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Abstract

In hydrological modelling, a good result for the criterion of goodness of fit does not always

imply that the hypothesis of mass conservation is fulfilled, and models can lose their essen-

tial physical soundness. We propose a way for detecting this anomaly by accounting the

resulting water balance during model simulation and use it to modulate the obtained good-

ness of fit. We call this anomaly in water balance as “inner balance error of the model”. To

modulate the goodness of fit values, a penalty function that depends on this error is pro-

posed. In addition, this penalty function is introduced into a multi-criteria objective function,

which is also tested. This procedure was followed in modelling the Headwater of the Tagus

River (Spain), applying the monthly abcd water balance model. Modulation of the goodness

of fit allowed for detecting balance errors in the modelling, revealing that in the simulation of

some catchments the model tends to accumulate water in, or release water from, the reser-

voir that simulates groundwater storage. Although the proposed multi-criteria objective func-

tion solves the inner balance error for most catchments, in some cases the error cannot be

corrected, indicating that any error in the input and output data is probably related to ground-

water flows.

Introduction

For accurate hydrological planning, it is essential to know the spatial-temporal distribution of

water resources in the basins in question [1]. This can be accomplished by naturalising flow

records [2] and/or by using hydrological modelling [3]. At present, the use of hydrological

models is the most-widespread practice, as they also can forecast future water resources under

diverse land use and climate change scenarios [4]. They are therefore very useful tools for the

authorities responsible for water resources management in order to adapt hydrological plan-

ning to predictable fluctuations in water availability [5].

These models recreate the water cycle by using mathematical formulations to simulate the

hydrological processes that dominate the hydrology of a given catchment [6]. The water
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balance equation is applied to one or several reservoirs representing different natural water

storage types (soil moisture, vegetation, aquifers), whose inputs and outputs are specified by

mathematical expressions. This balance is computed at each of the time intervals (usually on a

daily, weekly, or monthly scale) into which the input time series is divided—generally covering

several years. The global water balance at the end of the simulated period should be close to

zero [7].

Hydrological models are a tool that artfully combines available observations with our fun-

damental knowledge to describe the behaviour of the system through the implementation of

scientific methods [8]. For this reason, several series of observations are necessary for them to

be properly developed. Some variables (mainly climatic, edaphological and geometric) are

used as input data and others (naturalized flows, piezometric and lake levels, accumulated

snow heights, among others) as control data to determine the values of the parameters in the

mathematical expressions that reproduce the main hydrological processes through the concep-

tual reservoirs of the models [9]. The values of these parameters are set to minimise the differ-

ence between the control data series simulated by the model and the real data.

This process of parameter determination is called model calibration [10–12]. While there

are several procedures that can be used to carry out this process, it is generally done by mini-

mizing an objective function that summarise the differences between the observed and the

simulated values [13]. Many types of objective function can be found in the literature

[7,14,15], but most are composed of “least squares” metrics [14], such as the Mean Square

Error (MSE) [16] or the Nash-Sutcliffe Efficiency (NSE) [17]. However, some variants have

been proposed to reduce the underestimation of temporal variability introduced by the above,

such as Kling-Gupta Efficiency (KGE) [18,19] or the rational performance criterion (LME)

[20]. Other common functions related to the water balance recreated by the model are bias

(relative volume error) or Volumetric Efficiency (VE) [13]. The choice of function depends on

the main aim of the study in which it is to be used [21,22]. Those functions based on “least

squares” metrics force models to better reproduce the peak flows at the expense of low flows

[17,23], while those based on the water balance force the model to reproduce the whole volume

of the output series [24]. It is also possible to calibrate the model through a multi-criteria

objective function that combine the aforementioned functions [7,21,25]. It is even possible to

include streamflow characteristics in the objective function [26]. Besides, it must also be taken

into account that some of the previous functions are mathematically related, e.g., NSE and

MSE. However, there are more hidden relationships, as revealed by Gupta el al. [18] when they

decompose the NSE and MSE functions. So, even when a single function is applied, several dif-

ferent targets are being addressed with pre-set weights. This explains why, in basins of high

variability, high NSE values are usually associated with errors in the balance (bias). To solve

this, Lindström [27] proposed a multi-criteria function in which a percentage of the bias com-

mitted is subtracted from the NSE value. In this respect, applying only one criterion is not suf-

ficient for evaluating the consistency of a model, a topic currently considered to be of great

importance [28]. This is because the hypothesis that no single objective function can represent

all relevant characteristics of even one specific hydrological variable [25]. To address this prob-

lem, more alternatives have been proposed; for example, those based on a combination of

more than one objective function (multi-objective calibration) to improve the robustness of

the optimization. Thus, Huo and Liu [29] proposed a framework to compare the combination

of several objective functions with the use of just one, demonstrating that a combination of

two provides more complete and reliable dominant options than any single objective function.

Other authors, such as Tian et al. [25], propose the optimization of a single objective function

that can simultaneously address multi-response modes based on the composite likelihood

index of four objective functions.
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Most of the objective functions used in calibration are formulated in relative terms and also

serve to evaluate the model goodness of fit (NSE, VE, KGE or bias). Therefore, they are also

used to assess the quality of the simulation, and/or to select the model that best recreates the

flow in a catchment. However, good simulation by the model does not always imply the correct

modelling of the catchment hydrology. Such is the case when the global water balance resulting

from the model is not close to zero [7], so the model lacks its essential soundness, and the pre-

dicted series are not reliable. Despite the existence of many objective functions, none of them

ensures that the model meets this requirement that is assumed in every hydrological model,

which is a situation to avoid. So, nothing prevents a high goodness of fit statistics from being

accompanied by an erroneous water balance. One reason for this is the equifinality of the

model parameters [30], meaning that different groups of parameters can often provide a simi-

lar goodness of fit. This can happen when the model structure is not suitable for the hydrologi-

cal processes that actually occur in the simulated basin. Examples of this erroneous

specification are: unregistered water extractions [31], groundwater exchanges between catch-

ments [32], or erroneous data, such as the overestimation or underestimation of evapotranspi-

ration [33].

