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Abstract: Background: Unevaluated open-pollinated germplasm represents a promising source
of variability to face the problems of worldwide food production under a changing environment.
In carrots, this is particularly true for black carrot accessions, which are the most relevant among
Eastern carrot germplasm due to their high anthocyanin content and, concomitantly, antioxidant
capacity. Methods: In the present work, a comparative characterization was conducted for the
first time on 11 Eastern carrot landraces and Night Bird ‘F1’ as the reference cultivar, grown under
glasshouse conditions at temperatures up to 33 ◦C. Results: Some landraces showed their potential
for ulterior evaluation in terms of plant and taproot size, plant compactness, specific leaf area and
leaf area ratio, among other traits. The highest anthocyanin and flavonoid contents were found in the
reference cultivar, whereas remarkable differences in these variables were observed for the rest of
accessions, which in turn may correlate with very distinct coloration patterns. Premature bolting and
taproot shape abnormalities were also recorded. Mineral composition analysis showed the nutritional
potential of Eastern carrot leaves, which displayed higher concentration than taproot tissue for several
macro- and micronutrients. Moreover, several accessions had higher nutrient concentrations than the
reference cultivar, which also highlights their profitability. Conclusions: This work contributes to the
knowledge on Eastern black carrot germplasm by characterizing some of its main agricultural traits,
and opens up the prospect for complementary evaluation on high-yield accessions.

Keywords: anthocyanins; black carrot; bolting; flavonoids; glasshouse cultivation; landraces; leaf;
nutrient analysis; taproot

1. Introduction

Domesticated carrot (Daucus carota L. ssp. sativus) can be separated into two genetically
distinct groups: the Eastern (Asian) and Western (European and American) carrots. The
Eastern carrot (D. carota L. ssp. sativus var. atroburens), whose color ranges from yellow
to dark purple (black carrot), accumulates anthocyanins as major pigments, whereas
Western carrot varieties appear white to orange due to the accumulation of carotenoids [1,2].
Molecular approaches have located Central Asia as the origin for the carrot, with a rapid
domestication process that spread carrots into North Africa, Anatolia, Asia and later into
Europe by the 14th century [1,3].

Carrot production, mostly based on orange cultivars, has quadrupled during the
last 45 years, reaching over 40 million tonnes worldwide, which makes carrot one of the
10 most economically important vegetable crops and the main source of pro-vitamin A
worldwide [4]. The main increase in production has been recorded in Asia, which implies
that more carrot production is now cultivated in drier and warmer climates than in the
past [4]. Therefore, crop improvement should focus efforts in developing cultivars with
improved abiotic stress resistance. Commercial cultivars are, overall, more productive than
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landraces. However, landraces are becoming significant sources of genetic variability in
the seeking for genes for tolerance to abiotic and biotic stress factors [5].

The extraordinary antioxidant activity of black carrot, four times higher on average
than that of orange carrot [5], results from its very high anthocyanin concentration in the
taproot. Easter carrot germplasm displays a wide genetic diversity in terms of anthocyanin
content and distribution along different taproot tissues. In this sense, several authors have
analyzed anthocyanin pigments in over 30 carrot accessions (accs.) including lines from
genbanks, and open-pollinated and hybrid commercial cultivars, reporting a concentration
range of 0.5–250 mg/100 g FW [6–9]. In this sense, total monomeric anthocyanin concentra-
tion measured by the pH differential method has been frequently utilized, since it provides
a robust spectrophotometric method applicable to different anthocyanins [6,8,10]. The
interest of the food industry in natural colorants replacing synthetic dyes has increased
enormously over the last years, due to both rigorous legal restrictions and consumer con-
cerns [11,12]. Black carrot anthocyanins are an excellent source of natural colorants (labelled
E163 in Europe) due to their physiochemical properties (high pH, light, and heat stability),
but also for their potential health benefits such as strong dietary antioxidants [6,13]. In
addition to anthocyanins, black carrot taproot is a rich source of non-anthocyanin phenolic
compounds, such as flavonoids [14], which in turn correlates with the strong antioxidant
activity of the taproot extract. Moreover, the onset and accumulation kinetic of antho-
cyanins and non-anthocyanin phenolic compounds seems to resemble in black carrot
taproot, both type of compounds reaching their maximum levels at plant maturity [8]. As
non-enzymatic plant antioxidants, phenolic compounds function as scavengers of reactive
oxygen species (ROS), participating in the response to environmental stress conditions [15].
In this sense, the accumulation of phenolic compounds increases under a variety of both
abiotic and biotic stresses such as heat stress, pathogen attack and UV radiation, among
many others [16,17].

Carrot is an outcrossing insect-pollinated crop typically bred for open-pollinated
cultivar production until cytoplasmic male sterility was discovered in the 1940s. From
that moment on, cultivar development shifted to hybrids, which today represents the
majority of large-scale production [18]. Nowadays, Western carrots appear better adapted
for commercial production and processing. Eastern carrots often tend to flower early, but
may be better adapted to warmer (above 30 ◦C) and drier climates. In order to improve
carrot cultivation traits in the context of a changing environment, the gene pool from
open-pollinated Eastern carrot varieties should be incorporated into breeding programs.
In the present work, eleven Eastern carrot accs. Originated from India and Middle Eastern
countries, and a black carrot commercial cultivar were cultivated under a sub-optimal
temperature range (up to 33 ◦C) and characterized in terms of germination indices, plant
performance parameters, mineral nutrient contents and anthocyanin and flavonoid contents
of the taproot, measured spectrophotometrically. The results of this work may contribute
to expand knowledge on the genetic variation of cultivated carrot and opens up prospects
for further evaluation.

