Show simple item record

dc.contributor.authorRamírez Fernández, María Piedad
dc.contributor.authorGehrke, Sergio Alexandre
dc.contributor.authorMazón, Patricia
dc.contributor.authorCalvo Guirado, José Luis
dc.contributor.authorDe Aza Moya, Piedad Nieves
dc.date.accessioned2018-11-19T10:45:56Z
dc.date.available2018-11-19T10:45:56Z
dc.date.issued2017-06-12
dc.identifier.urihttp://hdl.handle.net/10952/3588
dc.description.abstractThe aim of the present study was to monitor implant stability after sinus floor elevation with two biomaterials during the first six months of healing by resonance frequency analysis (RFA), and how physico-chemical properties affect the implant stability quotient (ISQ) at the placement and healing sites. Bilateral maxillary sinus augmentation was performed in 10 patients in a split-mouth design using a bobine HA (BBM) as a control and porcine HA (PBM). Six months after sinus lifting, 60 implants were placed in the posterior maxilla. The ISQ was recorded on the day of surgery from RFA at T1 (baseline), T2 (three months), and T3 (six months). Statistically significant differences were found in the ISQ values during the evaluation period. The ISQ (baseline) was 63.8 ± 2.97 for BBM and 62.6 ± 2.11 for PBM. The ISQ (T2) was ~73.5 ± 4.21 and 67 ± 4.99, respectively. The ISQ (T3) was ~74.65 ± 2.93 and 72.9 ± 2.63, respectively. All of the used HAs provide osseointegration and statistical increases in the ISQ at baseline, T2 and T3 (follow-up), respectively. The BBM, sintered at high temperature with high crystallinity and low porosity, presented higher stability, which demonstrates that variations in the physico-chemical properties of a bone substitute material clearly influence implant stability.es
dc.language.isoenes
dc.publisherMDPI, Basel, Switzerlandes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectHydroxyapatitees
dc.subjectXenograftses
dc.subjectImplants designes
dc.subjectImplant surfacees
dc.titleImplant Stability of Biological Hydroxyapatites Used in Dentistryes
dc.typearticlees
dc.rights.accessRightsopenAccesses
dc.journal.titleMaterialses
dc.description.disciplineOdontologíaes
dc.identifier.doi10.3390/ma10060644es


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional