
  

 

 
 

 
 

ESCUELA INTERNACIONAL DE DOCTORADO 
Programa de Doctorado Ciencia del Deporte 

 
 

The ergogenic effect of transcranial direct current stimulation 

on cycling time to exhaustion task performance in physically 

active people. 

 
Autora: 

Shyamali Kaushalya Fernando  

 

Directores: 

Dr. D. Gonzalo Márquez Sánchez  

Dr. D. Salvador Romero Arenas 

Dr. D. Amador García Ramos 

 

Murcia, diciembre de 2020 



  

  



 

 

 

 

 

ESCUELA INTERNACIONAL DE DOCTORADO 
Programa de Doctorado Ciencia del Deporte 

 
 

The ergogenic effect of transcranial direct current stimulation 

on cycling time to exhaustion task performance in physically 

active people. 

 
Autora: 

Shyamali Kaushalya Fernando  

 

Directores: 

Dr. D. Gonzalo Márquez Sánchez  

Dr. D. Salvador Romero Arenas 

Dr. D. Amador García Ramos 

 

Murcia, diciembre de 2020 



  

 



 

 

AUTORIZATION OF THE DIRECTORS OF THE THESIS 

FOR SUBMISSION 

 

Prof. Dr. Gonzalo Márquez Sánchez, Prof. Dr. Salvador Romero Arenas and 

Prof Dr. Amador García Ramos as Directors of the Doctoral Thesis “The ergogenic 

effect of transcranial direct current stimulation on cycling time to exhaustion task 

performance in physically active people” by Dña. Shyamali Kaushalya Fernando 

in the Programa de Doctorado en Ciencias del Deporte, authorizes for submission 

since it has the conditions necessary for its defence. 

Sign to comply with the Royal Decrees 99/2011, in Murcia, 15th of December 

2020. 

Gonzalo Márquez Sánchez  Salvador Romero Arenas   Amador García Ramos 



 



  

ACKNOWLEDGEMENTS 

 This thesis would have been impossible without the support of my 

supervisors, colleagues and family. Therefore, I would like to acknowledge all the 

peoples without whom this PhD thesis would have never seen the light of day. 

 

 First, I would like to thank my PhD supervisors. To Dr. Gonzalo Márquez 

Sánchez from the University of Coruña, Dr. Salvador Romero Arenas from the 

Catholic University of Murcia and Dr. Amador García Ramos from the University 

of Granada. Their incredible patience, valuable advice and guidelines during this 

extensive process. Their remarkable experience and mutual understanding 

absolutely supported me to progressively improve my knowledge. 

 

 To all my teammates: Carlos, Augustin, Giancarlo and David, data collection 

would have been impossible without you all. Much appreciated for always being 

there to mutually support me. And specially you, Carlos, for your enormous 

sympathetic personality and patience during this data collection process. 

 

 To the Catholic University of Murcia for giving me this opportunity to realize 

this PhD thesis. 

 

 To all the voluntary participants who humbly offered their valuable time to 

voluntarily participate in my research. 

 

 To my family for being always supportive and helpful. Especially, to my dear 

mother for her possible encouragement and unconditional support. 

 

 

To all, thank you! 

  



 

 

  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Challenges are what make life interesting and overcoming 
them is what makes life meaningful.”  

Joshua J. Marine 
  



 

 



 

 This thesis brings one article already published in peer-reviewed journal. The 

reference for the article is:  

 

• Fernando Shyamali Kaushalya, Salvador Romero-Arenas, Amador García-

Ramos, David Colomer-Poveda & Gonzalo Marquez (2020) Acute effects of 

Transcranial Direct Current Stimulation on Cycling and Running 

Performance. A Systematic Review and Meta-Analysis, European Journal of 

Sport Science, DOI: 10.1080/17461391.2020.1856933 (Annexe 8). 

 

 

 

  

https://doi.org/10.1080/17461391.2020.1856933


 

  



 

INDEX 

ABREVIATIONS ................................................................................................ 17 

LIST OF FIGURES .............................................................................................. 19 

LIST OF TABLES ................................................................................................ 21 

LIST OF ANNEXES ............................................................................................ 23 

ABSTRACT .......................................................................................................... 25 

RESUMEN ............................................................................................................ 27 

I – GENERAL INTRODUCTION .................................................................... 31 

1.1. ENDURANCE EXERCISE PERFORMANCE ........................................................... 31 

1.1.1 Physiological determinant of endurance performance ....................... 31 

1.1.2 Measuring endurance performance ........................................................ 33 

1.2. BRAIN FUNCTION AND ENDURANCE PERFORMANCE ..................................... 34 

1.2.1. Inhibitory afferent feedback model ....................................................... 35 

1.2.2. Central governor model (CGM) .............................................................. 36 

1.2.3. Psychobiological model ............................................................................ 39 

1.3. PHYSIOLOGY OF EXERCISE-INDUCED FATIGUE ................................................ 40 

1.3.1. Exercise-induced muscle fatigue ............................................................. 40 

1.3.2. Central fatigue ............................................................................................ 42 

1.3.3. Peripheral fatigue ....................................................................................... 43 

1.3.4. Task failure during physical exercise performance............................. 44 

1.4. PERCEPTUAL PARAMETERS DURING ENDURANCE EXERCISE .......................... 44 

1.4.1. Perception of effort (RPE) ......................................................................... 45 

1.4.2. Exercise-induced muscle pain .................................................................. 47 

1.5. BRAIN STIMULATION AND EXERCISE PERFORMANCE ..................................... 49 

1.5.1. Brief evolution history of brain stimulation techniques .................... 49 

1.5.2. Transcranial direct current stimulation (tDCS) .................................... 50 

1.5.3. Technical aspects of tDCS ........................................................................ 51 

1.5.3.1. tDCS electrodes preparing and contact medium ................................... 51 

1.5.3.2. tDCS electrode placement ...................................................................... 52 

1.5.3.3. Blinding and sham ................................................................................. 53 

1.5.4. tDCS parameters ......................................................................................... 53



 14 

 

1.5.5. Side effects and safety criteria for tDCS ................................................ 56 

1.5.6. Brain stimulation to enhance exercise performance ............................ 57 

1.5.6.1. tDCS effect on muscle strength performance ......................................... 57 

1.5.6.2. tDCS effect on endurance performance .................................................. 58 

1.5.6.3. tDCS effect on sprint performance ......................................................... 59 

II – JUSTIFICATION ......................................................................................... 63 

III – OBJECTIVES ............................................................................................... 67 

3.1. GENERAL OBJECTIVES ....................................................................................... 67 

3.2. SPECIFIC OBJECTIVES ......................................................................................... 67 

IV– HYPOTHESIS .............................................................................................. 71 

V – STUDY - I ...................................................................................................... 75 

5.0. ACUTE EFFECT OF TRANSCRANIAL DIRECT CURRENT STIMULATION ON 

CYCLING AND RUNNING. A SYSTEMATIC REVIEW AND META-ANALYSIS. ................. 75 

5.1. METHODS .......................................................................................................... 75 

5.1.1. Data source and search strategy ............................................................... 75 

5.1.2. Study selection and eligibility criteria ................................................... 75 

5.1.3. Data extraction ............................................................................................ 76 

5.1.4. Assessment of methodological quality .................................................. 78 

5.1.5. Statistical analysis ...................................................................................... 78 

5.2. RESULTS ............................................................................................................. 78 

5.2.1. Study selection and characteristics ......................................................... 78 

5.2.2. Study quality assessment ......................................................................... 81 

5.2.3. Effect of tDCS on running and cycling performance .......................... 81 

5.3. DISCUSSION ....................................................................................................... 81 

5.3.1. Acute effect of anodal-tDCS on TTE performance .............................. 83 

5.3.2. Acute effect of anodal-tDCS on ETT performance .............................. 84 

5.3.3. Acute effect of anodal-tDCS on sprint performance ........................... 84 

5.3.4. Characteristic of the tDCS protocol ........................................................ 85 

VI- STUDY - II ..................................................................................................... 91 

6.0. EFFECT OF BILATERAL EXTRACEPHALIC TRANSCRANIAL DIRECT CURRENT 

STIMULATION OVER M1 ON CONSTANT-LOAD CYCLING TIME TO EXHAUSTION TASK 

PERFORMANCE .............................................................................................................. 91 

6.1. METHOD AND MATERIALS................................................................................ 91 



 
15 

6.1.1. Study design ................................................................................................ 91 

6.1.2. Description of the study population ...................................................... 92 

6.1.3. Inclusion and exclusion criteria .............................................................. 92 

6.1.4. Variables of the investigation .................................................................. 93 

6.1.4.1. Independent variable .............................................................................. 93 

6.1.4.2. Dependent variable ................................................................................ 94 

6.1.4.3. Control variable ...................................................................................... 98 

6.1.5. Experimental Procedure .......................................................................... 100 

6.1.6. Data analysis ............................................................................................. 103 

6.1.7. Statistical analysis .................................................................................... 103 

6.2. RESULTS ........................................................................................................... 104 

6.2.1. TTE performance ...................................................................................... 104 

6.2.2. HR during constant-load cycling TTE task performance ................. 105 

6.2.3. RPE during constant-load cycling TTE task performance ................ 106 

6.2.4. Exercise-induced muscle pain during constant-load cycling TTE task 

performance........................................................................................................... 107 

6.2.5. Control variables ...................................................................................... 108 

6.3. DISCUSSION ..................................................................................................... 108 

6.3.1. Effect of a-tDCS over M1 on TTE performance .................................. 108 

6.3.2. Effect of a-tDCS over M1 on HR response during constant-load 

cycling TTE task performance ........................................................................... 109 

6.3.3. Effect of a-tDCS over M1 on RPE during constant-load cycling TTE 

task performance .................................................................................................. 110 

6.3.4. Effect of a-tDCS over M1 on exercise-induced pain during constant-

load cycling TTE task performance .................................................................. 112 

VII – GENERAL DISCUSSION ..................................................................... 117 

VIII – CONCLUSIONS .................................................................................... 123 

IX – LIMITATIONS .......................................................................................... 127 

X – FUTURE LINES OF INVESTIGATION ................................................ 131 

XI–REFERENCES .............................................................................................. 135 

XII– ANNEXES .................................................................................................. 157 

 



 



 17 

ABREVIATIONS 
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ABSTRACT 

 Endurance exercise consisting of sustained whole-body dynamic exercise 

inevitably induces muscle fatigue, which leads to task failure. It is considered that 

the brain plays a key role during the regulation of endurance exercise performance. 