The main objective of this work is to introduce the resulting water balance that a hydrologi-

cal model makes during its simulation as a criterion for evaluating the goodness of fit and,

also, as a criterion in the calibration process. For this purpose, the calculation of this water bal-

ance is defined and expressed in relative terms with respect to the observed output flow, in

order to standardize this value. This water balance is called herein the inner balance error (ε)

of the model and is expected to be close to zero. From this balance error, a penalty dimension-

less function ϕ(ε) (between 0 and 1) which begins to reduce the value of goodness of fit

obtained when this balance error is other than zero is proposed. The obtained goodness of fit

is modulated according to this balance error. In addition, this penalty function (ϕ(ε)) is tested

in the calibration process. In this sense, a multi-criteria objective function which forces to the

model to reduce its inner balance error is proposed. Thus, the group of sets of parameters that

are obtained with this multi-criteria objective function is reduced to those that, in addition to

providing a high goodness of fit, commit a low inner balance error. In cases where inner bal-

ance error remain high, the water balance error is not solved, indicating that the model is

incorrectly specified, either because of its structure or because of incorrect input and output

data. The use of this penalty function to model the Headwater of the Tagus River Basin (Spain)

using a monthly lumped water balance semi-distributed model. This basin is one of the most

important in the Iberian Peninsula in terms of water resources management, since, in addition

of being the head of one of its most-important rivers, it is the origin of the largest inter-river

water transfer in Spain: the Tagus-Segura transfer.

Materials and methods

The methodology is ordered sequentially to facilitate the connection between the different

sub-sections. First, the inner balance error and the penalty function are defined; second, the

objective functions used in this work are presented; third, the study area is described; fourth,

the data and specifications to be used in the calibration-validation are detailed; and, finally, the

model used and the criteria used for its choice are indicated.

Inner balance error and penalty function

The inner balance error is based on the water balance (ΔV) between input and output data of

the catchment during the simulation of the model. Precipitation (Pi) is the input variable,

while the actual evapotranspiration (ETi) and the simulated flow (Qs,i) are the output variables.
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If a catchment receives flow from another upstream catchment, then this flow is added as

input in the balance (Qu,i).This balance is defined in Eq 1 for a period of n time intervals. A

positive value of inner balance indicates that the model stores water, while a negative value

indicates that the model releases more water than enters in it.

DV ¼
Xn

i¼1
Pi �

Xn

i¼1
ETi �

Xn

i¼1
Qs;i þ

Xn

i¼1
Qu;i ð1Þ

The resulting water balance is divided by the observed flow (Qo,i) in the analysed catchment

so that it can be expressed as a percentage (Eq 2). In this way, the inner balance error (ε) is a

statistic that can be interpreted. If ε> 0, the catchment stores water, and its value indicates the

amount of stored water related to the observed flow. For example, if ε = 0.25, this indicates

that the catchment stores, on average for each time interval, an amount of water equal to a

quarter of the flow that it releases. So, there is an imbalance in the inner water balance equiva-

lent to 25% of the observed flow. If ε< 0, then the flow released from the catchment is higher

than the input water. The latter situation is only possible if the model parameters that repre-

sent the initial stored water have no limit. Although this is not desirable, not restricting this

parameter can sometimes provide better hydrological simulations that give a clue to real

hydrological aspects of the basin under study.

ε ¼ 100 �

Pn
i¼1

Pi �
Pn

i¼1
ETi �

Pn
i¼1

Qi þ
Pn

i¼1
Qu;iPn

i¼1
Qo;i

" #

ð2Þ

This statistic is similar to the well-known Pbias, which measures the average tendency of

the simulated data to be larger or smaller than their reference values. But, in this case, Pbias

represents an external balance between observed (Qo,i) and simulated flow (Qs,i), without con-

sidering the internal behaviour of the model (Eq 3).

Pbias ¼ 100 �

Pn
i¼1
ðQo;i � Qs;iÞPn

i¼1
Qo;i

" #

ð3Þ

The Pbias and the inner water error are similar statistics. The numerator in both equations

is a water balance (Eqs 2 and 3), and they have the same denominator, representing the

observed flow. For a proper simulation, both need to be close to zero and, their results are

interpreted similarly. For example, a Pbias of 0.25 indicates that the model only reproduces

75% of the observed flow (and underestimates 25%). Hence, it indicates that there is an imbal-

ance in the external water balance that is equivalent to 25% of the observed flow. Due to this

similarity, the inner balance error is also denominated in this work as inner-Pbias. However,

there is a small difference between these two statistics. While a Pbias equal to zero is always

desirable, the balance error must, at least, be close to zero (it does not have to be equal to zero)

since a degree of variation between wet and dry periods is always possible.

The use of the most widely used statistics for calibration purposes and to evaluate the good-

ness of fit does not guarantee that the inner balance error is close to zero, since they usually

focus on outlet flow. As a consequence, it is possible to simultaneously obtain a high goodness

of fit and a severe inner water balance error, so we propose to use the inner balance error (ε)

to modulate the goodness of fit. The quality of a modelling is generally measured by means of

standardized statistics between 0 and 1 that seek a maximum: for example, NSE, VE or KGE.