2. Materials and Methods
2.1. Plant Material and Germination Indices In Vitro

Seeds of eleven Eastern carrot accs. were obtained from the USDA National Germplasm
System and the Warwick Genetic Resources Unit (Table 1). In addition, seeds of the com-
mercial hybrid ‘Night Bird’ F1, provided by Plant World Seeds (Devon, U.K.), were used as
a control.
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Table 1. Accession number, source and geographical origin of the carrot accessions used.

Source Number Accession Origin Life Form Improvement
Status

USDA

2 179689 India Biennial Landrace
3 211024 Afghanistan n.d. Landrace
4 269486 Pakistan n.d. Landrace
5 279776 Egypt n.d. Landrace
6 279777 Egypt Annual/biennial Landrace
7 288242 Egypt n.d. Landrace

Warwick

8 006753 India n.d. Advanced cultivar
9 010156 India Annual Landrace
10 10225 India Annual/biennial Landrace
11 10217 Turkey n.d. Landrace
12 13879 n.d. n.d. Landrace

Accession n. 1 (not displayed on the list) corresponds to the commercial hybrid ‘Night Bird’ F1, cultivated as a
reference. n.d.: not described.

Twenty-five seeds of each acc. and the commercial cultivar were disinfected in 10%
bleach for 1 min, washed with abundant distilled water and placed in 15 cm diameter
plastic Petri dishes containing four layers of filter paper moistened with 6 mL water. Petri
dishes were then placed in an incubator chamber at 25 ◦C in the dark for 14 days. The
germination percentage, seedling vigour index (mean seedling length × germination
percentage/100) and speed of emergence (number of germinated seeds at the starting day
of germination/number of germinated seeds at the final day of measurements × 100) were
calculated at day 14, following the International Seed Testing Association guidelines [19].

2.2. Glasshouse Cultivation

The experiments were conducted from March to June 2019 over 12 weeks at the
glasshouse facilities of the University of Murcia (Espinardo, Region of Murcia, Spain). Two
independent repetitions of the experiment were performed with a 1-week interval. The
temperature was programmed to daily oscillate between 17 (night) and 33 ◦C (day) with a
mean daily temperature of 24.5, and relative humidity was maintained at 60%. Seeds were
sown in 27 cm-long cylindrical pots (18 cm in diameter) with 7 L of a mixture of perlite
(particle size 1–5 mm) and garden soil (1/1.5, v/v), allowing a proper carrot taproot growth
and providing an adequate balance of air and moisture content [20]. The substrate mix was
watered until reaching its maximum water holding capacity. Then, four sowing spots per
pot were distributed, and three seeds were introduced in each one at 2 cm depths.

The experimental design included 12 pots per acc. and experiment repetition, arranged
in three rows of four pots, each row being randomly distributed within the glasshouse. Pots
were put on 20 cm diameter plastic trays (Figure 1a). Ten days after sowing, two seedlings
per spot were removed, leaving one vigorous plant per place (Figure 1b). An automatic
drip irrigation system using one 4 L h−1 dripper per pot was programmed to provide water
or 1/2 Hoagland solution. Daily water supplied per pot throughout the experiment varied
from 100 mL (day 2 to day 15) to 350 mL (day 65 to harvest day). Concerning fertilization,
nutrient solution was applied on a weekly basis, from 350 mL (day 14 to day 28) to 500 mL
(day 70 to harvest day). At the day of fertilization and the subsequent day, water irrigation
was interrupted.



Agronomy 2021, 11, 2460 4 of 19

Figure 1. Experimental setup of carrot accessions at the glasshouse facilities of the University of Murcia.
(a): Overview of the setup at day 0. (b): Ten-day old seedlings after thinning of less vigorous specimens.

2.3. Harvest, Sample Collection, Growth Measurements and Processing

Twelve weeks after the initiation of the experiment, plants were manually removed from
the substrate and taproots washed in abundant tap water followed by immersion in distilled
water and air drying. Bolting plants were counted and discarded for further analysis.

The fresh weight (FW) and length of the taproot and top of each plant were registered.
Top length corresponded to the length of the longest leaf. Leaf number per plant was
recorded. Total leaf area per plant was determined using a LI-3100C area meter (LI-COR
Biosciences, Lincoln, NE, USA). For further experiments, biological replicates consisted
of: (1) leaf samples, composed of the pool of leaves and stems of the four plants from a
pot; and (2) taproot samples, composed of the corresponding four taproots. Then, each
combined sample (biological replicate) was processed in liquid nitrogen using a Waring®

two-speed commercial blender (VWR-Bie & Berntsen, Herlev, Denmark) and the resulting
powder stored at −80 ◦C.

2.4. Determination of Dry Matter and Nutrient Analysis

An aliquot of 5 g of the ground powder generated above for each taproot and leaf
sample was dried in an oven at 60 ◦C for 2 days. After the samples were dried to a
constant weight at 100 ◦C for 24 h, dry matter (DM) was calculated based on the mass
difference between the fresh and dry samples. Another aliquot of 1 g of the ground
powder was utilized to measure the different macronutrients and micronutrients, by
Inductively Coupled Plasma–Optical Emission Spectrometry (ICP–OES) using a ICAP
6000SERIES spectrometer (Ionomic Services of CEBAS-CSIC; Thermo Scientific, Madrid,
Spain) according to standardized protocols.