It is believed that exercise-induced muscle fatigue elicits a reduction in motor 

cortex excitability, spinal excitability, and the contractile capacity of the active 

muscle fibers. Therefore, an increased amount of descending drive from 

supraspinal regions is required to maintain task performance. Numerous 

investigations have conducted to identify the different method to decrease muscle 

fatigue during an endurance task. These studies have indicated that techniques that 

can increase motor cortex excitability could increase the time to task failure due to 

more efficient motor commands. Therefore, the main objective of this thesis was to 

investigate the ergogenic effect of transcranial direct current stimulation on 

endurance exercise performance in physically active people. In the first study, we 

performed a systematic review and meta-analysis to quantify the effect of a-tDCS 

on endurance (TTE and ETT) and sprint performance during cycling and running 

tasks. We found that the acute effect of a-tDCS increases TTE performance during 

endurance cycling and running (p = 0.04). The subgroup analysis revealed a 

positive effect of a-tDCS on TTE during cycling and running (p = 0.01), but not on 

ETT (p = 1.00) or sprint performance (p = 0.46). However, it should be noted that 

only four studies have investigated the ETT task, and two studies have investigated 

the sprint task. These results indicated that the task should be considered as it 

probably influences the results obtained by a-tDCS. Moreover, included studies 

results were inconsistent probably due to the influence of different tDCS 

parameters like stimulation duration, intensity, electrode montage, targeted brain 

area, and electrode size, which influence the excitability of the targeted brain area. 

In the second study, we conducted a crossover double-blind, randomized and 

placebo-controlled study design to investigate the effect of bilateral extracephalic 

tDCS applied over M1 during a constant-load cycling TTE task with 16 physically 

active people (3 women and 13 men). We found that bilateral extracephalic a-tDCS 

over M1 increases constant-load cycling TTE performance by 12% compared with 
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sham condition (p = 0.04), but without changes among two experimental conditions 

in HR response (p = 0.12), RPE (p = 0.13), and exercise-induced muscle pain (p = 

0.16). Overall, this thesis shows that tDCS can influence active peoples’ endurance 

TTE performance during cycling and running task. However, despite the influence 

of bilateral extracephalic tDCS over M1 on the increment in TTE, suggesting that 

no influence on variables including HR response, RPE, and exercise-induced 

muscle pain. Therefore, more studies are needed to understand the effect of tDCS 

on perceptual and physiological parameters during physical performance. 

   

 

Keywords: tDCS, cycling performance, time to exhaustion, endurance, exercise-

induced muscle pain, rating of perceived exertion, heart rate.
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RESUMEN 

 El ejercicio de resistencia que consiste en ejercicio dinámico sostenidas de 

todo el cuerpo inevitablemente induce la fatiga muscular, lo que conduce al fracaso 

de la tarea. Se considera que el cerebro juega un papel clave durante la regulación 

del rendimiento del ejercicio de resistencia. Se cree que la fatiga muscular inducida 

por el ejercicio provoca una reducción de la excitabilidad de la corteza motora, 

excitabilidad espinal y la capacidad de contráctil de las fibras musculares activas. 

Por lo tanto, se requiere una mayor cantidad de impulso descendente de las 

regiones supra espinales para mantener el rendimiento de la tarea. Se han realizado 

numerosas investigaciones para identificar los diferentes métodos para disminuir 

la fatiga durante el ejercicio de resistencia. Estos estudios han indicado que las 

técnicas que pueden aumentar la excitabilidad de la corteza motora podrían 

aumentar el tiempo hasta el fallo de la tarea debido a los comandos motores más 

eficientes. Por lo tanto, el objetivo principal de esta tesis fue investigar el efecto 

ergogénico de la estimulación transcraneal con corriente directa sobre el 

rendimiento del ejercicio de resistencia en personas físicamente activas. En el 

primer estudio, realizamos una revisión sistemática y un meta-análisis para 

cuantificar el efecto de la a-tDCS en la resistencia (TTE y ETT) y el sprint durante 

las tareas de ciclismo y carrera. Encontramos que el efecto agudo de a-tDCS 

aumenta el rendimiento de la TTE durante el ciclismo y carrera de resistencia (p = 

0.04). El análisis de subgrupos reveló un efecto positivo de a-tDCS sobre el TTE 

durante el ciclismo y la carrera (p = 0.01), pero no sobre en el ETT (p = 1.00) o el 

rendimiento del sprint (p = 0.46). Sin embargo, se debe tener en cuenta que solo 

cuatro estudios han investigado la tarea ETT, y dos estudios han investigado la 

tarea sprint. Estos resultados indicaron que la tarea debe considerarse, ya que 

probablemente influye en los resultados obtenidos por a-tDCS. Además, los 

resultados de los estudios incluidos fueron inconsistentes, probablemente debido 

a la influencia de diferentes parámetros de tDCS, como la duración de la 

estimulación, la intensidad, el montaje de los electrodos, el área del cerebro, y el 

tamaño del electrodo, que influyen la excitabilidad del área de cerebro objetivo. En 

el segundo estudio, realizamos un diseño de estudio doble ciego, aleatorizado y 
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controlado con placebo para investigar el efecto de tDCS extracefálica bilaterales 

aplicado sobre M1 durante una tarea de carga-constante con 16 sujetos físicamente 

activas (3 mujeres y 13 hombres). Encontramos que la a-tDCS extracefálica bilateral 

sobre M1 aumenta el rendimiento de TTE de ciclo de carga-contante en un 12% en 

comparación con la condición sham (p = 0.04), pero sin cambios entre dos 

condiciones experimentales en la respuesta de la FC (p = 0.12), RPE (p = 0.13), y el 

ejercicio-induce dolor muscular (p = 0,16). En general, esta tesis muestra que tDCS 

puede influir en el rendimiento de TTE de personas activas durante la actividad de 

ciclismo y carrera. Sin embargo, a pesar de la influencia de la tDCS extracefálica 

bilateral sobre M1 en el incremento de la TTE, lo que sugiere que no hay influencia 

en las variables que incluyen la respuesta de FC, RPE, y el dolor muscular inducido 

por el ejercicio. Por lo tanto, se necesitan más estudios para comprender el efecto 

de tDCS sobre los parámetros perceptivos y fisiológicos durante el ejercicio físico. 

 

  

Palabras clave: tDCS, rendimiento ciclismo, tiempo hasta el agotamiento, la 

resistencia, dolor muscular inducida por el ejercicio, esfuerzo percibido, la 

frecuencia cardíaca. 
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I – GENERAL INTRODUCTION  

1.1. ENDURANCE EXERCISE PERFORMANCE  

 This section discusses endurance exercises and the physiological determinant 

of endurance performance. Sport events that require an individual to perform for 

a prolonged duration over a long distance are generally called endurance events. 

These kinds of endurance sports include the most popular road cycling, middle 

distance running, marathons and ultra-marathons, many swimming events, 

triathlons, rowing, and cross-country skiing. Particularly, endurance performance 

is defined as the prolonged maintenance of submaximal power or velocity (10), as 

well as “during the whole-body, dynamic exercise that involves continuous effort 

and lasts for 75 seconds or longer” (11). Moreover, this kind of endurance 

performance is often referred to as cardiorespiratory or aerobic endurance. 

However, endurance performance is determined by several physiological factors. 

1.1.1 Physiological determinant of endurance performance 

 There has been extensive research into determining the main determinants of 

endurance performance, including maximal oxygen uptake, lactate threshold and 

running economy. These physiological factors are determined by physiological 

variables such as muscle capillary density, maximum heart rate (HR) stroke 

volume, haemoglobin content, aerobic enzyme activity, muscle fibre type, and 

anthropometry and elasticity (12). The maximum Oxygen Uptake (V̇O2max) has a 

predominant role in determining endurance performance. Previous researchers in 

exercise physiology have recognized that the ability to sustain repetitive muscle 

contractions was dependent on oxidative phosphorylation and the rate of oxygen 

delivery needed to meet the ATP demands of the muscles involved in the task (13). 

Recent studies provide considerable support for the hypothesis that performance 

in endurance events is limited by oxygen delivery, which is set by the subject 

V̇O2max and percent of V̇O2max that can be maintained (13). V̇O2max is directly linked 
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to the rate of ATP generation that can be maintained during a distance race, even 

though distance races are not run at 100% V̇O2max (14). 