Hence, an exponential penalty function ϕ(ε) that depends on ε and on one parameter (α) is

proposed (Eq 4). This function also standardizes the error for values between 0 and 1 (Fig 1),

so, if a simulation complies with the mass conservation equation (ε = 0) there is no penalisa-

tion to the statistic used to indicate the goodness of fit (ϕ(ε) = 1). Otherwise, if the simulation
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commits an inner balance error (ε6¼ 0), then the goodness of fit is reduced (ϕ(ε)< 1).

ϕðεÞ ¼ exp� a�jεj ð4Þ

The proposed function ϕ(ε) is the solution of a linear differential equation in which the var-

iation of the penalty according to the inner balance error committed is proportional to the lat-

ter (ε). This implicitly means that the relative variation in the penalty is proportional to the

variation in the inner balance error (see Eq 5). The advantages of ϕ(ε) include that it is a easily

adjustable continuous function. Bearing this in mind, the value of the α-parameter can be

defined in such a way as to pre-establish a limit for the inner balance error. If the objective is

to ensure the detection of errors of 100% magnitude, which implies that this error is equal to

the observed outlet flows, the α-parameter must be around 4 (Fig 1); thus, errors close to or

higher than 100% will result in a value of zero. If the α-parameter selected is equal to zero,

there is no penalty, since ϕ(ε) is always equal to 1.

dϕðεÞ
dε
¼ a � ϕ εð Þ !

dϕðεÞ
ϕðεÞ

/ a � dε!
Dϕ
ϕ
/ a � Dε ð5Þ

The objective functions used

The objective function chosen to calibrate the model is the NSE coefficient (Eq 6), which is

one of the most widely used statistics to measure the goodness of fit of hydrological models

[17,34]. The NSE coefficient takes values between (-1 - 1]; the closer to 1, the better the

Fig 1. An example of the penalty function ϕ(ε) according to six values of the α-parameter.

https://doi.org/10.1371/journal.pone.0260117.g001
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model’s performance [16].

NSE ¼ 1 �

Pn

i¼1

ðqo;i � qs;iÞ
2

Pn

i¼1

ðqo;i � �qoÞ
2

ð6Þ

In this equation, qs,i and qo,i are, respectively, the n simulated flows and the n previously

naturalized observed flows [2] that were transformed by the square root function (Eq 7). Thus,

the errors obtained in the modelling (ut) are stochastically independent and distributed nor-

mally with a mean of zero (Eq 7) [35]. The value of �qo is the mean of the series qo,i.

qs;i ¼
ffiffiffiffiffiffiffi
Qs;i

p

qo;i ¼
ffiffiffiffiffiffiffi
Qo;i

p

)

qo;i ¼ qs;i þ ut; ut ¼ N½0; s2�; E½ut; ut� 1� ¼ 0 ð7Þ

In addition to NSE, which is calculated below by undoing the square root transformation,

other goodness of fit statistics were calculated (also by undoing the square root transforma-

tion) in order to support the results provided by NSE. This provides a set of metrics that leads

to a broader assessment of the capacity of the simulation [22], as different metrics can be sensi-

tive in different ways to the same errors [15]. The goodness of fit statistics we used were VE

[13], KGE [18], and Pbias [13]. The modulation by ϕ(ε) was applied to NSE, VE and KGE, in

order to identify the catchments with high inner water balance errors. Here, we only show

how the penalty function is applied to NSE, since it would be similar for the other two func-

tions (Eq 8).

NSE� ¼ ϕðεÞ � NSE ð8Þ

Finally, to ascertain whether it is possible to simultaneously obtain a high goodness of fit

and an inner balance error close to zero, Eq 8 is used as objective function in the calibration.

This multi-criteria objective function has two goals, to maximise the criterion of goodness of

fit, and to minimise the inner balance error (ε). Both goals are weighted, at first glance, by the

α-parameter. But, when this new multi-criteria objective function is analysed, as ε values close

to zero are expected, the first degree Taylor polynomial of ϕ(ε) is obtained, that is, ϕ(ε)ffi1−α|

ε|. Now, when applying this polynomial to NSE, the resulting function is similar to that pro-

posed by Lindström [27], where NSE is penalized by the Pbias multiplied by the weight “w”

(Eq 9). But, in the function used here, the weight “w” of the penalty given by inner-Pbias (ε) is

the α-parameter and also the NSE itself, which depends on the simulation (Eq 10). This implies

that the penalization will be greater for models with both large ε (inner-Pbias) and high NSE

values that are not congruent with the water balance done by the hydrological model. If α = 1,

then w = NSE (Eq 11).

NSE0 ¼ NSE � wjPbiasj ð9Þ

NSE� ffi NSE � a � NSEjεj ð10Þ

NSE� ffi NSE � NSEjεj ð11Þ
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The Headwater of the Tagus River Basin

The Headwater of the Tagus River Basin is located in the centre of the Iberian Peninsula (Fig

2A and 2B). It has an area of about 10,000 km2 and a high-mountain Mediterranean climate

with a marked seasonality between the summer and winter periods [36]. The average annual

rainfall is 620 mm, being minimal in the summer months. The average temperature is 11˚C,

with minima below zero in the winter, and maxima in summer higher than 30˚C [4]. Finally,

the hydrogeology is dominated by carbonate aquifers shared with the other river basins, such

as the Guadiana and the Júcar Rivers [37].

