga durante la serie sobre las adaptaciones en el hemisferio no entrenado es 

escasa.  

ESTUDIO 3 

- Los aumentos agudos en la excitabilidad corticospinal del miembro 

entrenado ocurren únicamente tras un entrenamiento de fuerza de alta 

intensidad. 

- Los aumentos en la excitabilidad corticospinal del miembro entrenado no 

están vinculados a cambios en los circuitos intrcorticales y podrían deberse a 

aumentos en la excitabilidad de las neuronas corticoespinales. 

- Los aumentos en la excitabilidad corticoespinal tras una sesión de 

entrenaiento de fuerza unilateral son específicos del miembro entrenado. 

ESTUDIO 4 

- El entrenamiento de fuerza de alta intensidad, pero no así niveles de fatiga 

mayores, aumentan las adaptaciones neuromusculares en los extensores de 

rodilla entrenados y no entrenados. 

- Los aumentos de fuerza voluntaria en ambas piernas no están vinculados a 

aumentos en la excitabilidad corticoespinal. 
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ANNEX 1: Supporting information 1. Trained BB raw values (PRE and 

POST) and RM-ANOVA of MEP5% (%Mmax), MEP25% (%Mmax), SP (ms), SICI 

(%TP), ICF (%TP) and Mmax (mV) before and after every session. 

 

Outcome PRE POST 
Main effect 

TIME 

Main effect 

INTENSITY 

Interaction 

TIME x 

INTENSITY 

rmsEMG 

(%rmsEMGmax) 
  

F (1, 14) = 0.86;  

 P = 0.37; ηp
2 = 

0.06 

F (2, 28) = 0.54;  

P = 0.59; ηp
2 = 

0.04 

F (2, 28) = 2.18; 

 P = 0.13; ηp
2 = 

0.14 

CON 2.88 ± 1.58 2.69 ± 1.43 

25 2.79 ± 0.90 2.68 ± 0.87 

75 3.00 ± 0.98 3.07 ± 1.04 

MEP5% (%Mmax) 
F (1, 14) = 2.62;  

 P = 0.13; ηp
2 = 

0.16 

F (2, 28) = 1.67;  

P = 0.21; ηp
2 = 

0.11 

F (2, 28) = 5.06; 

 P = 0.01; ηp
2 = 

0.26 

CON 7.06 ± 5.98 7.37 ± 8.70 

25 5.95 ± 3.13 6.23 ± 3.83 

75 7.05 ± 4.77 10.34 ± 9.86 

MEP25% 

(%Mmax) 

  

F (1, 14) = 0.44;  

P = 0.52; ηp
2 = 

0.03 

F (2, 28) = 1.14;  

P = 0.33; ηp
2 = 

0.07 

F (2, 28) = 0.90; 

 P = 0.42; ηp
2 = 

0.06 

CON 49.89 ± 25.53 52.36 ± 24.64 

25 47.48 ± 22.80 46.12 ± 20.85 

75 52.17 ± 18.84 53.00 ± 20.33 

SP (ms)   
F (1, 14) = 2.61;  

P = 0.12; ηp
2 = 

0.16 

F (2, 28) = 2.58;  

P = 0.09; ηp
2 = 

0.16 

F (2, 28) = 0.97;  

P = 0.39; ηp
2 = 

0.06 

CON 81 ± 33 84 ± 34 

25 69 ± 20 69 ± 19 

75 77 ± 21 78 ± 21 

SICI (%TP)   
F (1, 13) = 1.63;  

P = 0.22; ηp
2 = 

0.11 

F (2, 26) = 1.46;  

P = 0.25; ηp
2 = 

0.10 

F (2, 26) = 2.66;  

P = 0.09; ηp
2 = 

0.17 

CON 79.50 ± 30.16 80.84 ± 27.80 

25 80.27 ± 19.57 79.72 ± 21.91 

75 76.78 ± 31.43 69.11 ± 29.94 

ICF (%TP)   

F (1, 14) = 0.16;  

P = 0.69; ηp
2 = 

0.01 

F (2, 28) = 0.46;  

P = 0.64; ηp
2 = 

0.03 

F (2, 28) = 0.21;  

P = 0.81; ηp
2 = 

0.01 

CON 110.04 ± 

41.62 

105.65 ± 

35.27 

25 113.33 ± 

26.47 

113.70 ± 

24.94 

75 113.66 ± 

33.55 

112.64 ± 

20.82 

Mmax (mV)   
F (1, 14) = 1.26;  

P = 0.28; ηp
2 = 

0.08 

F (2, 28) = 1.36;  

P = 0.27; ηp
2 = 

0.09 

F (2, 28) = 1.60;  

P = 0.22; ηp
2 = 

0.10 

CON 6.98 ± 1.63 7.10 ± 1.61 

25 7.31 ± 1.52 7.50 ± 1.52 

75 7.32 ± 1.83 7.27 ± 1.60 
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ANNEX 2: Supporting information 2. Untrained BB raw values (PRE and 

POST) and RM-ANOVA of MEP5% (%Mmax), MEP25% (%Mmax), SP (ms), SICI (%TP), 

ICF (%TP) and Mmax (mV). 