2.5. Determination of Total Monomeric Anthocyanin Content (TMC) and Total Flavonoid Content (TFC)

A common extraction for the determination of TMC and TFC was conducted. In brief,
5 g of the ground powder was homogenized in a 1.88% sulfuric acid solution (1/4, w/w,
for a final 1.5% sulfuric acid concentration in the homogenate) using a Waring® two-speed
commercial blender (VWR-Bie & Berntsen). Then, the homogenate was centrifuged for
20 min at 3900× g and the resulting supernatant was collected [8].

TMC measurement followed the pH differential method with minor modifications [8,10,21].
In brief, the supernatant was diluted in a 0.2 M KCl–HCl (pH 1) solution (1/1, v/v),
and the absorption was determined between 350 and 700 nm using a UV/Vis V-630 Bio
spectrophotometer (Jasco, Tokyo, Japan). Finally, the TMC was calculated as cyanidin
3-glucoside equivalents.

TFC determination was based on [22] with minor modifications: in brief, a reaction
mix of 200 µL supernatant, 800 µL 50% methanol, 60 µL sodium nitrite (0.5 M) and 60 µL
aluminum chloride (0.3 M). After 5 min of incubation, 400 µL sodium hydroxide solution
(1 M) was added and the content vigorously mixed. Subsequently, the absorbance at 506 nm
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was determined against a blank in which the supernatant was replaced by 50% methanol,
using a UV-visible spectrophotometer (Thermo Scientific Evolution™ 220, Waltham, MA,
USA). A calibration curve for rutin was calculated (from 75 to 750 mg L−1), and TFC was
calculated as µg of rutin equivalents (RE) per mL.

2.6. Statistical Analyses

Data from the two independent repetitions were grouped and statistical analysis was
carried out jointly, given the homogeneity of the variance ratios and the means tested by an
F test and a two sample t-test, respectively. Normality and homoscedasticity of variances
for all variables studied were checked by a Shapiro–Wilk and Bartlett tests, respectively.
Data related to plant length, weight, leaf area and flowering were taken on individual
specimens, which were considered as biological replicates (n = 16 to 67 for the different
accs.). The statistical analysis for DM, TMC and TFC determinations were conducted with
four biological replicates, each of them consisting of the pool of samples from one pot (four
plants). The accs. were compared using a one-way analysis of variance (ANOVA) followed
by a Tukey HSD post hoc test (p ≤ 0.05), using the StatGraphics Centurion XV software
(StatPoint Technologies, Warrenton, VA, USA).

Heatmaps were elaborated using the pheatmap package in R [23]. Neighbor joining
distance matrixes between accessions were automatically processed from mean values
to build the dendrograms and the heatmap representation. Graphs were drawn with
GraphPad Prism 9.0.0 for Windows (GraphPad Software, San Diego, CA, USA).

3. Results and Discussion

In the present study, 11 Eastern carrot accs. from different origins were cultivated and
evaluated under glasshouse conditions. The geographic origin covered an area between 10 and
40 degrees of latitude, from India to Turkey (Table 1). The commercial carrot cultivar ‘Night
Bird’ F1 was used as a reference. Characterization comprised seed germination indices and leaf
and taproot phenotypic traits of interest for ulterior breeding programs such as size, taproot
shape, bolting tendency, leaf number, leaf area and those related to taproot antioxidant capacity
and use as source of colorants (anthocyanin and flavonoid contents). Firstly, germination
indices were determined in in vitro conditions (Table 2). Germination percentage varied
61–96%; this is in the range of that observed for diverse carrot germplasm [24], in which,
overall, commercial hybrids displayed higher germination percentages than landraces and
wild accessions. Moreover, seedling vigor varied 4.40–11.32, whereas speed of emergence
varied between 1.52 and 3.45 (Table 2). In this sense, accs. 2, 3 and 5 showed values above
those recorded for the reference cultivar for the three indices measured (Table 2).

Table 2. Germination indices of the carrot accessions. Germination percentage (%), seedling vigor
index (mean seedling length × germination percentage/100) and speed of emergence (number of
germinated seeds at the starting day of germination/number of germinated seeds at the final day of
measurements × 100) were calculated at day 14 after planting.

Accession n. Germination
Percentage [%]

Seedling Vigour
Index Speed of Emergence

1 81 8.67 2.8
2 92 11.32 3.45
3 84 10.00 2.94
4 71 4.40 1.8
5 81 9.48 2.31
6 74 6.96 1.52
7 83 8.96 2.52
8 79 6.95 2.2
9 61 5.25 1.05
10 79 6.64 1.6
11 84 6.30 1.89
12 96 7.10 2.16
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Twelve-week old carrot plants showed a variable overall appearance in function of
top size (Figure 2a). On the other hand, overall, the taproot appearance consisted of the
typical long conical shape with a pointy end, the most frequent shape in both Eastern
and Western cultivars [25–27], the taproot shoulder of accs. 2 and 8 being clearly wider
than that of the other accs. (Figure 2b). Coloration pattern of periderm and cross taproot
sections was highly variable among accs. (Figure 2b,c). Purple coloration was observed
for the majority of accs. except for n. 2 and 9, ranging from a purple periderm and
non-purple xylem and phloem (for acc. 3, 4, 8 and 10) to a predominant coloration of
phloem (for acc. 5 and 7) and a solid purple coloration (for acc. 1 and 12). At the genetic
level, the pathway for anthocyanin biosynthesis showed a high overlap among carrot
varieties. However, different variants of anthocyanin-related genes result in tissue-specific
accumulations of anthocyanins [28], which in turn is manifested in very distinct coloration
patterns. Moreover, two MYB transcription factors, DcMYB6 and 7 have been proven to be
regulators of anthocyanin pigmentation in purple versus non purple carrot roots [29,30],
as well as regulators of anthocyanin glycosylation and acylation [30]. In addition, intra-
population genetic diversity of Eastern carrot accs. has been found to be higher than that
of the Western carrot, whereas higher allelic richness and variability of landraces has also
been observed with respect to F1 hybrids [31], which would explain the color variability
within specimens of a same acc. found in this study, especially for accs. 6 and 10. In turn,
this suggests that the diversity present in carrot landraces could potentially support carrot
breeding efforts in terms of coloration.