The water uses are urban, industrial and irrigation, which together represent a very small

percentage of the available water resources since the area has a low population density and is

Fig 2. Study area. Location of the Tagus River Basin (A). Location of the Headwater of the Tagus River in Spain (B). Main

streams in the Headwater of the Tagus River, location of the gauging stations, geographical delimitation of the catchment

with flow observations and location of the Entrepeñas and Buendı́a reservoirs (C). Source: BTN25 2006–2019 CC-BY 4.0 ign.

es (for administrartive data); CC-BY 4.0 © Ministerio para la Transición Ecológica y el Reto Demográfico (for river basins,

main rivers, reservoirs and gauging stations); Derived data from MDT25 2015 CC-BY 4.0 ign.es (for Catchments).

https://doi.org/10.1371/journal.pone.0260117.g002
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not conducive to agriculture. There are numerous hydropower stations and an important ther-

monuclear power station, which do not consume water. However, the water resources gener-

ated within the basin are essential for other uses located downstream that require high

volumes of water: electricity production, agriculture, urban supply (including the city of

Madrid) and the maintenance of environmental flows. In addition, a substantial part of these

water resources is diverted to the Segura River Basin by transfer of the water stored in the

main two reservoirs (Entrepeñas and Buendı́a) located within the study area (Fig 2C).

Datasets and specifications

The data used in the models (abcd and the other two presented in the next point) came from

several official Spanish sources. 1) the Digital Terrain Model with a resolution of 25 m, was

produced by the National Geographic Information Centre [38]; 2) the river gauging stations

and the river flow observations used to calculate the natural flows are part of the database of

the Integrated Network of Gauging Stations of the Hydrographical Studies Centre of Spain

[39,40]; 3) the series of precipitation and potential evapotranspiration were obtained from

monthly raster maps created by the Ministry of Agriculture, Food and Environment [41,42].

To apply the models, the study area was divided into the 12 catchments defined by the river

gauging stations (Fig 2C), based on which a semi-distributed model was constructed. The

period covered by observations in all the gauging stations ran from October 1982 to Septem-

ber2010, with 336 monthly values available for each variable. The series of precipitation and

potential evapotranspiration values in each catchment were obtained by averaging the values

of the cells located within it. For each catchment (identified by its code, also included in Fig

2C), Table 1 lists its area and the average yearly values of the main meteorological variables, as

well as of the natural flow.

Cascade calibration [43], which consists of determining the parameters for different catch-

ments, simulating from upstream to downstream, was used to determine the model parame-

ters. The values of the parameters calibrated for the catchments located upstream in each river

section are considered fixed when calibrating the catchments downstream. The first available

natural observed flow values are used as “take-off” in each model, while the remaining n obser-

vations are divided into two periods: the first, with two-thirds of the remaining n observations,

is used for calibration, and the second for validation [44]. This cascade calibration was carried

out with the GRG2 nonlinear optimisation algorithm [45], which looks for the extreme values

of the functions using the generalised reduced gradient algorithm [46].

Water balance model selected: Abcd model

A previous study was made, using three of the most widely used lumped water balance models:

the abcd [47], the Thornthwaite-Mather [48], and the GR2 [49] models. All of them simplify

Table 1. Main physical and hydrological features of the catchments in the Headwater of the Tagus River Basin.

Name Peralejos Ventosa Taravillas Trillo Entrepeñas Priego

Escabas

Huete La Peraleja Priego

Trabaque

Molino de

Chincha

Alcantud Buendı́a

Code 3001 3030 3268 3005 3006 3045 3172 3173 3186 3201 3041 3043

River Tagus Gallo Cabrillas Tagus Tagus Escabas Mayor Guadamejud Trabaque Guadiela Guadiela Guadiela

Area (km2) 412 943 183 1720 570 327 360 257 388 363 211 1416

Precipitation

(mm/year)

792 552 696 624 576 768 540 516 636 816 708 528

ETP (mm/year) 588 660 624 648 708 648 780 780 720 624 648 756

Temperature (˚C) 10 10 9 11 12 11 13 13 12 10 11 13

Q (mm/year) 325 53 170 134 49 330 38 28 38 234 397 58

https://doi.org/10.1371/journal.pone.0260117.t001
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the water cycle into two reservoirs: one that simulates the soil moisture balance (S), and

another that represents the aquifers (G) where groundwater discharges occur. The input for all

three models is precipitation (P) and the outputs are actual evapotranspiration (ET) and flow

(Q). Detailed information about the structure and equations of these models is presented in S1

Appendix. The NSE statistic was used as criterion to select the model. The abcd model pro-

vided the highest and most consistent values of NSE and was consequently selected to analyse

the use of inner water balance (S2 Appendix.).

Results

This section is structured as follows. First, the results of the simulation using NSE as objective

function are presented, and the penalty function is applied to NSE, VE and KGE. Next, the

previously defined multi-criteria objective function is used (NSE�). For this, an analysis is per-

formed to define the most appropriate value of the α-parameter to include the reduction of the

inner balance error as a calibration goal.

Modulation of the goodness of fit using NSE as objective function

The model was calibrated to maximise the NSE calculated with square root transformed data.

Table 2 shows the main results of the modelling, both for the calibration and validation

Table 2. Main indicators for the calibration of the abcd model, using NSE as objective function.