Outcome PRE POST 
Main effect 

TIME 

Main effect 

INTENSITY 

Interaction 

TIME x 

INTENSITY 

rmsEMG 

(%rmsEMGmax) 
  

F (1, 14) = 0.58;  

 P = 0.46; ηp
2 = 

0.04 

F (2, 28) = 0.99;  

P = 0.39; ηp
2 = 

0.07 

F (2, 28) = 1.35; 

 P = 0.28; ηp
2 = 

0.09 

CON 4.62 ± 2.11 5.02 ± 2.09 

25 4.81 ± 1.58 4.73 ± 1.79 

75 4.27 ± 2.13 4.18 ± 1.81 

MEP5% (%Mmax) 
F (1, 14) = 0.61;  

 P = 0.45; ηp
2 = 

0.04 

F (2, 28) = 0.40;  

P = 0.67; ηp
2 = 

0.03 

F (2, 28) = 0.45; 

 P = 0.64; ηp
2 = 

0.03 

CON 7.31 ± 4.57 7.47 ± 4.44 

25 7.02 ± 4.27 6.38 ± 2.93 

75 7.12 ± 3.85 7.11 ± 3.65 

MEP25% 

(%Mmax) 

  

F (1, 14) = 0.49;  

P = 0.49; ηp
2 = 

0.03 

F (1.43, 20.02) 

= 0.09;  

P = 0.85; ηp
2 = 

0.01 

F (2, 28) = 0.99; 

 P = 0.38; ηp
2 = 

0.07 

CON 53.49 ± 26.30 56.53 ± 27.10 

25 53.89 ± 27.30 53.25 ± 27.85 

75 55.55 ± 31.37 55.18 ± 29.25 

SP (ms)   
F (1, 14) = 0.77;  

P = 0.39; ηp
2 = 

0.05 

F (2, 28) = 0.23;  

P = 0.79; ηp
2 = 

0.02 

F (2, 28) = 0.02;  

P = 0.97; ηp
2 = 

0.01 

CON 67 ± 39 66 ± 32 

25 64 ± 27 63 ± 25 

75 64 ± 17 62 ± 20 

SICI (%TP)   
F (1, 13) = 1.69;  

P = 0.27; ηp
2 = 

0.11 

F (2, 26) = 1.69;  

P = 0.20; ηp
2 = 

0.11 

F (2, 26) = 0.18;  

P = 0.84; ηp
2 = 

0.01 

CON 75.27 ± 23.28 76.72 ± 29.54 

25 78.87 ± 28.03 80.75 ± 23.33 

75 75.96 ± 27.40 81.27 ± 23.08 

ICF (%TP)   

F (1, 14) = 1.07;  

P = 0.32; ηp
2 = 

0.07 

F (2, 28) = 0.79;  

P = 0.46; ηp
2 = 

0.05 

F (2, 28) = 0.74;  

P = 0.48; ηp
2 = 

0.05 

CON 116.42 ± 

49.12 

108.34 ± 

30.00 

25 108.29 ± 

28.66 

108.53 ± 

31.09 

75 116.31 ± 

24.24 

115.34 ± 

23.08 

Mmax (mV)   
F (1, 14) = 3.43  

P = 0.08; ηp
2 = 

0.20 

F (2, 28) = 0.01;  

P = 0.99; ηp
2 = 

0.01 

F (2, 28) = 0.06;  

P = 0.94; ηp
2 = 

0.01 

CON 7.12 ± 1.43 7.19 ± 1.42 

25 7.09 ± 1.17 7.18 ± 0.99 

75 7.11 ± 1.55 7.24 ± 1.33 
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ANNEX 3: Study 1. Reference: Colomer-Poveda D, Romero-Arenas S, 

Lundbye-Jensen J, Hortobagyi T, Marquez G. Contraction intensity-dependent 

variations in the responses to brain and corticospinal tract stimulation after a 

single session of resistance training in men. Journal of applied physiology 

(Bethesda, Md : 1985). 2019;127(4):1128-39. doi: 10.1152/japplphysiol.01106.2018 
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ANNEX 4: Study 2. Reference: Colomer-Poveda D, Romero-Arenas S, Keller 

M, Hortobagyi T, Marquez G. Effects of acute and chronic unilateral resistance 

training variables on ipsilateral motor cortical excitability and cross-education: A 

systematic review. Physical therapy in sport: official journal of the Association of 

Chartered Physiotherapists in Sports Medicine. 2019;40:143-52. doi: 

10.1016/j.ptsp.2019.09.006. 
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ANNEX 5: Study 3. Reference: Colomer-Poveda D, Hortobagyi T, Keller M, 

Romero-Arenas S, Marquez G. Training intensity-dependent increases in 

corticospinal but not intracortical excitability after acute strength training. 

Scandinavian journal of medicine & science in sports. 2020;30(4):652-61. doi: 

10.1111/sms.13608  
 



288 DAVID COLOMER POVEDA 

 



CHAPTER XVI: ANNEXES  289 



290 DAVID COLOMER POVEDA 



CHAPTER XVI: ANNEXES  291 



292 DAVID COLOMER POVEDA 



CHAPTER XVI: ANNEXES  293 



294 DAVID COLOMER POVEDA 



CHAPTER XVI: ANNEXES  295 



296 DAVID COLOMER POVEDA 



CHAPTER XVI: ANNEXES  297 



 

 