 V̇O2max is extensively recognized as an indicative measure of aerobic fitness 

and is used to prescribe the intensity during training sessions (15). However, due 

to its major role in endurance performance, it has been a long-term interest to 

understand the factors and mechanisms that limit V̇O2max. The V̇O2max firstly 

introduced by Hill (16) suggests that the V̇O2max is limited by the ability of the 

cardiorespiratory system to deliver O2 to the working skeletal muscles. According 

to Hill’s model, there is a physiological upper limit to maximal oxygen uptake, 

beyond which the oxygen uptake does not continue to rise (17). Consequently, 

endurance performance may be limited as a result of either a low oxygen uptake, a 

reduced maximum limit of oxygen uptake, or increased oxygen requirement (14) 

and this would be explained by the central governor model (18) and 

Psychobiological model (19-21). Previous investigations have demonstrated 

important physiological factors that could limit V̇O2max (14, 22) including the 

pulmonary diffusing capacity, maximal cardiac output, the oxygen-carrying 

capacity of the blood, and skeletal muscle characteristics. The first three factors can 

be classified as “central” factors; the fourth is termed a “peripheral” factor (14). 

However, according to the previous evidence, V̇O2max set the upper limit for energy 

production in the endurance event. 

 Another determinant of endurance performance is the lactate threshold. 

According to research, the percentage of V̇O2max that can be maintained during an 

endurance event is dependent on the amount of lactate accumulation (23). Lactate 

threshold is a measure of the level of power output, V̇O2 or energy expenditure, 

where tissue hypoxia activates an imbalance between the formation and the 

clearance of lactate, leading to an increase in its concentration in the blood. 

Consequently, lactate during low-intensity exercise rarely exceeds baseline levels, 

whilst additional lactate provides evidence of anaerobic metabolism (24). Initially, 

it was understood that lactate was a waste product resulting from glycolysis, which 

converts glycogen into pyruvate, before being converted into Acetyl CoA and 

subsequently entering the Krebs cycle to release energy (17, 24). However, during 

intense exercise, lactate accumulates due to lactic acid production being greater 

than removals (24). When exercise intensity increases, blood lactate concentration 
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becomes higher due to several factors, including the extra demand for ATP not 

being met aerobically by mitochondria; and an increased reliance on fast-twitch 

fibres with fewer mitochondria and produce more lactate (24, 25). 

 Another important physiological determinant of endurance performance is 

the running economy or the ability to move economically. Studies have examined 

the effect of physiological factors on running economy. A growing body of 

literature studying the multiple factors involved in endurance events success has 

postulated that the performance is determined by maximal sustained power output 

and the energy cost of maintaining speed (14, 23). Analysis of research indicates 

that positive running economy changes reflect a lower oxygen consumption when 

exercises at the same submaximal exercise intensity. And they are likely to be 

accompanied by an increased long-term endurance, brought about by delaying 

fatigue, and enhanced anaerobic capacity and maximal speed (23). From this 

theoretical perspective, VO2max, the lactate threshold, and economy of movement 

interact to determine the highest velocity or power that an endurance athlete can 

sustain during an event. This velocity or power is a strong predictor of endurance 

performance (26). 

1.1.2 Measuring endurance performance  

 Performance testing is one of the most common and important measures in 

sports science and physiology. There are various methods of measuring endurance 

performance in laboratory and field settings (27). The most commonly used 

protocols are the time to exhaustion (TTE) test and endurance time trial (ETT) (27, 

28). The TTE tests measure the amount of time a subject can perform at a fixed 

power output or velocity (i.e., 80% of a person’s peak power output) before they 

reach exhaustion. The ETT measures the amount of time it takes to complete a set 

distance or a fixed amount of work (i.e., time to cycle 10 km). Even though both 

methods were exposed to be valid and reliable (27). However, TTE tests do not 

investigate the self-regulation of speed/power output during the exercise (i.e., 

pacing). Additional measures include constant-duration tests and incremental 

tests. Constant-duration tests measure the distance or the amount of work that a 

person can complete in a set duration (i.e., distance ran in 30 min.), and incremental 
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tests measure the highest velocity or power-output a person can reach before 

exhaustion (29). 

 Some researchers have argued that a sizable error of measurement exists in 

constant-power tests (Coefficients of variation ~ 10-30%) (30, 31). Currell et al. (28) 

state that ETT is the most appropriate measure for investigating whether an 

intervention affects endurance performance. These authors demonstrated that ETT 

presents greater reliability compared to TTE. Further, they have mentioned that 

ETT is more valid than TTE tests because performance times in laboratory ETT 

positively correlate with performance times in competition time trials (32). 

However, according to Amann et al. (27), TTE and ETT have a similar sensitivity to 

hypoxia and hyperoxia and, presumably, affect other affecting endurance 

performance. The choice between the constant-power test and ETT should be based 

on other considerations. ETT is the obvious choice for studies in which the effect of 

self-selected pacing on performed is an issue, whereas constant-power tests 

provide better control of workload for studies aiming to assess the association 

between physiological variables and physical performance. In the experimental 

study of this thesis, we used the TTE test as a measure of endurance performance. 

1.2. BRAIN FUNCTION AND ENDURANCE PERFORMANCE  

 This section will discuss some of the most common models proposed in the 

literature to explain fatigue during endurance exercise, focussing on the central 

nervous system (CNS), which centralises the brain's ability to regulate endurance 

exercise performance. Over the past 20 years, exercise physiologists have paid more 

attention to the brain because of its potential ability to handle endurance 

performance. Therefore, many researchers have included the brain as a centre of 

the models used to explain endurance exercise performance regulation. Since the 

mid-1990s, multiple models have attempted to explain how exercise is regulated 

(21, 33-35). These models can be classified as 1) afferent feedback model, 2) the 

central governor model, and 3) the psychobiological model. These models explain 

the physiological and psychological factors currently through to limit endurance 

performance in either short duration and high intensity or long duration and lower 

intensity.  
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1.2.1. Inhibitory afferent feedback model  

 During high-intensity endurance exercise, exhaustion occurs when the 

subject cannot produce the force or power required (36). Amann et al. (37) reveal 

that an inhibitory afferent feedback model explains performance during high-

intensity endurance exercise. According to them, the brain regulates the force 

produced by the muscle responsible for movement to limit muscle fatigue. In this 

context, muscle fatigue is related to an increase in afferent feedback from these 

muscles to the CNS. Therefore, these authors showed that this afferent feedback 

has an inhibitory effect on the magnitude of the central motor drive (see Figure 1). 

The brain will reduce the force produced by the leg muscles as these muscles 

exhaust. Once muscle fatigue reaches the person-specific threshold, the performer 

will terminate the exercise (i.e., stop performing a TTE test). By regulating central 

motor drive, the CNS allows the performer to avoid intolerable levels of effort and 

pain, avoid severe muscle dysfunction, and preserve a functional muscle reserve 

after exhaustion (38). 

 However, to test this model, experiments involving spinal blocked of muscle 

afferents before exercise have been implemented (77, 78). By blocking the possible 

contribution of muscle afferents, subjects should have improved exercise 

performance and reduced the degree of central fatigue. But these investigations 

failed to find any changes in central fatigue or exercise performance. However, the 

blockade of muscle afferents has been demonstrated to impair cardiovascular 

response and negatively affect endurance performance. The lack of alteration in 

central fatigue might have been caused by a delay in assessing of the 

neuromuscular function following exercise. Whilst afferents as a single mechanism 

limiting the endurance exercise performance seem unlikely, their integration into a 

wider system has received significant attention. However, model has been 

challenged with caution regarding the interpretation of experimental results. In the 

next section, the central governor model (CGM) and the psychobiological model of 

endurance performance are explained. These models adopt general approaches to 

understanding endurance performance, and they explain how a wide range of 
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physiological and psychological factors interact to determine endurance 

performance. 

1.2.2. Central governor model (CGM) 

 In 1996, Ulmer (35) suggested that exercise performance might be controlled 

by a governor located somewhere in the CNS (35). Later, based on this model, 

Noakes introduced the current CGM (see Figure 2) (34, 39). This model proposes 

that a central governor (CG) located in the brain serves as an ‘intelligent’ regulator 

Figure 1. Schematic illustration of the afferent feedback model (5). 

Note: The continuous line represents the central motor drive to the exercising muscles, 

while the dotted lines indicate the afferent feedback signal originating from group III/IV 

afferent fibres. 
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of muscle recruitment with the primary role of protecting the body from a 

catastrophic failure of homeostasis (i.e., terminal loss of physiological system).  

According to the CGM, the CNS regulates the work rate that can be continued for 

an expected exercise duration and the moment at which exercise terminates, all to 

ensure that homothecies are maintained (34). Further, there are some important 

assumptions for exercise regulation. The brain does not recruit additional motor 

units during prolonged exercise because other recruitment would threaten the 

capacity to maintain homeostasis (34). Additionally, exhausting exercise’s 

increasing perception of discomfort progressively reduces the conscious wish to 

over-ride this control mechanism (39). Another aspect of the CGM is that all 

changes in pace and termination of exercise occur as part of the regulatory strategy 

that is dynamic and continually altering and serves the teleological purpose of 

protecting the body from damage (34). The CGM proposes that perceived exertion 

(RPE) is playing a crucial role in preventing physical damage.  

 According to the anticipatory feedback model (40), based on the CGM, 

volitional exhaustion happens during endurance exercise when the RPE reaches 

intolerably high or uncomfortable levels. This intolerable level precedes potentially 

negative pressures to homeostasis. When the TTE test evaluates endurance 

performance, the anticipatory feedback model suggests that a “central controller” 

in the brain related to the CG subconsciously predicts the exercise duration that can 

be safely completed at the onset of exercise. And then, it uses this prediction to set 

an initial rate of increase in RPE. Therefore, during the exercise session, the central 

controller continuously uses afferent feedback from various physiological systems 

to regulate the pace of development in the perception of effort. Hence, the 

maximum sustainable RPE and consequent termination of exercise coincide with a 

duration that does not pass the body’s safe physiological limit. 