Indicators Catchment Code

3001 3030 3268 3005 3006 3045 3172 3173 3186 3201 3041 3043

Calibration NSE 0.77 0.39 0.69 0.71 0.75 0.82 0.73 0.76 0.57 0.84 0.74 0.86

VE 0.68 0.70 0.72 0.74 0.77 0.80 0.73 0.60 0.51 0.76 0.72 0.81

KGE 0.76 0.45 0.65 0.73 0.74 0.78 0.85 0.71 0.33 0.78 0.70 0.85

RMSE (Mm3/month) 5.3 2.0 1.1 15.3 15.8 3.1 0.7 0.4 1.2 4.2 8.2 10.2

Pbias (%) -4% 8% 6% 7% 3% 2% 3% 2% 11% 2% 3% 0%

ε: Inner–Pbias (%) 3% 400% 79% 43% 0% -4% 189% 262% 355% 92% -32% -2%

ΔS (Mm3) 49 62 16 123 57 25 22 14 24 31 20 90

ΔG (Mm3) -52 3423 437 3628 -8 -24 480 303 967 1353 -494 -86

ΔV (Mm3) -3 3486 453 3751 49 1 502 318 992 1384 -475 4

Balance Error (%) 0% 418% 85% 49% 1% 0% 212% 267% 368% 117% -29% 0%

NSE� 0.68 0.00 0.03 0.13 0.74 0.71 0.00 0.00 0.00 0.02 0.20 0.81

VE� 0.60 0.00 0.03 0.13 0.75 0.70 0.00 0.00 0.00 0.02 0.20 0.76

KGE� 0.67 0.00 0.03 0.13 0.72 0.67 0.00 0.00 0.00 0.02 0.19 0.80

Validation NSE 0.59 0.34 0.49 0.59 0.68 0.76 0.63 0.49 0.70 0.77 0.75 0.70

VE 0.64 0.63 0.63 0.68 0.72 0.78 0.56 0.38 0.60 0.71 0.71 0.75

KGE 0.77 0.45 0.54 0.69 0.79 0.86 0.63 0.27 0.79 0.86 0.62 0.80

RMSE (Mm3/month) 5.9 2.1 1.4 17.5 16.0 2.6 0.7 0.7 0.6 2.6 5.9 11.3

Pbias (%) -14% -6% 0% -6% -12% -10% -19% -6% -20% -6% 2% -13%

ε: Inner–Pbias (%) 14% 394% 60% 50% 1% 13% 239% 260% 458% 102% -16% 17%

ΔS (Mm3) -20.1 -17.5 -5.7 -20 -2.2 -4.4 4.2 6.1 3 -6.7 -6.3 13.0

ΔG (Mm3) 21.8 1560 154 1533 37.1 27.7 257 154 449 615.2 -170.8 107.1

ΔV (Mm3) 1.7 1543 148 1513 34.9 23.3 261 160 452 608.5 -177.1 120.1

Balance Error (%) 0% 388% 61% 44% 1% 3% 220% 254% 437% 96% -14% 4%

NSE� 0.59 0.00 0.04 0.10 0.65 0.45 0.00 0.00 0.00 0.01 0.40 0.35

VE� 0.64 0.00 0.06 0.12 0.70 0.47 0.00 0.00 0.00 0.01 0.38 0.38

KGE� 0.77 0.00 0.05 0.12 0.76 0.52 0.00 0.00 0.00 0.01 0.33 0.40

https://doi.org/10.1371/journal.pone.0260117.t002
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periods. The top part of each period includes the main statistic generally used to assess the

goodness of fit of a hydrological model (NSE, VE, KGE, RMSE and Pbias). The results related

to water balance are presented below: the inner balance error (inner-Pbias), the resulting water

balance in model reservoirs (ΔS: soil moisture, and ΔG: groundwater), and the resulting water

balance model both in absolute terms (ΔV) and in relative terms with respect to the average

observed flow (as the inner balance error). These water balances were calculated as the differ-

ence between the water stored in the reservoirs at the beginning and at the end of the simula-

tion (just after the “take-off” period). The final part contains the results of the NSE, VE and

KGE indicators modulated by the penalty function for a value of α = 4. This value of α is subse-

quently analysed.

The values of NSE in most of the catchments were above 0.60 for both the calibration and

validation periods. Only in one catchment (3030-Ventosa) was a value lower than 0.50 found.

These results are similar to or even outperform those obtained with a distributed model in the

same geographical area [4], or those produced by lumped water balance models in other geo-

graphical areas [50–52]. Of note is the fact that the simulation of the flows into the Entrepeñas

and Buendı́a reservoirs, which are the main water resources management infrastructures

within the study area, resulted in high NSE values (Table 2). Therefore, using this statistic, it

can be affirmed that the model properly represents the flow in the main points of the study

area [34,51], and could be used to estimate their water resources. As an example, Fig 3 shows a

comparison between simulated and observed flow in four catchments (3001-Peralejos,

3201-Molino de Chincha, 3043-Buendı́a and 3006-Entrepeñas).

Fig 3. Observed and simulated flow in four catchments. Qo stands for observed flow and Qs,c and Qs,v for simulated flow in the calibration and validation

periods, respectively.

https://doi.org/10.1371/journal.pone.0260117.g003
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The resulting VE values were slightly lower than NSE because the latter was the objective

function used and because VE is not based on "least squares". However, these VE values were

also high and even more consistent in validation than NSE for all the catchments. So, the

hydrological performance can be described as adequate. The obtained values for KGE were

similar, although slightly lower, than NSE. In the Ventosa (3030) and Priego-Trabaque (3186)

catchments the values were as low as those of NSE. But, in general, the results were mostly

acceptable, and the values were higher in the main control points (the Entrepeñas and Buendı́a

dams). The results of the RMSE and Pbias were acceptable in most of the catchments, and so

do not conflict with the above results. It should be noted that all these results were, in general,

similar for calibration and validation, which lends robustness to the modelling carried out. It

should also be noted that for the same catchment, not all the used indicators provided the

same quality of fit. In other words, there were catchments with high values of NSE and KGE,

but which also had high RMSE values compared with those obtained for other catchments.