Deformed taproot shape and premature bolting are important constrains for carrot
cultivation, marketability and carrot breeding [18]. In this work, concerning taproot shape
abnormalities, excluding the commercial cultivar as it did not display any forking, the
proportion of forked taproots ranged from 3 to 18%, the accs. 7, 9 and 10 showing the
highest values (Figure 3a). Again, higher genetic diversity within Eastern carrot accs.
may explain the variability on taproot forking found in this study [31], which can rely on
differences on optimal plant spacing and nutrient requirements among accs. [32]. As a cool-
season vegetable, carrot is normally classified as a biennial species, requiring vernalisation
for flowering induction. However, cultivars and landraces adapted to warmer climates—as
is the case of the accs. of this study—may need less vernalisation time, and therefore may
behave as early flowering or annual [18]. In this work, all accs. except n. 1 (reference
cultivar), 3 and 12 showed a certain percentage of bolting specimens (Figure 3b). Accs.
4, 5 and 7 were found to bolt severely, having 80, 47 and 68%, respectively, of bolting
plants (Figure 3b). Since premature bolting is an undesirable trait, bolting plants were
discarded and not considered for further measurements and analysis. This lead to the
reduction of available specimens for accs. 4 and 7 to 16 and 24, respectively, whereas for
the rest of accs. the number of plants used for further measurements ranged from 40 to 67.
Complementarily, a heatmap dendogram was elaborated to visualize the preponderance
of both traits among the accessions (Figure 3c,d); herein, based on similarities, two main
groups were distinguished: group 1 for low and group 2 for high forking (Figure 3c) and
bolting (Figure 3d).
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Figure 2. Appearance of whole plant (a), taproot (b) and transversal taproot sections (c) of 90-day-old
carrots of twelve accessions. Accession identification (1–12) is show in Table 1.
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Figure 3. Forked taproots and bolted plants at harvest for the 12 carrot accessions evaluated.
(a,b): Percentages presented as the mean ± standard error of the two experiment repetitions (n = 2).
(c,d): Heatmap scoring values. Colored bars indicate the preponderance of both factors in the studied
accessions, from low (yellow) to high preponderance (dark orange, red). Accessions were grouped
into two groups for both traits. Accession identification (1–12) is shown in Table 1.

Taproot weight is a key factor determining productivity [18]. In the present study, the
weight of the reference cultivar (21.9 g) was considerably lower than that of black carrot
grown in field experiments [6,8], although similar to that obtained in glasshouse trials
under comparable environmental and fertirrigation conditions [9] (Figure 4a). Moreover,
temperatures registered during the growing period reached 33 ◦C and averaged 24.4 ◦C,
whereas ca. 15% of the time, temperature was above 30 ◦C. These are beyond the suitable
temperatures for conventional carrot growth [33,34], which may partially explain the
limited taproot growth observed. Compared with the reference cultivar, taproot weight
was statistically higher in two accs. (n. 2 and 9) and lower in a single acc. (n. 11), whereas
no statistical differences were observed in the rest of accs. (Figure 4a). Remarkably, the
weight of acc. 2 was over 160% superior than that of the reference (Figure 4a). Total leaf
weight was, to some extent, correlated with taproot weight, although in this case only acc.
2 displayed higher weight values (38%) than the reference cultivar (Figure 4b). Taproot dry
matter varied from 9.3% (acc. 6) to 12.6% (reference cultivar) (Figure 4c), which was in the
range of the values observed in black carrot [8] and commercial orange carrot cultivars [35].
On the other hand, leaf dry matter levels were higher than those of taproot dry matter,
ranging from 10.3% (acc. 6) to 14.5% (acc. 2) (Figure 4d). The root/leaf ratio, measured as
the ratio of the dry weight of the root to the one of the top, represents a key plant-adaptive
mechanism that reflects biomass allocation [36]. In this study, taproot/leaf ratio varied
notably among samples, accs. 2, 3 and 9 showing values higher than that of the reference
cultivar. The values registered are in the range of those observed by others authors [37]
for Western carrots for the same growth period (12 weeks). The difference among accs.
may be tightly linked to the genetic background, although it has also been found that
plants accumulate more root biomass under more stressful, low-nutrient and poor climatic
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conditions [36]. Concerning plant height, acc. 6 displayed the highest mean value (85.6 cm),
followed by the reference cultivar (75.3) and accs. 8 (75.8 cm) and 10 (72.5), whereas the rest
of accs. displayed values significantly lower than that of the reference cultivar (Figure 4f).

