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ABSTRACT 

 

The aim of the present study was to analyze the concurrence and interaction 
between different factors affecting the performance, such as central fatigue, 
peripheral fatigue and post-activation potentiation (PAP) after the performance 
of a maximal voluntary contraction (MVC) sustained until the loss of the 50% of 
the initial torque value. In order to assess the effects of central fatigue, 
peripheral fatigue and the PAP on the performance of the MVC, the twitch 
interpolation technique was used. Our findings revealed a loss of the  force 
capability during at least 3'30'' and that the recorded fatigue had central and 
peripheral contributions. Moreover, it has been observed an inhibition of the 
PAP after the completion of the sustained MVC during a brief interval (between 
30´´ and 1´30´´). Furthermore, it has been observed the coexistence of the 
different studied phenomena, however, they showed different time course of the 
recovery.  

 

KEY WORDS: Central fatigue, peripheral fatigue, post-activation potentiation, 
maximal twitch interpolation technique. 
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RESUMEN 

 

El objetivo del presente estudio fue analizar la concurrencia e interacción 
existente entre diferentes factores que afectan al rendimiento, tales como son la 
fatiga  central, la fatiga periférica y la potenciación post-activación (PPA) tras la 
realización de una contracción máxima voluntaria (CMV) sostenida hasta la 
pérdida del 50% en los valores de fuerza iniciales. Con el objetivo de valorar los 
efectos de la fatiga central, fatiga periférica y la PPA se utilizó la técnica de 
interpolación de descargas. Los resultados han revelado pérdidas en los valores 
de durante aproximadamente 3´30´´ y que la fatiga dependió tanto de factores 
centrales como periféricos. También se produjo una inhibición de la PPA tras la 
realización de la CMV sostenida, durante un breve periodo de tiempo (entre 30´´ 
y 1´30´´). Además, se observó la coexistencia de los distintos fenómenos 
estudiados, que sin embargo, demostraron tener una curva de recuperación 
temporal diferente.  

 

PALABRAS CLAVE: Fatiga central, fatiga periférica, potenciación post-
activación, técnica de interpolación de descargas. 
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INTRODUCTION 

 

Muscular fatigue is one of the most influential phenomena in athletic 
performance. It is defined as an increase in perception of effort accompanied by 
a decrease in the muscle ability to generate contractile force (Enoka & Stuart, 
1992; Gandevia, 1992). It has been extensively studied using different 
approaches (cellular, neuromuscular, mechanical, etc...). It is also currently 
accepted that the cause of fatigue is mainly central and/or peripheral in origin 
(Taylor & Gandevia, 2008). 

 

Central fatigue includes the most proximal processes to the neuromuscular 
junction and can be defined as a progressive failure in voluntary activation 
induced by any type of exercise (Taylor & Gandevia, 2001; 2008). This type of 
fatigue may be due to alterations in cortical excitability (Gandevia, Allen, Butler 
& Taylor, 1996), changes in motor-neuron firing rates (Bigland-Ritchie, 
Johansson, Lippold, Smith & Woods, 1983; Garland & McComas, 1990), and / 
or a decrease in spinal discharge (Macefield, Hagbarth, Gorman, Gandevia & 
Burke, 1991). 

 

Peripheral fatigue includes the most distal processes to the neuromuscular 
junction, which induce a decrease in force production (Gandevia, 2001). This 
type of fatigue is due to alterations in muscle homeostasis, such as 
accumulation of metabolites (Baker, Kostov, Miller & Weiner, 1993; Cady, 
Jones, Lynn & Newham, 1989), increased intracellular pH (Kent-Braun, 1999) 
or variations in excitation-contraction coupling processes (Baker et al., 1993; 
Cady et al., 1989; DeGroot et al, 1993). 