This is particularly the case for catchments that receive water from other upstream catchments

(3005, 3006, 3041 and 3043), since the calibration is not able to reduce the noise introduced by

this input variable. This is one of the mistakes associated with cascade calibration. These

results confirm the recommendations that several goodness of fit statistic should be used to

assess a model’s performance. As pointed out by Krause et al. [23], the objective should be to

provide good values for a set of measures to include all the dynamics of the results of the

models.

When the results of NSE, VE and KGE modulated with the penalty function are analysed

using α = 4 (NSE�, VE�, and KGE�), it is clear that only in four catchments the model performs

well using these criteria (3001-Peralejos, 3006-Entrepeñas, 3045-Priego Escabas and

3043-Buendı́a). The penalty was very severe in the rest of the catchments, providing values

equal to zero in 4 cases (3030-Ventosa, 3172-Huete, 3173-La Peraleja and 3186-Priego Traba-

que). This reduction in goodness of fit indicates that there is a balance error of around 100%

or more in the modelling, given the value of the α-parameter used. In fact, these errors were

between 189% and 400% (calibration period), which indicates that, for example, the water

accumulated in the 3030 catchment is four times the observed flow. These inner balance errors

persisted throughout the simulation in all catchments, since they were of the same order of

magnitude in both the calibration and validation periods. The origin of these errors was

mainly the stored water in the reservoir that simulates groundwater (G). The total balance

error (ΔV) was practically the same as the groundwater balance error (ΔG), the same occurring

for the total Balance Error (%) of the model when compared with the Inner-Pbias (ε). Thus,

these high values of ε indicate that the parameters used for some catchments produced an

inadequate representation of the hydrological processes that actually occur in them. This can

also be seen when representing the stored water in aquifers (G) throughout the calibration and

validation periods in some catchments with high ε, as exemplified in Fig 4. Among them, the

most striking example was Molino de Chincha (3201), which provided one of the highest

goodness of fit values (see Table 2), but whose stored water in G at the end of the calibration-

validation was equal to the flow exiting the catchment during the whole simulation.

Fig 5 serves to analyse the optimum value of the α-parameter in the penalty function, show-

ing how NSE is modulated according to the α-parameter used (NSE!NSE�). The intersec-

tions between the different curves with the red vertical line are the NSE� values shown in

Table 2. The modulation is similar for the VE and KGE indicators, so it is not necessary to

include a summary of them in a graph. In catchments whose simulations generate low inner

balance errors, the decrease is almost linear with respect to the α-parameter and there are

hardly any penalties. However, simulations with high inner balance errors, greater than 200%,

an α-parameter equal to 2 is sufficient to produce an NSE value of 0. To automatically detect
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catchments with inner balance errors of around 100% (NSE� = 0), α-parameter = 4 is recom-

mended, and for inner balance errors around 50%, α-parameter = 8 should be used, while an

α-parameter equal to 10 would be even more restrictive (inner balance errors of around 25%).

In this case, where only modulation of the goodness of fit is intended, the value of the α-

parameter does not influence the calibration carried out, since it is applied later. Thus, the

value can be easily modified, and it is possible to use a value as restrictive as deemed. For this

Fig 4. Evolution of stored water in the reservoir (G) simulating the aquifers in the catchments of Ventosa (3030), Huete

(3172), La Peraleja (3173), PriegoTrabaque (3186), and Molino de Chincha (3201).

https://doi.org/10.1371/journal.pone.0260117.g004

Fig 5. Analysis of the influence of the α-parameter on the modulation of the penalty function.

https://doi.org/10.1371/journal.pone.0260117.g005
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specific case, α = 4 has been considered in order to detect the cases whose modelling signifi-

cantly violates the principle in which the balance at the end of the model must be close to zero

(as mentioned above, with inner balance errors of around 100%).

Incorporating the penalty function ϕ(ε) into the objective function NSE

The aim of introducing the penalty function as a part of the objective function is to force the

model to reduce its inner balance error. But one question needs to be resolved first—the most

appropriate value of the α-parameter to use in calibration. To answer this question, the hydro-

logical model was recalibrated for the entire basin (12 sub-catchments), varying the α-parame-

ter in the range [0–5]. When α = 0, the results are the same from the previous section, since

there are no penalties (ϕ(ε) = 1), but they serve as starting point. In order to discern the most

appropriate value, the inner balance error that occurs for each calibration was taken as a refer-

ence (Fig 6). Likewise, the value of the optimization function used (NSE�) was also calculated

in order to verify that obtained values of the different optimizations were decreasing (Fig 7).

Fig 6 shows that the inner balance error was significantly reduced in all the catchments

when using α = 1. For example, in catchment 3030 the error fell from 400% to 8%, and in

another seven catchments the inner balancer error was reduced to 0%. Increasing α from 1 to

2 reduced inner balance errors slightly and stabilized them. Therefore, it would be sufficient to

use α-parameter values of between 1 and 2 to significantly reduce the inner balance error of

the modelling carried out or, at least, for the inner balance error (ε) to reach a value close to its

minimum. In view of these results, it seems advisable to use α = 1 when the penalty function is

included in the optimization (a value much lower than recommended to detect balance errors,

which would be in the range 4–10). In this way, the penalty function can be reduced to Eq 12,

and the objective function used would be related to Eq 11.