Figure 4. Taproot weight (a), total leaf weight (b), taproot dry matter (c), leaf dry matter (d), taproot
to leaf ratio (e), and plant height (f), at harvest for the 12 accessions evaluated. Data are presented
as the mean ± standard error, n = 20 to 67. Different letters among the columns indicate statistical
significance according to Tukey’s test (p ≤ 0.05). Accession identification (1–12) is shown in Table 1.

Leaf number and area, and leaf area-related indices have been reported as some of the
traits best indicating potential crop yield [38]. The count of leaf number (6.6 to 11.0 leaves
per plant) and total leaf area (154 to 524 cm2 per plant) provided values in the range of
that found in field-grown carrot [39,40] (Figure 5a,b). Specific leaf area (SLA) is defined
as the ratio between total leaf area and total leaf dry weight—in other words, the amount
of leaf area needed for each unit of biomass produced [41,42]. Carrot SLA varied from
94 cm2 g−1 (acc. 6) to 66 cm2 g−1 (acc. 2) and 68 cm2 g−1 (reference cultivar) (Figure 5c).
This may indicate a higher efficiency of accs. 1 and 2 in producing biomass. On the
other hand, leaf area ratio (LAR), defined as the ratio of leaf area and total plant weigh
showed a great variation (Figure 5d); the accs. with the lowest levels were n. 2, 9, 3 and
1, providing values of 34, 36, 41 and 43 cm2 g−1, respectively. These results highlight
accs. 1 and 2 as the most efficient in producing leaf biomass, while accs. 2 and 9 would
produce plant biomass most efficiently (Figure 5d). The variation among accs. of values
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for plant compactness (Figure 5e), defined as the ratio between the total leaf area and the
plant height, resembles the values for total leaf area. Moreover, overall, values for plant
compactness, SLA, total leaf area and total leaf weight showed some correlation, which
indicates that weight and length differences can be associated with leaf area as the main
variable determining productivity [38]. In this sense, a large leaf area may provide better
utilization of diminishing growth resources [37].

Figure 5. Leaf number per plant (a), total leaf area (b), specific leaf area (c), leaf area ratio (d) and
plant compactness (e) at harvest for the 12 accessions evaluated. Data are presented as the mean
± standard error, n = 16 to 67. Different letters among the columns indicate statistical significance
according to Tukey’s test (p ≤ 0.05). Accession identification (1–12) is shown in Table 1.

Anthocyanins and flavonoids are important components of the secondary metabolism
of Eastern carrot accs., found to be highly correlated with antioxidant capacity [43]. In this
sense, high ROS-scavenging capacity is a common trait of different flavonoids, attributed to
the high reactivity of their hydroxyl groups to ROS [44]. Eastern carrot germplasm displays
a wide genetic diversity in terms of anthocyanin content and distribution along different
taproot tissues [6–9]. Anthocyanin content is directly associated with the color intensity
and the extent of taproot tissue covered with purple; in this sense, in the majority of purple
genetic accs., anthocyanins are mainly located in the outer root epidermal layer [45]. In
this work, from the 12 accs. evaluated, the reference cultivar showed the highest TMC



Agronomy 2021, 11, 2460 11 of 19

(2482 µg g−1 FW), at values comparable to those reported for commercial varieties [6–9],
followed at some distance by acc. 12. (807 µg g−1 FW) and then by n. 4, 7, 5, 11, 6, 8, 10
and 3, whereas levels were undetected for accs. 2 and 9 (Figure 6a). This is associated
with the coloration observed in the taproot sections (Figure 2). Concerning TFC, a certain
correlation with TMC was observed (Figure 6b). However, from the difference between
TFC and TMC, it was estimated a higher proportion of non-anthocyanin flavonoids for the
accs. displaying lower TMC. Black carrot genotypes display a high proportion of mono-
acylated anthocyanins, which confers physio-chemical stability to food color products
over their shelf-life [28]. Nevertheless, a signification variation on the ratio of acylated to
non-acylated anthocyanins can be found in the carrot germplasm, which is also modulated
in function of the environmental conditions [28]. Therefore, further characterization on the
accs. of interest in field experiments will be needed.

Figure 6. Total monomeric anthocyanin content [TMC, (a)] and total flavonoid content [TFC, (b)] at
harvest for taproots of the 12 accessions evaluated. Data are presented as the mean ± standard error,
n = 6. Different letters among the columns indicate statistical significance according to Tukey’s test
(p ≤ 0.05). Accession identification (1–12) is shown in Table 1. FW: fresh weight.

In order to provide a clearer overview of the performance of each acc., a stars and
rays graph was elaborated using the main agronomical traits and indices measured so far
(Figure 7). In summary, the further the intersection from the polygon center between each
axis (trait) and the polygon perimeter, the higher the trait magnitude, which helps visualize
the differences among accs. For example, acc. 2 is evidenced as the one fulfilling most
of the agronomic requirements, except for TMC and TFC, of which magnitudes are low.
On the contrary, the reference cultivar displays high magnitudes for TMC and TFC and
intermediate/high values for the rest of traits. On the other hand, accs. such as 4–7 show
small magnitudes for most of the traits (Figure 7b), which point the minor potential of
these accs. for breeding purposes.