 The CGM describes the effects of a wide range of physiological and 

psychological factors on endurance performance. However, the plausibility of this 

model has been challenged. For example, Noakes et al. (18) argued that a CG is 

essential to avoid myocardial ischemia development during exercise. Further, it has 

been documented that ultra-endurance athletes also develop myocardial ischemia 

(16). Moreover, the CGM proposes that RPE result from afferent signals 

representing the body’s peripheral physiological changes during exercise. The 
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concept has been further challenged by some experiments, where, despite the 

spinal blockade of afferent signals from the exercising muscles, the RPE during 

exercise was not affected (38, 41). Together with previous investigations, this 

evidence further reveals that the RPE is independent of afferent feedback from the 

muscles and heart (20). Moreover, Marcora et al. (21) argued that the 

psychobiological model of endurance performance elucidates research 

observations equally well without relying on unproven assumptions, such as the 

existence of subconscious CG or RPE templates. 

 

  

  

Figure 2. Update representation of the central governor model (3). 
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1.2.3. Psychobiological model 

 The psychobiological model is a model of endurance exercise performance 

based on a psychological theory proposed by Marcora et al. (19, 42) and it is based 

on the Brehm’s motivational intensity theory (43, 44). It has been described through 

two main concepts: potential motivation and effort. The possible motivation refers 

to the maximum effort that the subject is willing to achieve in the task (43). In 

contrast, effort is the conscious sensation of how effortful heavy, and strenuous the 

exercise feels (19). It reflects a person’s conscious awareness of the central motor 

commands sent to the locomotor and respiratory (20). According to the model, each 

subject is disposed to achieve the task, while effort can be expressed as the subject’s 

effort. In other words, each subject will continue their task until the level of effort 

exerted reaches the maximal level. 

 An individuals’ RPE and potential motivation also explain their endurance 

performance during time trials. In this case, the exerciser knows the total 

performance time or distance that they need to complete and has previous 

experience with the different exercise of varying intensities and durations (19). 

During TTE, the RPE increases over time (39, 45) and high values determine 

exercise disengagement. This phenomenon occurred when the exerciser did not 

prepare to invert the required effort or believe the task is possible (42). For example, 

during a TTE test, RPE gradually increases until a maximal level that coincides with 

the point of exhaustion.  

 According to the psychobiological model, an individual stops exercising with 

different physiological bodily stress, other environmental conditions, or under 

various external manipulations. For example, cycling with pre-fatigue locomotor 

muscles results in earlier exercise termination (42). This can be explained by the 

reducing the muscular apparatus responsiveness and the consequent increase in 

central motor command and RPE to maintain the same absolute power output 

compared to the non-fatigue state (42). Consequently, the exerciser disengages 

earlier from TTE exercise when mentally fatigue (20). This is explained by the 

higher RPE levels once mentally exhausted, as cardiorespiratory and 

muscular/energetic parameters did not differ between conditions (20). However, 

exhaustion can be postponed if the exerciser’s potential motivation is higher once 

the critical level of RPE will be reached later in the same task. This model postulates 
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that an athlete decides to stop or give up the endurance exercise (or slow down, 

disengage from the task) when sustaining the required or desired velocity/power 

is perceived as impossible or excessively difficult to what they are willing to offer 

to achieve the particular outcome. 

1.3. PHYSIOLOGY OF EXERCISE-INDUCED FATIGUE  

1.3.1. Exercise-induced muscle fatigue  

 Exercise-induced muscle fatigue is a multidimensional concept comprising 

physiological and psychological aspects, and accordingly, definitions of fatigue 

vary between disciplines (46). In exercise physiology, the purposes of fatigue 

typically focus on the time-related loss of power during physical exercise (46) and 

any exercise-induced reduction in muscle ability to generate force or energy (47). 

This gradual decline in maximum muscle force capacity relative to pre-fatigue 

values can be viewed as developing activity-dependent weakness that resolves 

with rest (48, 49). It includes an acute impairment of exercise performance that 

leads to increased RPE and eventual inability to produce high quality and high 

amounts of muscular power (50). The neuromuscular fatigue mechanism is related 

to changes in both the central and peripheral nervous systems, which may lead the 

active muscle to fatigue, involving central fatigue. Fatigue in the neuromuscular 

junction and exhaustion occurring in the muscle is described as peripheral fatigue 

(51). It has been shown that the nervous system’s failure to maintain sufficient 

activation of the muscle during exercise significant contributes to task failure in 

sustained submaximal contractions (47-49, 52) (see Figure 3). 

 Skeletal muscle tissue is related to voluntary control. Further, skeletal muscle 

tissue is composed of relatively large cells known as the muscle fibre, which can be 

categorised depending on the contractile twitch speed. When muscle tissue 

contracts the muscle, cells depolarise. When a motor neuron depolarises, an 

electrical current (the action potential) is passed down the nerve fibre. A motor unit 

is consisting of a single motor neuron located in the spinal cord and all of the 

muscle fibres that it innervates. The nerve and muscle communication area known 

as the neuromuscular junction or the motor endplate. After the electrical impulse 
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is transmitted across the neuromuscular junction, it is provoked in all of the 

particular motor unit’s innervated muscle fibres. 

 

 Traditionally, investigators have fundamentally focused on factors that result 

in dysfunction of the contraction process within the muscle itself (peripheral 

fatigue), with little consideration for CNS fatigue’s important role. However, 

muscle fatigue contains both central and peripheral components, although their 

contribution to fatigue seems to be task-dependent (49). During sustained 

submaximal contractions, muscle fatigue will be present before task failure; 

Figure 3. Site contribution to muscle fatigue (4). 

Note: Fatigue may be due to alterations in 1) activation of the primary motor cortex 

(supraspinal fatigue); 2) propagation of the command from the central nervous system to 

the motoneurons (spinal fatigue); 3) activation of the motor units and muscles; 4) 

neuromuscular propagation (including propagation at the neuromuscular junction); 5) 

excitation-contraction coupling; 6) availability of metabolic substrates; 7) state of the 

intracellular medium; 8) performance of the contractile apparatus; 9) blood flow. 
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however, task performance will continue for some time without appreciable 

disruption (47, 48). When the task duration increases, muscle fatigue will progress 

to the degree. It interferes with the capacity to sustain the precise amount of 

submaximal force output required impeding accuracy of performance and 

eventually prohibiting effective task performance. However, task failure becomes 

the point when the force output required for successful task performance can no 

longer be sustained as demanded by the activity (53). 

1.3.2.  Central fatigue  

 Alteration within the CNS associated with the onset of fatigue is broadly 

classified as “central fatigue”. Given the neuroanatomical and physiological link 

between the nervous system and the muscles, the complex interplay between these 

two systems provides various hypotheses regarding the causes and origin of 

fatigue within the CNS (47). A decrease in muscles’ voluntary activation level 

during exercise has been defined as central fatigue (47). Central fatigue may occur 

at various levels and for several reasons, including i) loss of recruitment of high 

threshold motor units (54, 55); ii) reduced central drive (56); iii) blocked central 

conduction from motor neuron dropout (57); and iv) increased negative feedback 

from muscle afferent type III and IV sensory neuron (58).  

 Particularly, when fatigue occurs at a spinal level is defined as spinal fatigue, 

leading to a decrease in the motoneuronal pool’s excitability (47). It has been 

hypothesized that a complex system resulting from muscle response at the spinal 

level might be the key contributor to the motoneuron’s inhibition (47). Muscle 

spindles (group I a and II afferents) are well known to detect variations in muscles’ 

mechanical tension during exercise. Their inputs at a spinal level have been 

suggested to contribute to the spinal fatigue (47). However, it should be considered 

that their inhibitory effect at a spinal level is still uncertain. This is likely because of 

difficulty isolating these structures and their variable and rapid discharge rates 

during muscle contraction (47). Another group of muscle afferent classified as 

group III and IV likely contributes to the spinal level’s inhibitory effect due to their 

projection at the spinal cord’s dorsal horn (59). These afferents have been 

demonstrated to be sensitive to exercise-induced metabolites (K+, La- , H+, 

phosphates) and mechanical variations in the muscle (60). Numerous research 
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studies had exposed the motoneuronal pool’s modification when group III and IV 

afferents were activated, thus supporting the hypothesis of an inhibitory effect at 

the spinal level (61). Supraspinal fatigue can be defined as a suboptimal output 

from the motor cortex to the muscles (47). Limiting supraspinal sites’ influence in 

central fatigue progress has been facilitated by developing the transcranial 

magnetic stimulation technique. Moreover, recent studies propose that a decrease 

in oxygen availability to the brain might in part lead to supraspinal fatigue (62), 

which further increases during acute exposure to hypoxia (63). Furthermore, 

metabolic changes within the brain have also been demonstrated to increase 

supraspinal fatigue (64-66). 

1.3.3. Peripheral fatigue 

 A variety of cellular mechanisms contributes to the generation of peripheral 

fatigue. The equilibrium of electrolytes inside and outside the cell is fundamental 

and consequently, any change in the electrochemical properties of muscle cells 

might compromise the force generated. Observed differences in the concentration 

of Na+ inside the cell, with an increase of K+ outside the cell (67), might in part 

explain the changed propagation of the action potential (67). Peripheral fatigue has 

also been associated with modification of Ca++ (68). It is known that Ca++ is 

fundamental in the development of cross-bridges, and any decrease of Ca++ 

availability or kinetics will reduce the force generation capacity of the muscle fibre 

(38).  