ϕðεÞ ¼ exp� jεj ð12Þ

A higher value should be used for the α-parameter if the aim is to drastically reduce the

Fig 6. Inner balance error reduction according to the α-parameter used in the penalty function.

https://doi.org/10.1371/journal.pone.0260117.g006
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inner balance error, but calibration efficiency would also be reduced. The maximum recom-

mended value for the α-parameter is 2. As can be seen from Fig 6, using a higher value does

not ensure that the balance error is reduced. In this sense, using a very high value for the α-

parameter for catchments whose modelling has a natural or systematic inner balance error

means that the objective function will always be around 0 and that it will be difficult to find a

maximum for it.

Fig 7 shows that, in the catchments where the model achieves a null inner balance error,

NSE� values do reach the stability. But, if the model is not capable to solve the inner balance

error, the NSE� value decreases as the value of the α-parameter increases. So, increasing the α-

parameter does not guarantee a readjustment of the parameter set that provides a null inner

balance error.

Table 3 shows the results of the optimization using NSE� with the α-parameter equal to 1.

Comparison of these with those obtained previously (Table 2) shows that there were hardly

any differences with respect to the VE, RMSE and ΔS indicators, both in the calibration and

validation periods. The Pbias values were similar in the calibration period, but in some catch-

ments, it increased slightly and in others decreased. However, the only observed drawback was

that the Pbias values increased slightly in the catchments in which it was not possible to reduce

the balance error, especially for the validation period. The NSE values were practically the

same, except in the catchments that showed the highest inner balance errors, which empha-

sizes the need of including the inner balance as a criterion in optimization. The KGE values

were significantly reduced in Ventosa (3030) and Prieo-Trabaque (3186) catchments, while in

others these statistics increased slightly, since it is not the optimization function used.

Discussion

This work illustrates how to use a dimensionless function that penalizes the inner balance

error committed in hydrological simulations. The function can be used both to modulate the

goodness of fit and as a criterion for model calibration. In order to facilitate the explanation, a

Fig 7. NSE� variation according to the α-parameter used.

https://doi.org/10.1371/journal.pone.0260117.g007
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lumped water balance applied in a semi-distributed manner is used as example. The concept

of inner balance error can be extrapolated to more complex models, including more hydrolog-

ical processes or more reservoirs, and even to distributed models. The formulation of ε can be

adapted to the peculiarities of any model, and the concept would be the same. The input and

output variables can change, and they can be calculated in a distributed manner, but it is still

crucial to tackle the inner balance error with respect to the observed output flow, so that this

error will have a physical meaning comparable with those of other catchments.

The shape of the penalty function can be changed, and several options were considered, all

based on the inner balance error. One was an exponential function with two parameters that

provided more flexibility for low errors, so that slight fluctuations in stored water that usually

occur between wet and dry months were allowed. However, this made it more difficult to

understand the nature of the penalization. Another option was a linear function, but, simula-

tions with large balance errors would be penalized to the same extent as those with small

errors, so that those catchments with large water balance errors would be confused with those

with poor goodness of fit. The option of subtracting from NSE a value proportional to the

inner Pbias module committed was also considered, as in Lindström [27], but it would not

provide the same value for all catchments that commits a large water balance error. For these

reasons, we finally selected a continuous penalty function depending on a single parameter

that provides the same value (zero) when a pre-established value of error is surpassed.

Table 3. Main indicators for calibration of the abcd model, using NSE� as objective function (α = 1).