Mineral composition of carrot taproot has been evaluated for Eastern cultivars [46,47],
whereas for purple cultivars the literature is scarce [48]. Among the many minerals
of the taproot, relatively high amounts of K, Mg, Ca, Na and Fe have been reported,
with potassium as the most abundant one [46,47]. On the other hand, the content of Fe,
Na and Mg was highly dependent on the carrot variety [47]. In this study, among the
macronutrients analyzed, for all the varieties studied K was the most abundant element
in the taproot followed by Na and Ca (Table 3). This is in agreement with previous
literature [46,47]. Carrot leaves are rich in several minerals such as Na, P, K, Ca, Mg, Mn,
Zn and Fe [49]. Herein, the nutrient composition of black carrot leaves was reported for the
first time; interestingly, K, Ca and Mg were much abundant in leaf than in taproot tissue
(Table 3), highlighting black carrot leaves as a potential nutrient source. Na was the element
of which levels varied the most among accs. for both taproot and leaf tissues; this would
be in line with previous studies, where Na content in carrot taproot was highly dependent
on the fertilization and growing practices [50,51]. Micronutrients are essential to the cell
function and as such are extensively involved in primary and secondary metabolisms.
Alterations in optimal micronutrients concentrations may, therefore, directly or indirectly
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impair plant metabolism and increase susceptibility towards environmental stresses [52].
In this study, as for the macronutrients, some variation on the levels of the different
micronutrients has been found among accs. (Tables 4 and 5). Remarkably, acc. 8 displayed
statistically higher levels than the reference cultivar for most of analyzed micronutrients,
whereas acc. 11 showed an opposite trend (Tables 4 and 5). Whether this variation among
accs. may imply an improved stress tolerance or not, it is matter requiring further research.
Overall, the yield potential of each cultivar may influence nutrient demand, as reported [35],
and therefore may be reflected in mineral concentrations of both taproot and leaf tissues.
In this sense, broader trials should be conducted to know fertilization needs accurately.

Figure 7. Stars and rays graphs displaying the differences between accessions for the morphological
traits analyzed, total monomeric anthocyanin content (TMC) and total flavonoid content (TFC). Each
axis represents one variable, and its intersection with a vertex of the polygon indicates the relative
magnitude for that variable. (a): Reference polygon for variable identification. Leaf area ratio (LAR)
and specific leaf area (SLA) are shown as their inverses to visually correlate higher magnitude with a
positive trait. (b): Individual graphs for each accession. Accession identification (1–12) is shown in
Table 1. DM: dry matter (%). FW: fresh weight.

A Pearson’s correlation matrix was elaborated in order to associate variations in
macronutrient contents, DM, TMC and TFC at the taproot level (Table 6). For each variable,
data for all accs. were grouped and treated jointly. As a result, except for the interaction P/S,
the rest of macronutrient pairs provided significant and positive correlation coefficients,
which highlights the shared underlying physiological mechanisms implied in nutrient
uptake and the potential linked mechanisms in maintaining nutrient stoichiometry [53].
Since the increase in accumulation of all these five macronutrients may precede DM
accumulation, a correlation between these variables can be of interest as predictors in
growth models [54]. Furthermore, our results showed a negative correlation between DM
and Ca and Na contents. On the other hand, DM highly correlated with TMC and TFC. This
may be due to a time-dependent accumulation of DM [37] and phenolic compounds [8]
during carrot taproot growth (Table 6).
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Table 3. Macronutrients detected by Inductively Coupled Plasma–Optical Emission Spectrometry at harvest for taproots (T) and leaf (L) samples of the 12 accessions evaluated. Data are
presented as the mean, n = 4 to 6. Different lowercase letters within the columns indicate statistical significance according to Tukey’s test (p ≤ 0.05). Accession identification (1–12) is shown
in Table 1. DW: dry weight.

Macronutrient [g/100 g DW]

Acc. K Ca Na S P Mg

T L T L T L T L T L T L
1 1.51 ab 3.38 abc 0.27 b 2.84 a 0.73 bc 0.84 bcde 0.089 ab 0.85 ab 0.36 b 0.38 abcd 0.15 bc 0.32 abcd

2 1.21 ab 2.39 c 0.36 ab 2.16 abc 1.40 ab 1.37 a 0.086 ab 0.46 bc 0.41 ab 0.30 bcd 0.13 c 0.31 abcd

3 1.79 a 3.45 abc 0.30 ab 2.43 abc 0.66 bc 0.70 de 0.077 b 0.41 c 0.43 ab 0.43 ab 0.16 bc 0.33 abc

4 1.62 a 3.29 abc 0.39 ab 3.03 a 1.25 abc 1.06 abcd 0.077 b 0.86 a 0.42 ab 0.35 abcd 0.24 a 0.41 a

5 1.68 a 3.36 abc 0.45 a 1.91 bc 1.57 a 1.23 abc 0.097 ab 0.52 abc 0.43 ab 0.26 cd 0.17 abc 0.28 bcd

6 1.44 ab 4.28 a 0.34 ab 2.11 abc 1.12 abc 1.32 ab 0.083 b 0.53 abc 0.50 ab 0.38 abc 0.16 bc 0.30 abcd

7 1.19 ab 3.46 abc 0.37 ab 1.80 bc 1.29 abc 1.37 a 0.110 ab 0.53 abc 0.57 a 0.32 abcd 0.20 ab 0.30 abcd

8 0.98 b 2.75 bc 0.37 ab 2.65 abc 1.51 a 1.12 abcd 0.133 a 0.84 ab 0.38 b 0.37 abcd 0.17 bc 0.34 ab

9 1.45 ab 2.71 bc 0.25 b 2.04 c 0.65 c 0.55 e 0.106 ab 0.30 c 0.33 b 0.25 d 0.16 bc 0.24 cd