 

However, it is well known that fatigue coexist with the so called post-activation 
potentiation (PAP), phenomenon which positively affects the force capabilities 
(Robbins, 2005). PAP is defined as an increase in muscle performance after a 
conditioning contraction (Belanger, McComas & Elder, 1983; Vandevoort, 
Quinlan & McComas, 1983; Xenofondos et al., 2010). Two theories have been 
used to explain the PAP. The first theory involves an increased myosin light-
chains phosphorylation just after the performance of a maximum voluntary 
contraction (MVC), which implies an increased sensitivity to the actin-myosin 
Ca2+ (Grange, Vandenboom & Houston, 1993; Palmer & Moore, 1989). The 
second theory hypothesized that PAP increases H reflex magnitude increasing 
the efficiency and transmission velocity of nerve impulses that reach the muscle 
(Hodgson, Docherty & Robbins, 2005). 

 

Although it seems contradictory, it has been shown that both, fatigue and 
potentiation coexist temporarily and interfere within the sport performance 
depending on the intensity and duration of the conditioning stimulus (Chiu et al., 
2003; Hamada, Sale, MacDougall & Tarnopolsky, 2000). This makes really 
complex the study of such phenomena (Garner, Hicks & McComas, 1989), 
since both fatigue and PAP start when the contractile activity begins and coexist 
later on (Krarup, 1981). Thus the prevalence of fatigue or PAP depends on the 
type, intensity and duration of exercise (Masiulis et al., 2007). Therefore, it can 
be concluded that the optimum performance occurs when potentiation 
predominates over fatigue (Hodgson et al., 2005). 
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Over the past century, different techniques have been developed to record the 
origin of fatigue and post-activation potentiation. Among the others, the "Twitch 
Interpolation Technique", introduced by Merton in 1954, is considered the “gold 
standard” (Gandevia, McNeil, Carroll & Taylor, 2013). This method consists in 
the interpolation of an electrical twitch to the motor nerve during a maximum 
voluntary contraction to obtain the voluntary activation (VA) (Allen, Gandevia & 
McKenzie, 1995), which give us information about the central drive (Gandevia, 
2001). Different studies demonstrated the co-existence of both, central and 
peripheral fatigue after the performance of sustained maximal and sub-maximal 
voluntary contractions (Löscher, Cresswell & Thorstensson, 1996; McKenzie, 
Bigland- Ritchie, Gorman & Gandevia, 1992, Stackhouse, Dean, Lee & Binder-
MacLeod, 2000), or after the completion of supramaximal high intensity whole 
body exercises  (Fernandez del Olmo et al, 2013;. Girard, Bishop  & Racinais, 
2013). 

 

In spite the multitude of studies performed in this field, there is a lack of 
knowledge on whether PAP, central and peripheral fatigue interacts just after 
the performance of a sustained MVC. Therefore, this study aimed to determine 
the time course of peripheral fatigue, central fatigue and PAP after the 
completion of a sustained maximal voluntary contraction performed by the knee 
extensors. We hypothesized that after the performance of a sustained MVC, 
central fatigue, peripheral fatigue and post-activation potentiation coexist within 
a different time curve of recovery.  

 

MATERIAL AND METHODS 

 

Subjects  

 

Nine healthy males subjects were recruited for this study (age = 21 ± 4 years, 
height = 178 ± 5 cm in height, body mass = 70.2 ± 7.3 kg) all of them students 
of the Faculty of Sport of the Catholic University San Antonio. They were 
involved in vigorous physical activity (3.5 ± 0.8 hours per week). Any participant 
reported lower limb injuries as well as any health conditions precluding maximal 
strength activities. All subjects gave written consent about the experimental 
procedure. The experimental procedures were run in accordance with the 
Declaration of Helsinki and approved by the local ethics committee. Procedure 
and instruments 

 

Firstly, the optimal site for the femoral nerve stimulation was located at the 
femoral triangle.  This process is of great importance, since a small deviation 
could cause a contraction in unwanted muscles (Millet, Martin, Martin & Vergès, 
2011).Then, we proceeded to fix the stimulation electrodes. The cathode was 
placed over the femoral triangle and the anode positioned between the great 
trochanter and the iliac crest (Fernandez del Olmo et al., 2013). Both electrodes 
(5x5 cm) were made of carbonized plastic and covered with an electro-
conductive gel. An constant current stimulator (Digitimer DS7AH, Welwyn 
Garden City, UK) was used (rectangular pulse = 1 ms). Stimulation intensity 
was determined in accordance to Todd et al (2003). While subject remained at 
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rest, stimulation intensity was linearly increased until the resting twitch 
amplitude (Qtw) plateaued. Then, the intensity of the electrical pulse was set to 
120% of that required to elicit a maximum quadriceps twitch amplitude (Qtw) and 
M-wave (Mmax) and maintained constant throughout the experiment. 