Indicators Catchment Code

3001 3030 3268 3005 3006 3045 3172 3173 3186 3201 3041 3043

Calibration NSE 0.76 0.28 0.62 0.67 0.70 0.82 0.35 0.49 0.42 0.73 0.71 0.85

VE 0.68 0.71 0.69 0.72 0.75 0.80 0.65 0.46 0.43 0.67 0.70 0.80

KGE 0.74 0.24 0.69 0.78 0.79 0.80 0.57 0.67 0.38 0.82 0.68 0.87

RMSE (Mm3/month) 5.4 2.1 1.3 15.8 16.7 2.9 1.1 0.7 1.3 4.3 8.1 10.8

Pbias (%) -2% 5% 7% 4% 0% -1% 2% 6% 15% 3% 3% -1%

ε: Inner–Pbias (%) 0% 6% 37% 0% 0% 0% 0% 36% 162% 46% 0% 0%

ΔS (Mm3) 50 77 18 157 57 24 20 13 27 39 15 90

ΔG (Mm3) -74 102 220 184 -8 -19 30 42 454 658 70 -143

ΔV (Mm3) -24 179 238 340 49 5 51 54 481 697 85 -54

Balance Error (%) -1% 21% 45% 4% 1% 0% 21% 46% 178% 59% 5% -3%

NSE� 0.76 0.26 0.43 0.67 0.70 0.82 0.35 0.34 0.08 0.46 0.71 0.85

VE� 0.68 0.66 0.48 0.72 0.75 0.80 0.65 0.32 0.09 0.42 0.70 0.80

KGE� 0.74 0.23 0.48 0.78 0.79 0.80 0.57 0.47 0.08 0.52 0.68 0.87

Validation NSE 0.58 0.01 0.39 0.48 0.57 0.71 0.45 0.50 0.15 0.59 0.71 0.59

VE 0.64 0.55 0.58 0.63 0.67 0.75 0.43 0.28 0.23 0.59 0.65 0.69

KGE 0.77 0.09 0.50 0.64 0.74 0.82 0.67 0.48 0.56 0.74 0.59 0.74

RMSE (Mm3/month) 6.0 2.6 1.6 19.8 18.5 2.9 0.9 0.7 1.0 3.4 6.4 13.1

Pbias (%) -11% -11% -6% -8% -14% -14% -32% -21% -61% -27% -15% -24%

ε: Inner–Pbias (%) 11% 13% 18% 7% 1% 17% 59% 50% 235% 50% 16% 28%

ΔS (Mm3) -21.0 -24.9 -7.0 -43 -2.2 -4.2 6.4 8.8 0 -12.4 -3.7 13.2

ΔG (Mm3) 25.6 33 36 9 37.1 25.2 26 10 180 160.1 17.6 104

ΔV (Mm3) 4.6 8 29 -35 34.9 21.0 32 18 180 147.7 13.9 117

Balance Error (%) 0% 2% 12% -1% 1% 3% 27% 29% 174% 23% 1% 4%

NSE� 0.58 0.01 0.35 0.48 0.57 0.60 0.25 0.30 0.01 0.36 0.60 0.45

VE� 0.64 0.53 0.51 0.62 0.66 0.63 0.24 0.17 0.02 0.36 0.55 0.52

KGE� 0.77 0.09 0.45 0.63 0.73 0.69 0.37 0.29 0.05 0.45 0.50 0.56

https://doi.org/10.1371/journal.pone.0260117.t003
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It should be noted that this methodology is specifically designed to be applied in hydrologi-

cal models whose structure has at least one reservoir with no capacity limitation. This is very

common in most monthly scale models that simulate flow with a certain time lag. In such

cases, a reservoir representative of the groundwater cycle and whose capacity is not limited is

used, since the influence of groundwater in each basin can differ widely. Although this func-

tion was designed with this kind of model in mind, it could also be used for models that simu-

late very large basins in which the reservoir that represents soil moisture has a high capacity.

Finding the model that provides the best performance for a basin, even for different basins

under different scenarios, is often the main objective to pursue in hydrological studies simulat-

ing river basins. In this kind of research it is not advisable to use a single goodness-of-fit crite-

rion, as highlighted in this study where the abcd model provides the best performance

according to the NSE. But the final decision must be made based on the greatest number of

possible criteria, and applying an objective method that allows ranking the models taking into

account all these criteria [53]. In these methods, the criteria used must be standardized, in

order to make them comparable, and the inner balance error committed by the model (ε)

could be included among them.

But, the objective of this work is not finding the best hydrological model for the study case

or explaining the drawbacks of the model used. Its purpose is to emphasize the risk of selecting

a hydrological model considering only one criterion of goodness of fit. In fact, this work dem-

onstrates that making a previous study to select the hydrological model does not ensure that

the selected model adequately represents the hydrology of the simulated basin. Frequently, this

is due to the equifinality of the model parameters [30]. This equifinality problem is more likely

to arise when the model has more parameters, since the calibration process has more degrees

of freedom. In other words, it is more likely to find distinct groups of parameters that provide

a similar goodness of fit. The use of a penalty function, such as the one presented, avoids select-

ing a set of parameters that, while providing good goodness of fit, do not meet the hypothesis

that the resulting global water balance of the model should be close to zero [7]. In this sense,

the penalty function introduced in the calibration solved the inner balance error in most catch-

ments, but not in all. In four of them the problem was not totally solved. This maybe relevant

because the study area includes large aquifers in carbonate rocks, so important groundwater

flows, which are not controlled, may exist and should not be neglected. Therefore, despite forc-

ing the model to have a zero-water balance, the penalty function is not capable of doing so.

Thus, the application of the inner balance error in the modelling served to indicate that

groundwater flows in this area should be studied in greater depth, especially if they go outside

the boundaries of the Tagus River Basin to other neighbouring basins.

Conclusions

This study has addressed two key issues in hydrology: does hydrological simulation really rep-

resent the hydrology of a given basin, and might a high goodness of fit be accompanied by an

erroneous representation of the hydrology of the basin? These issues have been addressed by

analysing the inner balance error committed by a hydrological model during simulation,

which was subsequently applied to modulate the goodness of fit. The proposed penalty func-

tion (ϕ(ε)), which depends on the inner balance error committed during simulation, modu-

lates the goodness of fit criteria that is maximised, as NSE, VE and KGE. For this reason, ϕ(ε)

is defined as an exponential function, which depends on a parameter (α), whose values fluctu-

ate in the interval [0–1]. The greater the value of this parameter, the higher the penalty. How-

ever, it has been seen that α-parameter values between 2 and 4 would be sufficient to ensure

that internal errors between 50 and 100%, respectively, are detected. This penalty function can
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also be included in the objective function in order to reduce the inner balance error. To do

this, it would be sufficient to multiply ϕ(ε) by the objective maximization function (such as

NSE, VE or KGE). In this respect, we recommend using α = 1 in ϕ(ε) when this function is

used in calibration.

Supporting information

S1 Appendix. Description of the hydrological models applied in the preliminary study.

(PDF)

S2 Appendix. Results of the hydrological models applied in the preliminary study.

(PDF)

Author Contributions

Conceptualization: Francisco Pellicer-Martı́nez.

Data curation: Francisco Pellicer-Martı́nez, Francisco Gomariz-Castillo.

Formal analysis: Francisco Pellicer-Martı́nez, Francisco Gomariz-Castillo, Marı́a Manuela

Portela.

Funding acquisition: José Miguel Martı́nez-Paz.
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Writing – original draft: Francisco Pellicer-Martı́nez, Marı́a Manuela Portela, Isabel Marı́a

Martı́nez-Alcalá.
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