10 1.30 ab 3.12 bc 0.35 ab 2.35 abc 1.06 abc 1.09 abcd 0.084 b 0.58 abc 0.34 b 0.42 ab 0.14 bc 0.31 abcd

11 1.49 ab 2.75 bc 0.25 b 1.89 bc 0.87 abc 0.79 cde 0.071 b 0.45 bc 0.49 ab 0.46 a 0.11 c 0.21 d

12 1.59 a 3.65 ab 0.29 ab 2.15 abc 0.68 bc 0.73 de 0.093 ab 0.50 abc 0.43 ab 0.37 abcd 0.15 bc 0.32 abcd
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Table 4. Micronutrients (Si, Mn, Sr, Fe, Zn, B, Al, Rb and Li) detected by Inductively Coupled Plasma–Optical Emission Spectrometry at harvest for taproots (T) and leaf (L) samples of the
12 accessions evaluated. Data are presented as the mean, n = 4 to 6. Different lowercase letters within the columns indicate statistical significance according to Tukey’s test (p ≤ 0.05).
Accession identification (1–12) is shown in Table 1. DW: dry weight. n.d.: not detected.

Micronutrients [mg/kg DW]

Acc. Si Mn Sr Fe Zn B Al Rb Li

Taproot

1 31.1 b 15.0 ab 36.8 ab 33.4 a 11.1 a 15.1 a 7.5 b 5.84 n.d.
2 56.2 ab 15.6 ab 60.8 ab 34.2 a 15.2 a 15.8 a 12.3 ab 5.21 bc n.d.
3 59.9 ab 13.0 b 44.5 ab 36.9 a 12.3 a 15.8 a 17.0 ab 9.60 a n.d.
4 35.9 ab 16.3 ab 54.5 ab 30.7 a 10.5 a 14.1 a 17.2 ab 7.31 abc n.d.
5 38.5 ab 16.2 ab 58.1 ab 34.5 a 14.1 a 15.1 a 10.6 ab 8.38 ab n.d.
6 48.0 ab 15.4 ab 54.4 ab 38.9 a 11.5 a 13.9 a 10.6 ab 7.14 abc n.d.
7 53.4 ab 15.8 ab 56.1 ab 37.8 a 12.8 a 14.0 a 10.2 ab 5.72 bc n.d.
8 106 a 21.2 a 65.3 a 47.2 a 14.4 a 16.0 a 29.5 a 3.89 c n.d.
9 52.1 ab 13.2 b 32.2 b 34.2 a 14.0 a 11.8 a 7.7 b 5.91 bc n.d.

10 56.8 ab 17.4 ab 46.0 ab 34.6 a 11.5 a 14.8 a 14.9 ab 5.17 bc n.d.
11 32.5 b 14.2 ab 37.4 ab 28.4 a 12.3 a 12.8 a 6.3 b 5.47 bc n.d.
12 45.0 ab 13.4 ab 40.2 ab 35.8 a 12.6 a 14.6 a 8.5 b 6.33 abc n.d.

Leaf

1 211 ab 157 ab 165 ab 56.2 ab 35.8 b 41.1 ab 27.9 a 13.0 bc 3.94 ab

2 306 a 141 ab 156 abc 53.7 ab 38.5 b 38.4 ab 26.3 a 9.2 c 5.45 a

3 164 ab 188 ab 169 ab 63.6 ab 56.5 ab 44.5 a 17.9 a 11.9 bc 2.65 ab

4 232 ab 236 a 160 abc 103.5 a 79.8 a 39.7 ab 26.5 a 9.8 bc 3.54 ab

5 195 ab 192 ab 98 c 49.9 b 49.9 ab 38.5 ab 16.9 a 14.1 ab 3.35 ab

6 174 ab 91 ab 139 abc 51.1 ab 33.0 b 32.6 ab 21.8 a 18.7 a 2.39 b

7 171 ab 222 a 122 bc 37.7 b 59.3 ab 39.0 ab 13.6 a 14.8 ab 3.72 ab

8 292 a 202 a 189 a 72.0 ab 43.1 ab 36.1 ab 17.5 a 10.2 bc 4.14 ab

9 188 ab 141 ab 121 bc 50.4 b 31.4 b 29.5 b 19.9 a 10.2 bc 2.66 ab

10 195 ab 106 ab 148 abc 59.2 ab 29.0 b 28.5 b 14.4 a 13.0 bc 2.82 ab

11 80 b 72 b 139 abc 37.6 b 26.8 b 30.6 ab 10.6 a 10.1 bc 1.71 b

12 178 ab 117 ab 132 bc 59.8 ab 32.0 b 30.3 ab 16.2 a 14.8 ab 2.28 b
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Table 5. Micronutrients (Mo, Cu, Ti, Pb, As, Cr, Ni, Cd and Co) detected by Inductively Coupled Plasma–Optical Emission Spectrometry at harvest for taproots (T) and leaf (L) samples of the
12 accessions evaluated. Data are presented as the mean, n = 4 to 6. Different lowercase letters within the columns indicate statistical significance according to Tukey’s test (p ≤ 0.05). Accession
identification (1–12) is shown in Table 1. DW: dry weight. n.d.: not detected.

Micronutrients [mg/kg DW]

Acc. Mo Cu Ti Pb As Cr Ni Cd Co

Taproot

1 n.d. 1.94 ab 0.60 a 0.20 ab n.d. 0.29 a 0.10 a n.d. n.d.
2 n.d. 2.19 ab 1.74 a 0.28 ab n.d. 0.43 a 0.37 a n.d. n.d.
3 n.d. 1.73 ab 0.83 a 0.18 b n.d. 0.23 a 0.08 a n.d. n.d.
4 n.d. 1.82 ab 0.45 a 0.24 ab n.d. 0.18 a 0.03 a n.d. n.d.
5 n.d. 1.43 ab 0.51 a 0.17 b n.d. 0.17 a 0.06 a n.d. n.d.
6 n.d. 1.93 ab 1.29 a 0.26 ab n.d. 0.16 a 0.03 a n.d. n.d.
7 n.d. 1.30 b 0.70 a 0.30 ab n.d. 0.42 a 0.18 a n.d. n.d.
8 n.d. 1.96 a 1.70 a 0.37 a n.d. 0.40 a 0.27 a n.d. n.d.
9 n.d. 1.50 b 2.84 a 0.13 b n.d. 0.21 a 0.16 a n.d. n.d.

10 n.d. 1.56 ab 1.05 a 0.14 b n.d. 0.18 a 0.04 a n.d. n.d.
11 n.d. 1.11 b 0.92 a 0.11 b n.d. 0.27 a 0.09 a n.d. n.d.
12 n.d. 1.55 ab 1.06 a 0.16 b n.d. 0.23 a 0.09 a n.d. n.d.

Leaf

1 4.06 a 2.61 a 0.83 b 0.74 ab 0.61 bcde 0.28 a 0.35 ab 0.37 ab 0.06 a

2 2.01 bc 2.07 a 1.54 a 0.99 a 0.84 ab 0.50 a 0.35 ab 0.18 d 0.11 a

3 4.28 a 2.48 a 0.71 b 0.89 ab 0.73 abcd 0.60 a 0.29 bc 0.30 bc 0.12 a

4 2.91 abc 2.46 a 1.14 ab 0.85 ab 1.07 a 0.64 a 0.49 a 0.43 a 0.16 a

5 2.23 abc 1.83 a 0.81 b 0.37 b 0.58 bcde 1.52 a 0.32 abc 0.16 d 0.10 a

6 2.37 abc 2.53 a 1.14 ab 0.61 ab 0.58 bcde 0.72 a 0.34 ab 0.21 cd 0.07 a

7 2.14 abc 1.82 a 0.73 b 0.75 ab 0.49 cde 0.53 a 0.31 bc 0.23 cd 0.11 a

8 4.04 a 2.77 a 1.17 ab 0.82 ab 0.83 ab 0.44 a 0.33 ab 0.35 ab 0.13 a

9 2.10 bc 1.67 a 1.12 ab 0.50 ab 0.46 de 0.19 a 0.22 bc 0.17 d 0.13 a

10 1.68 c 1.90 a 0.99 ab 0.58 ab 0.78 abc 0.56 a 0.27 bc 0.22 cd 0.04 a

11 2.04 bc 1.81 a 0.70 b 0.34 b 0.36 e 0.28 a 0.17 c 0.22 cd 0.06 a

12 3.32 ab 2.21 a 0.80 b 0.66 ab 0.57 bcde 0.30 a 0.29 bc 0.18 d 0.09 a
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Table 6. Pearson’s correlation matrix for macronutrients, dry matter (%), total monomeric anthocyanin content (TMC) and
total flavonoid content (TPC) in the taproot. Significant interactions are highlighted in bold.

Dry Matter TMC TFC K Ca Na Mg P

TMC 0.457 **
TFC 0.545 *** 0.953 ***

K 0.265 0.125 0.218
Ca −0.290 * −0.182 −0.154 0.135
Na −0.377 * −0.256 −0.276 −0.241 0.833 ***
Mg −0.233 0.041 0.046 0.164 0.646 *** 0.498 ***
P −0.063 −0.106 −0.115 0.140 0.490 *** 0.490 *** 0.385 *
S −0.056 −0.085 −0.098 −0.158 0.464 *** 0.556 *** 0.382 * 0.253

(*), (**) and (***) indicate significant interactions at p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001, respectively.

4. Conclusions

In the present work, a comparative characterization was conducted for the first time
on 11 Eastern carrot accessions. The reference cultivar, Night Bird ‘F1’, proved to be by
far the highest anthocyanin and flavonoid-accumulating accession. Nevertheless, some
landraces showed their potential for ulterior breeding purposes. In this sense, acc. 2
displayed the highest plant and taproot size, leaf area and number, and plant compactness,
but the lowest SLA and LAR and a relatively low prevalence of premature bolting and
taproot shape abnormalities; however, TMC and TFC were very low in acc. 2. Except
for the reference cultivar, acc. 12 displayed the highest TMC and TFC and a plant size
statistically comparable to the reference cultivar. Mineral composition analysis showed the
nutritional potential of Eastern carrot leaves, which displayed a higher concentration than
taproot tissue for several macro- and micronutrients. Several accs. had higher nutrient
concentrations than the reference cultivar, which also highlights their potential profitability.
At the taproot level, a clear correlation between DM and TMC and TFC was found, whereas
macronutrient accumulation was positively correlated. Interestingly, accs. tested proved
their ability to grow under a high temperature regime. In summary, this work contributes
to the knowledge on Eastern black carrot germplasm, determining agricultural traits
of relevance on both taproot and leaf organs. Further evaluation is needed in order to
incorporate the accs. of interest to ulterior breeding programs.
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