 

 

 
Figure 1. Experimental set up. 

 

MVC were recorded with subjects placed in a seated position on a Biodex 
System 3® (Biodex Medical Systems, New York, USA) dynamometer and were 
securely strapped into the test chair. The chair had a long backrest, providing 
full back support. The hip and knee were fixed at 90º of flexion (see Figure 1). 

 

For the electromyographic recordings, a KinePro system (Reykjavik, Iceland) 
was used. The sampling frequency was 1600 Hz , the band pass filter 16 -500 
Hz and the common mode rejection ratio 110 dB. Surface electrodes were 
placed on the vastus lateralis (VL) with an inter-electrode distance of 20 mm. 
Skin were shaved,  abraded and cleaned with alcohol following SENIAM 
recommendations (Hermens, Freriks , Dißelhorst-Klug & Rau, 2000). 

 

Completed the preparation of the subject, we proceeded with a standardized 
warm-up. Then, we test the contractile properties of the knee extensor at rest, 
and the level of voluntary activation. For this purpose, three supramaximal 
stimuli were applied over the femoral nerve within the muscle relaxed with an 
inter-stimulus interval of 3 seconds (Qtw). The subject was then asked to 
conduct a MVC of 5 seconds, in which supramaximal electric twithc was applied 
during the plateau phase Visual feedback was given to the subject in all trials.  . 
Then, after the completion of the MVC, three more supramaximal stimuli were 
applied again to measure the potentiated twitch amplitude (Qtw_pot). 
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After the initial block (baseline), the subject was asked to undertake a sustained 
MVC until the force was reduced approximately 50% with respect to the initial 
values recorded. Such a stimulus (called "fatigue block") is especially designed 
to induce high levels of fatigue (Bigland-Ritchie, Jones, Hosking & Edwards., 
1978; Todd et al, 2003). After the cessation of that activity, an identical 
evaluation was performed as described above, at different time intervals: 0'30'', 
1'30'', 2'30'', 3'30'' and 5'. 

 

Study variables and data analysis 

 

The different parameters analyzed are displayed   in Figure 2. The maximal 
voluntary contraction (MVC) represents the maximal torque recorded just before 
the superimposed twitch. The resting twitch amplitude (Qtw) represents the 
maximal torque elicited at rest when electrical stimulation is applied before the 
MVC. The potentiated twitch amplitude (Qtw_pot) represents the maximal torque 
elicited at rest when electrical stimulation is applied just after the MVC.Changes 
in Qtw_pot represents peripheral fatigue (Belanger & McComas, 1989). Voluntary 
activation (VA) was computed by the following equation: VA (%) = (1 - Twitch 
superimposed / Qtw_pot) x 100. This equation establishes a relationship between 
the superimposed twitch (Qsuperp) and the Qtw_pot (Merton, 1954; Shield & Zhou, 
2004). Post-activation potentiation was expressed as the increase (%) of the 
force evoked at rest after the performance of the MVC. It is computed using the 
nextequation: [Qtw_pot / Qtw] * 100. 

 

For the electromyographic variables, it was analyzed the peak to peak 
amplitude of the Mmax from the VL which represents the maximal discharge of 
the motor neuron pool (Aagaad, Simonsen, Andersen, Magnusson & Dyhre-
Poulsen, 2002).. It is presented as the averageof the 3 supramaximal stimuli 
evoked at rest. The rmsEMG of VL was also analyzed and is expressed as the 
root mean square (rms) of the electromyographic signal (EMG) during an 
interval of one second duration just before the application of the the 
superimposed twitch. 
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Figure 2. This figure shows an example of assessment block used throughout the experiment, 
where twitch interpolation technique was used, as well as the different analyzed variables. A) 
Torque trace recorded during the three resting twitches (Qtw) before starting the MVC; then it 

could be observed the MVC torque and the superimposed twitch (Qsuperp); finally, three 
potentiated twitches. (Qtw_pot) are displayed in the right panel. B) In the lower panel Mmax (before 

and after the MVC) are displayed together with the EMG activity corresponding to the MVC. 

 

Statistical analysis 

 

I was firstly performed a descriptive analysis of each parameter (mean and 
standard deviation). Then normality was evaluated through the Shapiro-Wilk 
test. One way repeated measures ANOVA (RM- ANOVA) were performed using 
a within-subject factor (time) with six different levels (Pre and Post: 30''; 1'30''; 
2'30''; 3' and 5'30''). When the main factor showed significant differences, 
pairwise comparisons with Bonferroni correction were used in order to test. The 
alpha level was set at p ≤ 0.05. The statistical analysis was performed using the 
SPSS software (v. 18.00). 

 

RESULTS 

 

It should be firstly noted that the torque in the last two seconds of the sustained 
MVC was55.4% (± 9.8) of the initial peak torque. Moreover, the average 
duration of the sustained MVC was 44.9 (± 11.5) seconds. The sustained 
MVCproduced different changes in the variables analyzed (MVC, %VA, Qtw, 
Qtw_pot, PAP (%), VL-Mmax, VL-rmsEMG), which are shown in Table 1. 
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Table 1. Mean (± SD) of the different parameters studied. The level of statistical significance is 

shown as follows: * p <0.05, ** p <0.01, *** p <0.001. 

PRE POST_30´´ POST_1´30´´ POST_2´30´´ POST_3´30´´ POST_5´ 

MVC (N•m) 
235,77 

(±69,55) 
190,24*** 
(±60,18) 

197,36*** 
(±66,39) 

207,43** 
(±60,83) 

211,2* 
(±54,28) 

220,46 
(±61,23) 

VA 

(%) 

86,82 
(±7,72) 

80,11* 
(±10,39) 

76,28* 
(±14,43) 

70,76* 
(±18,23) 

75,1* 
(±17,31) 

84,36 
(±10,55) 

Qtw 

(N•m) 

43,28 

(±7,50) 

33,22** 

(±9,78) 

37,16* 

(±8,64) 

44,87 

(±8,95) 

47,67 

(±7,89) 

45,98 

(±8,48) 

Qtw_pot 
(N•m) 

57,27 
(±11,57) 

35,65*** 
(±8,37) 

46,06** 
(±9,34) 

54,60 
(±9,97) 

57,14 
(±10,97) 

58,62 
(±10,68) 

PAP 

(%) 

132,65 
(±14,61) 

109,60** 
(±11,55) 

125,39 
(±10,99) 

122,69 
(±12,12) 

122,87 
(±12,43) 

127,99 
(±11,67) 

rmsEMGVL 
(mV) 

1,23 
(±0,37) 

1,14 
(±0,42) 

1,03 
(±0,43) 

1,10 
(±0,41) 

1,13 
(±0,31) 

1,15 
(±0,52) 

M wave VL 
(mV) 

6,16 
(±2,33) 

5,90 
(±2,20) 

6,00 
(±2,28) 

6,10 
(±2,0248) 

5,96 
(±2,24) 

6,30 

(±2,05) 

 

The RM-ANOVA of the MVC showed significant differences in the time factor (F 
= 15.173, p≤0.001). Paired comparisons reveled that MVC torque was 
significantly reduced until the last bout in comparison with the PRE test values 
(p≤0.05 for all comparisons). However, it should be mentioned that no 
differences were found between the MVC exerted before (pre) and after 5 
minutes of recovery. 

 

The RM-ANOVA revealed significant differences in the time factor (F = 17.103, 
p≤0.001) in the Qtw. Paired comparisons showed that  Qtw levels were 
significantly reduced during 30'' and 1'30'' in comparison with the baseline 
values (p ≤ 0.05 for both comparisons). 

 

Regarding to the potentiated twitch RM-ANOVA revealed significant differences 
in the time factor (F = 47.161, p≤0.001). Paired comparisons showed a reduced 
Qtw_pot during 30'' and 1'30'' blocks in relation to the pre-test values (p ≤ 0.05 for 
both comparisons). No significant differences were found after 2'30'', 3'30'' and 
5´ recovery with respect to baseline. The analysis of voluntary activation 
analysis, the RM-ANOVA showed the existence of significant differences in the 
time factor (F = 4.914, p≤0.005). Paired comparisons revealed reduced VA 
during 30''; 1'30''; 2'30'' and 3'30'' blocks (p≤0.05 for all comparisons). It should 
be noted that no difference were found after 5´of recovery. 

 

In the analysis of PAP, the RM-ANOVA showed a significant effect for the time 
factor (F = 5.220 p≤0.005). Paired comparisons showed an inhibition of the PAP 
just after the performance of the sustained MVC (during the post 0'30''). 
However, post hoc analysis revealed no significant differences in the 
subsequent time points (1'30'', 2'30'', 3'30''and 5') when compared to baseline 
values.  
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Neither the RMS nor the Mmax were affected by the sustained MVC. 

 

DISCUSSION 

 

This study revealed the coexistence and interaction of different factors affecting 
peripheral fatigue, central fatigue and PAP after a maximum sustained effort. 
The most important result in the present study is the coexistence of different 
phenomena studied, which have shown an influence on recovery at different 
time points. While the PAP is inhibited only in the early stages of recovery, 
peripheral fatigue acts at least until 2'30'' and central fatigue is the last factor to 
show a full recovery. Although it was widely studied in isolation (Kent-Braun, 
1999; Nordlund, Thorstensson & Cresswell, 2004), few studies attempted to 
investigate its interaction after different types of effort (Masiulis et al, 2007; 
Rassier & Macintosh, 2000). 

 

Peripheral fatigue 

 

Present study revealed a 20% loss of MVC torque after the completion of the 
sustained MVC, being peripheral fatigue the main cause since the amplitude of 
Qtw_pot (indicator of the existence of peripheral fatigue) decreased by 38%. 
Similar data were found in Kent-Braun (1999), where there was a 80% 
reduction of the torque evoked at rest after the performance of a sustained MVC 
for four minutes. Our results are also in accordance with those found by Todd et 
al. (2003) in the brachial biceps. In this study subjects experienced a 57% 
decrease in Qtw_pot amplitude after the completion of a sustained MVC Schillings 
et al. (2003) also found a 38.2% loss after a 2 minutes MVC, being the 89% of 
this decrease attributed to peripheral factors. Furthermore, Gandevia et al. 
(1996) found a decrease of 25.9% in the force values and 29.5% in the 
magnitude of Qtw_pot after the performance of 3 minutes MVCs. This 
overwhelming reduction in potentiated twitch reveals the predominance of 
peripheral factors as the main cause of loss of performance after these tasks. 
According to Hunter, Butler, Todd, Gandevia and Taylor (2006) in these high 
intensity efforts, the greatest contribution to the total fatigue is peripheral in 
origin. This statement is also supported by the results obtained by Schillings et 
al. (2003), which demonstrate that fatigue produced in the first minute (during a 
sustained MVC) is mainly triggered by a failure in the peripheral mechanisms. 

 

Different mechanisms have been proposed to explain the abovementioned 
reductions, being the changes in muscle metabolism, such as the accumulation 
of lactate and H+, the depletion of the phosphocreatine (PCr), most common 
features. In the study by Kent-Braun (1999) was found a direct relationship 
between intramuscular pH and changes in strength, so that as the contraction 
passed, the pH decreased in parallel with the force values. On the other hand, It 
has been suggested that the increased inorganic phosphate (Pi), diprotonated 
inorganic phosphate (H2PO4) and hydrogen protons (H+) can inhibit the 
contractile process due to changes produced in the calcium kinetics (Kent-
Braun, 1999). Despite the prevalence of peripheral fatigue as the main cause of 



Rev.int.med.cienc.act.fís.deporte - vol. 18 - número 69 - ISSN: 1577-0354 

 

71 
 

the performance loss, it should be also considered the central factors as a 
potential cause. 

 

Central fatigue 

 

This study revealed a decrease of 8% in the VA (main indicator of central 
fatigue). This shows thatcentral fatigue is also present and it should be 
considered as a limiting factor of performance. Schillings et al. (2003) and Todd 
et al. (2003) showed a reduction in voluntary activation by 12% and 10% 
respectively, after sustained MVCs. According to Löscher et al. (1996) and 
Søgaard, Gandevia, Todd, Petersen and Taylor (2006) the ability of the nervous 
system to maintain the proper muscle activation is directly related to the 
duration and type of the previous activity, ie, the length and type of contraction 
used during the fatigue protocol. Babault, Desbrosses, Fabre, Michaut and 
Pousson (2006) showed that isometric contractions produce higher levels of 
central fatigue that dynamic contractions. This may explain the rapid onset of 
central fatigue after our sustained "isometric” MVC. Another important fact that 
can be drawn from our study is the prolonged recovery of central mechanisms 
(between 3' and 5'30''). 

 

Central fatigue is triggered by changes in the electrical properties of the 
neurons and within the circuitry of the primary motor cortex, since different 
studies have found changes in cortical excitability after the performance of 
maximal (Gandevia et al., 1996) or supramaximal (Fernandez del Olmo et al., 
2013) exercises. Another possible explanation is the decrease in motor units 
firing rate   (Bigland-Ritchie et al., 1983; Garland & McComas, 1990), as well as 
the changes in spinal cord circuitry: i.e.: decrease in H-reflex excitability 
(Macefield et al., 1991). However, with this methodology (twitch interpolation), 
we cannot determine which of the above mechanisms is primarily responsible 
for the appearance of this type of fatigue. So that, new studies should be 
performed using single motor units recordings as well as the transcranial 
magnetic stimulation. 

 

Post-activation potentiation 

 

Our results also revealed thatPAP is another factor that alters torque values. It 
is clear how PAP, is inhibited during a short period of time (0'-1'30''). However, 
this is the factor that needs less time to recover the initial values. Although the 
PAP persists during a time window of approximately five minutes (Baudry & 
Duchateau 2004; Gossen & Sale, 2000; Vandervoort & McComas, 1983), the 
influence of fatigue seems to be a fundamental factor (Tillin and Bishop, 2009). 
Therefore, one of the most important findings from this study is the rapid 
recovery of the PAP just after the sustained MVC and the coexistence with 
different types of fatigue.  

 

Although PAP is commonly understood as an increase in performance after a 
conditioning activity, this study has shown that PAP was present despite it was 
masked by the fatigue effects. Tillin and Bishop (2009) consider that fatigue, 
rather than PAP, dictates during the earliest stages of recovery. Thus, these 
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authors conclude that after a conditioning contraction a recovery period is 
needed to decrease fatigue and so PAP could be preserved. In this sense, the 
concurrence of fatigue and PAP is directly related to the magnitude and 
characteristics of the conditioning stimulus.  (Hamada, Sale, MacDougall and 
Tarnopolsky, 2003) showed how during repeated MVCs (5 sec) with knee 
extension (16 MVCs in total) PAP strongly influences the performance (127% of 
baseline) while after the third repetition the MVCs values were gradually 
declined (32% in the last contraction). 

 

CONCLUSION 

 

In conclusion, revealed a significant decrease in the force capabilities during at 
least 3'30''. Moreover, the performance was affected by both peripheral and 
central fatigue.. Finally, peripheral fatigue, central fatigue and PAP temporarily 
coexist after the sustained MVC with different recovery curves. Therefore, 
depending on the time after the conditioning activity (e.g.: sustained MVC), the 
loss of strength depends more on PAP, peripheral or central fatigue. So that, 
present results should be taken into account when prescribing and planning 
exercise. 
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