 Peripheral fatigue has been observed during both short (38) and prolonged 

exercise tasks (56), and the magnitude of peripheral fatigue is affected by the type, 

duration and intensity of the exercise performed (46). Greater peripheral fatigue 

has been documented during short-duration intense exercise (38), which is also 

characterised by a large contribution of the anaerobic metabolism (46). The 

anaerobic breakdown of glycogen is well recognised to increase intracellular acids 

such as lactate and H+. Accumulation of lactate and H+ causes a decrease in pH, 

which has been correlated with a decline in force production (69). These 

mechanisms are also dependent on the level of oxygen available to the exercising 

muscles. 
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1.3.4. Task failure during physical exercise performance 

 The term “task failure” is defined as the point at which a subject cannot 

maintain the level of force needed to execute a task (70). As we discussed 

previously, the mechanism leading to task failure may involve the physiological 

process of neural (central fatigue) or muscular level (peripheral fatigue), with 

failure distal to the neuromuscular junction including in the peripheral component 

(47). For healthy individuals performing sustained whole-body dynamic exercises 

(i.e., cycling and running), fatigue is an expected and normal physiologic reaction 

that inevitably leads to task failure (47, 71). It has been shown that during 

submaximal or maximal contractions sustained until voluntary exhaustion, an 

increase in muscular activation occurs due to the progressive recruitment of muscle 

fibres (47).  

 Furthermore, task failure has been associated with an initial rise, followed by 

a decline, in the discharge frequency of the motor neuron pool (72) and with an 

increase of the neural drive to muscles (73) and the high-frequency alternations at 

the corticospinal level (74). Moreover, recent studies have reported peripheral 

fatigue’s contribution at the point of task failure (75). The physiological instance of 

fatigue relates to the task failure of the metabolic properties in the contracting 

muscle. When the amount of waste is increased, the muscle difficulty in continuing 

its task is also increased. Overall, the muscle fatigue caused by the accumulation of 

lactic acid in the muscle tissue and glycogen reduction compromises the muscle’s 

contractile properties. 

1.4. PERCEPTUAL PARAMETERS DURING ENDURANCE EXERCISE 

 This section will discuss two important perceptual parameters measured 

during the cycling TTE task; RPE and exercise-induced muscle pain. Both 

parameters play an important role during exercise, and due to their importance in 

our experiment, this section aims to discuss the function they both have during 

endurance exercise. Knowing the processes that limit endurance performance is a 

fundamental element for performance enhancement. This is because, in most 

situations, these limiting processes must be targeted to elicit performance 

enhancement. As such, once a limiting process is identified, specific strategies can 
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be implemented to directly target or overcome this limitation and activate acute or 

long-term performance improvements. 

 Physiological factors limit endurance performance, and many performance 

enhancement strategies have been developed, from physical training to nutritional 

interventions (76). The nutritional strategy focus on the timing, quantity and 

proportion of micronutrient intake (77, 78). Moreover, hydrogen buffers, such as 

sodium bicarbonate and β alanine (79), have been used to target cardio-respiratory 

and biochemical processes, respectively. The research, as mentioned above 

strategies have demonstrated a positive effect on endurance performance. Besides, 

it has been recommended that the restrictions to endurance performance are 

regulated by psychobiological factors (20). This highlights a theoretical change 

towards a model where endurance performance is influenced by conscious and 

voluntary factors such as effort and motivation (21) as different to involuntary 

physiological processes (80). 

1.4.1. Perception of effort (RPE) 

 Sensation has been defined as the specific process of instantly detecting a 

stimulus in the environment (81). Perception relates to how one understands the 

information gathered and processed by the senses resulting from this stimulus (81). 

Therefore, perception is a subjective interpretation of a particular inspiration (82). 

In the exercise context, the RPE has been defined as how hard an exercise is 

perceived (20). However, RPE is a fundamental component of most central models 

of exercise regulation. Usually, endurance exercise is related to the level of exertion 

that arises from the exercise task.  

 The RPE has been measured through the subjective rating obtained via the 

Borg’s RPE scale, and recently the category-ratio (CR10) scale. The subjective 

measurement of RPE is a feature of many endurance-based exercise studies (7, 83, 

84). In open-loop (until exhaustion) studies, which are defined by the absence of a 

known endpoint (85), RPE consistently increases with time on task (42, 86). 

Furthermore, when open-loop studies require the participant to exercise to 

exhaustion at a fixed workload, task termination coincides with a maximum or 

near-maximum RPE (19, 87). This remains the case when RPE is experimentally 

operated, for instance, by changing environmental temperatures (7) or inducing 
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pre-exercise muscle damage (42), and regardless of whether this causes an increase 

(87) or a decrease in exercise task duration (88). 

 Some researchers conclude that this maximum RPE causes the individual to 

terminate exercise (20, 89) consciously. Similarly, in closed-loop studies, which 

consist of a self-regulated exercise intensity towards a known endpoint (54), 

subjects are recommended to continually adjust their pacing to maintain an RPE 

that permits them to complete the task (42). This is evident when an intervention 

causes a change in RPE, such that individuals are compelled to reduce their 

workload to sustain a given RPE (90), or individuals can achieve a higher workload 

for an equal RPE (91). For each of these reasons, RPE is considered to be an essential 

factor for endurance performance (20). 

 Recently, researchers have proposed different theories to explain the way 

that RPE is generated. Some researchers contend that RPE is a product of 

involuntary peripheral changes within the working muscles during exercise (80), 

or the integration of afferent signals from group III and IV afferent receptors within 

the heart, muscles and lungs (38). When performing an exercise, the accumulation 

of exercise-induced muscle metabolites (La-, NA+, K+) stimulates these peripheral 

receptors (92, 93). Therefore as the exercise intensity increases, the further 

accumulation of metabolite stimulates peripheral receptors, leading to increased 

RPE (94).  

 Another model proposed by Marcora (2009), the corollary discharge model 

of RPE, indicates that RPE is centrally generated by the central command’s efferent 

neural process (20, 95). Accordingly, any increase in the of central command’s 

magnitude should be immediately followed by a parallel development in RPE (95, 

96). Recent studies have demonstrated a relationship between the motor and 

premotor areas’ activation and the increase in RPE (97). This model provides a 

simple explanation for the increment in the RPE during various kinds of exercise 

tasks. For example, when locomotor muscle weakness is induced before an exercise 

task, a compensatory increase in central command is required to produce the same 

amount of force or power. This has been demonstrated in experiments showing a 

significant rise in RPE during exercise in pre-fatigued muscles (42, 97).  

 A progressive increase in RPE has also been observed both during prolonged 

isometric and dynamic exercises (20, 98). During different exercise types, the 

increase in RPE is likely due to the increase in central motor command required to 
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compensate for the exercise-induced muscle fatigue (42, 98). However, this RPE is 

accompanied by grown levels of fatigue (99). Athlete’s exercise performance may 

be progressively reduced, reflected in lower power output and increased time to 

complete a task (100); consequently, more effort is needed to perform the same 

function. Thus HR increases (101). Alternatively, lowering  RPE by increased power 

output decreased the time required to complete an exercise task, leading to an 

enhanced performance (100, 102). Here, it resulted in less effort needed to maintain 

the physical task (99).  

1.4.2. Exercise-induced muscle pain 

 Pain is considered a human primate instinct and can be defined as a 

distressing sensation and as emotional experience linked to actual or potential 

tissue damage (103) to notify the body‘s defence mechanism to react towards a 

stimulus to avoid further tissue damages. The International Association for the 

Study of Pain defines pain as an unpleasant sensory and emotional experience 

associated with actual or potential tissue damage (104). Pain perception was 

measured across the experiment in this thesis, and so this section will provide a 

background detailing factors affecting exercise-induced muscle pain. Principally, 

both the central and peripheral nervous systems are involved in the mechanism 

and pathways of all variations of exercise-induced muscle pain perception (6). The 

peripheral nervous system includes nerves and ganglia located outside the brain 

and spinal cord, principally permitting us to connect the CNS to organs and limbs 

in our body. The CNS is involved in the spinal cord and the brain, mainly for 

organizing and interpreting the information sent from the peripheral nervous 

system, and afterwards coordinating all our bodies’ activities before sending 

response towards the effector organs (6). Peripheral nociceptors are generally 

classified in type III and IV muscle afferents and are sensitive to differences in 

concentration of metabolites, mechanical pressure, heat, cold, and endogenous 

substances (6). Metabolites such as H+, K+, La-, and prostaglandins are the results of 

anaerobic metabolism during exercise. Their concentration will vary according to 

the exercise duration, intensity, and the size of the muscle mass involved in the 

task.  
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The peripheral pain receptors originate in and around the muscle and/or 

other peripheral structures and join the spinal cord’s dorsal horn. When identified 

by the nociceptor, a nociceptive signal ascends to subcortical and cortical brain 

regions, such as the somatosensory cortex and the ventroposterior lateral nucleus 

thalamus (6, 105), where the nociceptive stimulus becomes conscious and is 

perceived as pain (see Figure 4). Some authors have suggested that pain tolerance 

could be higher in athletes than non-athletes, which might be an important 

requirement for athletes in specific disciplines (8). Although pain sensation is 

frequently quantified, the pain’s role throughout the exercise has received little 

attention, and so its part on performance is still speculative. 

 

The regulation and effect of pain during exercise have been examined using 

different experimental procedures. These measures may explain the role of pain 

Figure 4. Peripheral and central structures involved in the processing of pain (6). 
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during exercise (increase, decrease or block the peripheral signals from the muscle). 

Incremental tests performed on a cycle ergometer have demonstrated a 

relationship between pain ratings and exercise intensity (105). Graven et al. (106) 

have revealed that pain-induced through an intramuscular injection of the 

hypertonic saline solution decreases MVC of the knee extensors. Collectively, many 

studies recommend that whilst pain might not be the only factor of endurance 

performance, and it may play at least some role in the regulation the work rate 

during exercise performance. Nevertheless, methodological difficulties make this 

concept difficult to verify and further studies are essential to explore this paradigm. 

1.5. BRAIN STIMULATION AND EXERCISE PERFORMANCE  

 This section will discuss non-invasive brain stimulation and its main role 

during exercise performance.  

1.5.1. Brief evolution history of brain stimulation techniques 

 There has been an interest for more than 200 years in the potential use of weak 

intensity electrical currents to modify brain function (106). Various forms of 

electrical stimulation were developed during this period. The first discovery of 

using an electrical current to increase the different human condition by treating 

pain goes back to the reign of the Egyptian Empire and ancient Greece. Some 

physicians directed experiments applying electric fish as feasible treatment (107). 

As the first evidence of transcranial stimulation, Scribonius Largus, a Roman 

physician, described how placing a live torpedo fish over the scalp to treat 

headache in a patient (107). Another experiment was carried out in the 11th 

century, the Muslim physician in Persia, Ibn-Sidah, who using torpedo fishes to 

treat epilepsy (108). Concerning, fish, electricity was maybe the most popular type 

of electric stimulation for more than ten centuries, whether it is not clear how the 

effects were measured.  

 However, its electrical properties were only discovered a few centuries ago 

by Luis Galvani (1737-1798), whom first found that frogs’ nerve and muscles were 

electrically excitable (see Figure 7). Later, two investigators, Aldini (1762-1834) and 

Le Roy (1723-1789) demonstrated the possibility of electrically stimulating the 
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human brain. Using similar techniques of those previous two scientists, Galvani 

has been shown responses such as blinking or opening the eye by evoking 

cadavers. Subsequently, Luigi Rolando (1773-1831) carried out several lesion 

experiments and stimulation of central nervous structures’ surface. Using a voltaic 

pile and crude electrodes, he obtained limb movements, which became stronger in 

the cerebellum’s vicinity. Further, he erroneously concluded that this structure was 

the brain’s “source of vital motor energy” (109). This finding was furthered by 

Alexander von Humboldt (1769-1859), Carlo Matteucci (1811-1868) and Emil 

Heinrich du Bois-Reymond (1818-1896) discovered that muscles and nerves could 

generate electricity by themselves, and thus developed more advanced techniques 

to stimulate the central and peripheral nervous system. The pioneering work of 

mapping the brain cortex with electrical stimulation was done in 1870 by Eduard 

Hitzig (1838-1907) and Gustav Fritsch (1838-1927). Those who carry out 

experiments of localized electrical stimulation of several animals’ brain cortex 

(109).  

 Nevertheless, with the development of advanced devices that can produce 

electrical or magnetic impulses, non-invasive brain stimulation (NIBS) techniques 

were subsequently expanded. In the 1960s, the studies of D. J. Albert confirmed the 

different effects of negative and positive stimulation on changing brain cortical 

excitability and function (110). These findings laid the base for the modern tDCS 

technique. After that, in 1985, Barker and colleagues introduced the first 

transcranial magnetic stimulation model, which permitted the non-invasive 

stimulation of a targeted brain area. For This thesis’s purpose, one of the main NIBS 

technique used in sport science named transcurrent direct current stimulation 

(tDCS), will be discussed in the following section. 

1.5.2. Transcranial direct current stimulation (tDCS) 

 In the last few decades, tDCS was re-evaluated and shown to modulate 

human cerebral cortical function (111). tDCS is a NIBS technique and differ 

qualitatively from other brain stimulation techniques such as transcranial electrical 

stimulation and transcranial magnetic stimulation by not introducing neuronal 

action potentials. Because the static field in this range does not yield the rapid 

depolarization required to produce action potentials in neural membranes (111). 
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Therefore, tDCS might be deemed as a neuromodulatory intervention. The exposed 

tissue is polarized and tDCS modifies spontaneous neuronal excitability and 

activity by stimulating (depolarization and hyperpolarization) the resting 

membrane potential (108, 112).  

 The brain tissue polarization is obtained by the passage of a weak constant 

electrical flow from the anode to the cathode electrode. As a consequence, the 

spontaneous firing rate increases under the anodal electrode and decreases under 

the cathodal. The multiple potential benefits of tDCS have revived the interest in 

this technique. The tDCS is a form of neurostimulation technique that has been 

widely accepted to be effective for the treatment of depression (113, 114), cognitive 

enhancement in both healthy and clinical populations (115, 116), treatment of 

chronic pain (106, 117) and improving motor function in post-stroke patients (118). 

More recently, tDCS has been used as a potential modulator of sports performance 

(1, 119-121). 

1.5.3. Technical aspects of tDCS 

1.5.3.1. tDCS electrodes preparing and contact medium  

 The key purpose of tDCS electrodes is to facilitate the distribution of current 

from the stimulation device to the scalp (122). And the electrode selection is always 

based on the tDCS protocol used. Generally, the following electrode arrangements 

are used for tDCS i) metal or conductive rubber electrode, ii) an electrode sponge, 

and iii) an electrolyte-based contact medium (i.e., saline, gel, or conductive cream) 

to facilitate the delivery of current to the scalp, iv) any materials used to shape these 

components (123). Moreover, during tDCS, electrodes are not recommended 

directly in contact with the skin. After all, these site undergo electrochemical 

reaction during tDCS application (124). Especially, an electrolyte is used as a buffer 

between the electrode and the skin; therefore, with appropriate electrolyte volume, 

avoiding chemicals produced at the electrode from reaching the skin (125). 

However, the electrolyte can be placed on a sponge encasing the electrode (e.g., 

saline) or the case with electrode cream, applied directly on the electrode surface. 

Further, it is important to obtain good contact under, and only under, the electrode 
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with the electrode sufficiently, but not excessively soaked (123) because this makes 

a critical point for investigators to take proper outcome during the experiment. 

1.5.3.2. tDCS electrode placement  

 It is also important to know where to place electrodes on the head. Based on 

previous studies, physiological changes following tDCS demonstrated that the 

relative location of electrodes results in a significant difference in where and how 

much current is delivered to the brain (126, 127). For example, the relative 

differences of electrode locations altered whether or not tDCS impacted 

transcranial magnetic stimulation generated motor-evoked potentials (112). 

Specifically, Wood et al. (126) have demonstrated that as little as 1cm of movement 

in electrode position significantly changes the brain’s projected current flow 

distributions. Moreover, electrode placement is important on the head. Regarding 

this, the head size and shape differ from person to person, so it is important to use 

a method for common localization of electrode position. The most popular way is 

the international 10–20 (or 10–5) electrode placement system (128). Furthermore, 

physiology-based placement can only be performed for motor and other primary 

cortices (126).  

 After setting the electrode location, the electrode assembly must be attached 

to the head to deliver the current. Non-conductive headgear is used to position the 

electrodes on the body or scalp (i.e., elastic straps) because they are critical for 

appropriate electrode placement (126). For tDCS using sponge-covered electrodes, 

adjustable straps are the most commonly used headgear for electrode placement. 

In this way, if these straps are under-or over-tightened, electrodes have a high 

tendency to move throughout a tDCS session. Consequently, the distribution of 

current delivery changes throughout a tDCS session (126). On the other hand, if 

electrode straps are over-tightened, there is an increase in the probability of saline 

evacuation from the electrode sponges. Nevertheless, the contour at the base of the 

skull below the inion and the forehead’s flat deliver for steady placement of a strap 

around the head. Moreover, for the participants with long hair, order of the back of 

the strap under the hairline also improves the strap preparation’s stability. 
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1.5.3.3. Blinding and sham  

 The typical method of blinding the subjects for plasticity inducing protocols 

is to apply a ‘‘sham” stimulation protocol, which includes ramping stimulation up 

and down like in the real stimulation condition, but to stimulate with the target 

intensity only a few seconds (i.e., 30 seconds). Then subjects will feel the initial 

itching/tingling sensation. Moreover, the experimenter blinding concerning 

specific stimulation protocol is proficient by using stimulators that include a sham 

stimulation function, thus keeping the experimenter unaware of the particular 

stimulation condition. However, double-blinding, a couple of approaches are 

available, which should be chosen carefully considering the specific experimental 

design. 

1.5.4. tDCS parameters 

 The effect of tDCS on cortical excitability mainly depends on different 

parameters such as the region stimulated, the intensity of the current (mA), the 

duration of the stimulation, the placement and size of the electrodes, and the type 

of task (129). Manipulation of these parameters was observed to alter the 

magnitude and effect of tDCS stimulation in the targeted brain area (130). 

 Stimulation parameters such as current intensity and the stimulation 

duration are crucial to consider (112). The majority of behavioural studies and 

clinical trials apply current intensities of 1 - 2mA with an electrode size of 25 cm² 

(5 x 5) to 35 cm²  (5 x 7) and stimulation of 5 - 30 min, which is considered a safety 

protocol in humans (131). The first experiment investigating different tDCS 

intensity dosages was performed by Nitsche (112), who maintained the electrode 

size of 35 cm2 and monitored the cortical response following an increased 

stimulation intensity from 0.2 to 1 mA. This experiment showed for the first time 

that cortical excitability was increased more using higher current intensities. The 

previous studies demonstrated that the 2 mA of current intensity with 35 cm² sizes 

of electrode, can increase TTE performance during cycling task (119, 132, 133). The 

efficacy of tDCS to induce acute modifications of membrane polarity depends on 

current density, which determines the induced electrical field strength (106). 

Density is calculated as the ratio between current intensity and the size of the 
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electrode. Studies have been shown that lager current densities result in more 

powerful effects of tDCS (112, 134). 

 Regarding tDCS brain stimulation area, most studies targeted the primary 

motor cortex (M1) (72.5%), prefrontal cortex (PFC) (9.1%) and temporal cortex (TC) 

(13.6%) (135). Particularly, stimulating M1 aimed to increase its excitability in order 

to extend the neural drive to the active muscles and delay central fatigue. The 

motor cortex is an efferent structure responsible for the voluntary movements on 

the body’s contra-lateral side. The motor cortex receives inputs from both sensory 

pathways and other motor control regions and is ultimately responsible for 

planning, initiating and executing voluntary movements (136). The M1 lies within 

the pre central gyrus. It gives rise to many large outputs (pyramidal) cells synapse 

with motoneurons in the spinal cord’s ventral horn responsible for evoking 

muscular contractions. Many studies suggest that physical exercise leads to specific 

changes in brain organization’s functional and structural level. It is well known 

that M1 is a key region involved in motor control and functions in terms of 

perception, speed, strength, endurance and execution of the daily motor task. The 

PFC stimulation aims to improve top-down control over M1 output due to an 

enhanced physiological and psychological conditions. And the TC stimulation 

aimed at increasing parasympathetic control to postpone its with driving during 

exercise, which is related to the delay of fatigue.  

 The difference in changes to exercise enhancement arising from tDCS is 

potentially a consequence of different experimental and methodological 

configurations. According to recent evidence, a notable methodological difference 

has shown in the use of cephalic or extracephalic electrode montage. A cephalic 

electrode montage involves placing the anode electrode over the M1 (or main target 

area) and the cathode electrode (i.e., reference) placed over the contralateral 

prefrontal area (102, 137). An extracephalic montage places the cathode electrode 

on the opposite shoulder (120, 133, 138), rather than the head’s contralateral areas. 

The anode (a-tDCS) electrode increases excitability over the placed areas, while the 

cathode decreases excitability. In this context, cephalic montage, may induced an 

effect under the cathode that may modulate or negate the anode’s effect over M1 

(138). Extracephalic montage may avoid this problem. Angius et al. (137) compared 

cephalic and extracephalic tDCS montages by targeting a-tDCS over the M1. They 

demonstrate that shoulder (extracephalic) montage is more effective than head 
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(cephalic) montage to improve endurance performance, likely by avoiding the 

cathode’s adverse influence on excitability. Recently, many studies have 

demonstrated the effectiveness and safety of extracephalic montage (138, 139). 

Regarding the duration of the tDCS, most studies report a time that oscillated 

between 10 and 30 min (140, 141). The duration of stimulation depends on the 

persistence of prolonged effect. Regarding this Nitsche et al. (2) showed an 

elevation of cortical excitability (increased MEP size) for up to 90 min following a 

9 – 13 min stimulation protocol. However, when tDCS applied for 5 - 7 min the 

effects lasted for no longer than 5min (see Figure 5). However, tDCS should be 

applied over a sufficiently long time to modify the synaptic strength by modulating 

the activity of N-methyl-D-aspartate receptors (142). The relationship between the 

stimulation time and the duration of the effect is not linear and can be reversed 

beyond a certain time.  

The electrode size and polarity are also important parameters contributing to 

the final output of stimulation. The tDCS used low amplitude direct currents 

applied via scalp electrodes to modulate the corticospinal excitability level (112). 

The direction of the changes depends on the polarity of the active electrode. 

Application of a-tDCS over the target brain area depolarized the resting membrane 

potential and caused increased excitability. The opposite is the cathode electrode, 

which hyperpolarizes the resting membrane potential and causes reduced 

excitability (140). Electrode size regulates the applied current’s spatial focality, and 

tDCS is poorly focused using a large rectangular pad electrode configuration (143). 

Interesting, only one study has examined the focality of a-tDCS and the effect of a-

tDCS, and the effect of a-tDCS was measured by manipulating the size of 

conventional pad electrodes (143). They found that a-tDCS, with 3.5 cm² anodes 

placed over the abductor digiti minimi representation over M1, did not modulate 

the excitability of the neighbouring representation of the first dorsal interosseus 

muscle, which lay just outside of the physical limit of the anode. 

The parameters mentioned above change between studies and according to 

the objective of the stimulation. Consequently, it is not surprising that there is 

considerable variation in the tDCS set-up used across studies. It is also important 

to note that the brain does not passively accept it on receiving stimulation but reacts 

somehow (139). Therefore, the exact effects of tDCS on brain tissue are still not clear 

and yet to be defined. 
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1.5.5. Side effects and safety criteria for tDCS 

 tDCS is a NIBS technique that has experienced significant growth in recent 

years. Thus, with the growing number of tDCS protocols, new devices, and tDCS 

therapy, stricter safety criteria were required. Currently, a stimulation of 2 mA for 

20 min is considered safe for humans (144) in both single and repeated sessions 

(129). In terms of intensity and duration, these parameters are frequently used to 

treat various neurological disorders (145). Adverse side effects of tDCS are 

characterized by itching sensation and tingling under the electrodes, headache, and 

tiredness (129).  

 Unlike repetitive transcranial magnetic stimulation, no cases of seizure 

induction have been reported (126). Post tDCS, side effects are commonly described 

as a mild headache or dizziness, usually disappearing in a few hours after 

stimulation (129, 144). Moreover, no cognitive or motor impairments have been 

reported following tDCS (129, 144). These studies suggest tDCS to be a safe 

neuromodulatory brain technique, with no or only minor side effects. However, 

safety procedures during a subject’s preparation and contraventions to subjects are 

Figure 5. After-effect of a-tDCS on M1 excitability (2). 

Note: Symbols indicate tDCS duration: circles = 5 min, diamonds = 7 min, upward-pointing 

triangles = 9 min, downward-pointing triangles =11 min, squares = 13 min. 
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required to reduce any possible adverse effects. However, normally applied tDCS 

protocols using relatively well-defined electrodes, stimulus durations and 

intensities seem safe and well-tolerated. 

1.5.6. Brain stimulation to enhance exercise performance  

 In the last decade, numerous studies have demonstrated a major possibility 

to increase exercise performance following a-tDCS stimulation. In this section, we 

discuss evidence of the effect of tDCS on endurance, strength and sprint 

performance. 

1.5.6.1. tDCS effect on muscle strength performance 

 Muscle strength is determined by morphological and neural factors, 

including motor unit recruitment, rate coding, motor unit synchronization, 

neuromuscular inhibition, cross-sectional muscle area, and musculotendinous 

stiffness (146). Muscular strength is one of the most important factors for physical 

performance in different sports (146). Therefore, an increase in muscle strength is 

recommended for all sport and non-sport population. Many investigations have 

examined various training methods that optimize muscle strength development in 

all people (147). In this regard, neuromodulatory techniques have also been used 

as ergogenic aids with promising results for increasing force output compared to 

placebo (sham) stimulation (148, 149). Previous investigations have demonstrated 

that a-tDCS effectively promoted the acute enhancement in submaximal strength 

(i.e., muscular endurance) (120, 138, 148, 149).  

 Given the information mentioned above regarding the importance of muscle 

strength, identifying a safe ergogenic aid to optimize muscle strength is of intense 

interest to athletes, coaches, and researchers (150). However, the effects of a-tDCS 

on different muscle strength have elicited inconsistent outcomes. The divergent 

results could be explained by the different tDCS set-ups affecting the stimulated 

area, current intensity and duration of a-tDCS (120, 151, 152). The potential 

ergogenic effects of a-tDCS applied over M1 increase corticomotoneuronal 

excitability in the exercising limb (153). According to many investigations, tDCS 

can be used as an ergogenic aid by coaches and personal trainers especially in a 
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task involving isometric contractions. Thereby, a-tDCS could be applied as a 

complementary tool in muscle strengthening programs. 

1.5.6.2. tDCS effect on endurance performance 

 Okano et al. (102) were the first to investigate the effect of tDCS on whole-

body exercise performance. In a crossover, randomized experimental design, 

participants performed maximal cycling exercise up to volitional exhaustion. 

Following a-tDCS, maximal power output improved by ∼4%, and RPE and HR 

were lower than a sham condition. The authors suggested that a-tDCS could have 

affected the insular cortex’s activity, thus reducing RPE and improving 

performance. Angius et al. (137) investigated the effect of tDCS on exercise-induced 

muscle pain during cycling TTE and on pain perception during a cold pressor test. 

The authors did not find changes in TTE performance and physiological or 

perceptual parameters during exercise. Another study conducted by Vitor-Costa et 

al. (154) found an improvement in cycling TTE performance following a-tDCS over 

M1. 

 Barwood et al. (9) have investigated the effects of tDCS on a 20km cycling 

ETT and a TTE test in hot conditions. The same montage used by Okano et al. (102)  

has applied to the hypothesis that tDCS would reduce the RPE for a given intensity 

and improvement in cycling performance. Angius et al.(133) have reported a 

significant improvement in cycling TTE performance by 23%, lower RPE, and 

increased corticospinal excitability following bilateral extracephalic M1 a-tDCS. 

The authors argued that the lower RPE values observed after a-tDCS were related 

to the increased M1 excitability, which in turn needs to receive less input from other 

brain areas (i.e., premotor cortex) to generate the output required to recruit the 

muscles to produce a given power output (133). 

 Lattari et al. (155) investigated the effect of a-tDCS over the left DLPFC in 

physically active women. They revealed a significant increment in exercise 

tolerance on cycling TTE at 100% peak power by 4%. Nevertheless, RPE values did 

not differ between the control and experimental conditions. However, these 

findings may be related to a ceiling effect in RPE during high-intensity exercise (i.e., 

100%/peak power output). Another recent study conducted by Angius et al. (132) 

reveals that a-tDCS over the left DLPFC significantly increases TTE during cycling 
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with a concomitant reduction in RPE values, mainly due to improvements in the 

inhibitory control caused by changes in frontal lobe excitability. A part of these 

cycling studies, there is another study, conducted by Park et al. (156) reported an 

increase in running TTE performance after a-tDCS over M1 without revealing any 

effect on RPE values. There are also some studies where no TTE performance 

enhancement following tDCS protocols was observed (137, 157) and studies that 

did not find improvements in endurance time trial tasks following a-tDCS (1, 9, 

158). 

1.5.6.3. tDCS effect on sprint performance 

 Sprint performance is a major determinant in many athletic activities (159). 

Ultimately, it represents the equilibrium of propulsive power and resistance (160). 

Sprint performance during short-distance running or cycling gradually decreases 

after reaching its maximum speed or cadence (121). The most important factors 

limiting performance during sprints are fatigue occurring in the CNS and  

peripheral system (121). In this regard, it has been argued that the manipulation of 

supraspinal centres involved in the control of the motor output, such as M1, may 

reduce central fatigue and, thus, increase sprint performance (161). 

 Recent, only a few studies have investigate the effect of a-tDCS on sprint 

performance in cycling (121, 162). Sasada et al. (121) had demonstrated that 15 min 

of a-tDCS applied over M1 before exercise did not improve either peak or mean 

power output during a Wingate test (30-sec all-out test). In contrast, Huang et al. 

(162) have demonstrated that the application of tDCS using HALO sport© can 

improve repeated cycling sprint performance (162). Specifically, following 20 min 

of tDCS with HALO sport© subjects significantly enhanced the mean power output 

during a repeated cycle sprint test, but no significant differences were found in 

peak power output (P = 0.47). Therefore, it seems that the positive effect of a-tDCS 

described by Huang et al. (162)  could be related to an improved exercise tolerance 

without changes in maximal force or power capacities.  

 Collectively, experiments mentioned above provide interesting insights 

regarding the possible effects of tDCS on exercise performance in healthy 

individuals. However, the different outcomes in terms of improvement in exercise 

performance make the potential benefits of tDCS still uncertain. The results’ 
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inconsistency makes the experimental findings difficult to interpret and might be 

in part caused by the large differences between the experiments regarding exercise 

type and/or tDCS set up. The exact mechanisms underlying the effects of tDCS on 

exercise performance is still not clear. Researchers suggest it is likely to facilitate 

the M1 excitability during sports activities  (120, 163). Indeed, as mentioned above, 

many of the studies were not designed to specifically assess the mechanism by 

which performance was hypothesised to improve. Therefore, more studies are 

needed to controlling the tDCS parameters (i.e., montage, identity, location etc.) 

and examining the mechanisms responsible for the effects of tDCS. 
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II – JUSTIFICATION 

 Task failure is a key determinant for defining the final effort of many sports 

activities. The mechanism that leads to task failure may involve different 

physiological processes. However, fatigue is an expected physiological reaction 

that inevitably leads to task failure (47). With sustained submaximal contraction, 

the spinal motoneurons excitability and the contractility of the muscle fibers are 

reduced (164). The spinal motoneuron’ input must be increased to maintain the 

required strength or power (161). Contemporary studies have challenged the 

current exercise physiology model by emphasizing the crucial role played by the 

brain in the regulation of exercise performance (19, 20). Current evidence suggests 

that the PFC, IC, M1, supplementary motor area, and cerebellum play an important 

role in regulating physical effort and endurance exercise performance (156). 

Therefore, a neuromodulation intervention designed to improve exercise 

performance should rationally target these areas. Regarding this, interventions that 

can enhance the excitability of the M1 could increase output from M1 to the muscle 

fibres, delaying the development of supraspinal fatigue, which would lead to an 

increase in endurance exercise capacity (120, 163). It has been demonstrated that a 

neuromodulatory technique called tDCS can transiently modulate the excitability 

of M1 and consequently physical performance (165). 

 Different meta-analyses have recently been published, which shed mixing 

results regarding the effects of a-tDCS on strength and endurance performance 

(135, 141, 166, 167). Calculations conducted by pooling together different tasks 

performed provides unclear and confounding results on the effect of tDCS on 

physical performance. In particular,  most of these previous meta-analyses did not 

consider the specificity of the task (166). Therefore, it is still unknown whether the 

effect of a-tDCS could be task-dependent. Considering the aspects mentioned 

above, we planned to perform a systematic review and meta-analysis to quantify 

the effect of a-tDCS on endurance cycling, and running performance, where the 

performance has been analysed by tasks performed such as endurance (TTE, TT), 

and sprint performance. It should be noted that many sports activities are based on 
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dynamic movements that involve multiple joints and muscles such as cycling or 

running. Therefore, it is relevant to clarify the specific cycling or running tasks that 

could benefit the most from the acute effect of a-tDCS. Furthermore, it is also 

important to delineate whether the effect of a-tDCS depends on the characteristics 

of the tasks (i.e., TTE vs. ETT or sprint), that although they share some common 

principles, their performance depends on different physiological and cognitive 

demands. TTE is considered a key parameter to define the final effort of many 

endurance sports. Therefore, we performed an experimental study to investigate 

whether TTE could be improved using bilateral extracephalic tDCS over M1.  
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III – OBJECTIVES 

3.1. GENERAL OBJECTIVES  

• To investigate the ergogenic effect of a-tDCS on endurance (whole-body 

dynamic) exercise performance in physically active people. 

• To systematically review the state of the literature with regard to the 

effectiveness of the acute effect of a-tDCS in endurance whole-body dynamic 

physical performance. 

• To investigate the effect of bilateral extracephalic a-tDCS over M1 during 

constant-load cycling TTE task in physically active people. 

3.2. SPECIFIC OBJECTIVES  

 The specific objectives outlined for the two studies included in this present 

thesis are presented below: 

 

Study - I 

• To quantify the effect of a-tDCS on endurance (TTE, ETT), and sprint 

performance during cycling and running tasks. 

 

Study - II 

• To determine the effect of bilateral extracephalic a-tDCS over M1 on cycling 

time to exhaustion (TTE) performance during constant-load cycling task. 

• To determine effect of bilateral extracephalic a-tDCS over M1 on HR response 

during constant-load cycling TTE task.  

• To determine the acute effect of bilateral extracephalic a-tDCS over M1 on 

perception of effort (RPE) during constant-load cycling TTE task. 

• To investigate the effect of bilateral extracephalic a-tDCS over M1 on exercise-

induced muscle pain during constant-load cycling TTE task. 
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IV– HYPOTHESIS 

 The specific hypothesis outlined for both studies included in this present 

thesis are presented below: 

 

Study - I 

 

• The acute effect of a-tDCS will increase the endurance (TTE, ETT), and sprint 

performance during cycling and running task performance compared with 

the sham tDCS condition. 

 

• The acute effect of a-tDCS on endurance performance will depend on the task 

performed. 

 

Study - II 

 

• Bilateral extracephalic a-tDCS over M1, will enhance TTE performance 

during constant-load cycling task. 

 

• Bilateral extracephalic a-tDCS over M1, will show no change in HR response 

during constant-load cycling TTE task. 

 

• Bilateral extracephalic a-tDCS over M1, will decrease RPE values during 

constant-load cycling TTE task. 

 

• Bilateral extracephalic a-tDCS over M1, will decrease exercise-induced 

muscle pain during constant-load cycling TTE task.
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 V – STUDY - I 

5.0. ACUTE EFFECT OF TRANSCRANIAL DIRECT CURRENT STIMULATION ON CYCLING 

AND RUNNING. A SYSTEMATIC REVIEW AND META-ANALYSIS. 

5.1. METHODS 

 The present systematic review was performed following the Preferred 

Reporting Items for Systematic Review and Meta-Analysis Protocols’ (PRISMA-P) 

2015 guidelines (168). 

5.1.1. Data source and search strategy 

  A comprehensive literature search was performed using Medline (via 

PubMed), SportDiscus and Science Direct from 1970 to September 2019. Mendeley 

software was used to import references and to identify duplicate studies. The 

search strategy was composite by two main concepts, the first one referring to 

transcranial direct current stimulation (i.e., “tDCS” OR “a-tDCS” OR “anodal-

tDCS” OR “transcranial direct current stimulation”) and the second one referring 

to the main performance outcomes of this review (i.e., “endurance” OR “time to 

task failure” OR “time limit” OR “time to exhaustion” OR “cycling” OR “running” 

OR “sprint”). The literature search was conducted by SKF. The authors of the 

studies included in this review were contacted if crucial data were not reported in 

the original paper. The reference list of each included study was explored to 

identify more potential suitable studies. The flow diagram of the search process is 

shown in Figure 6. 

5.1.2. Study selection and eligibility criteria  

 After the elimination of duplicated studies, the titles and abstracts of 

recovered studies were screened independently by two authors (SKF and GM) to 

obtain relevant articles. Articles providing insufficient information in the title and 

abstract were full-text screened to assess whether they met the eligibility criteria. 
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Articles were included in the review based on the PICOS approach (168). In this 

approach, “P” stands for population, “I” for intervention, “C” for comparators, “O” 

for the main outcome, and “S” for study design. Randomized controlled trials (S) 

conducted with healthy people (i.e., from 18 to 50 years old) free of orthopaedic 

and neurological conditions (P) were included if they measured the effects of acute 

administration of a-tDCS (prior to the task) on cycling or running performance (I). 

The presence of a control condition (i.e., sham stimulation) was required to exclude 

a possible placebo effect (C). The dependent variables included in this systematic 

review were the following: (A) TTE: cycling or running at a constant or incremental 

intensity until participants could no longer continue with the effort; (B) ETT: 

completing a set distance in the shortest possible time (> 30 seconds); and (C) sprint 

performance: completing a set distance in the shortest possible time (≤ 30 seconds) 

or the maximal power recorded in a short time window (< 30 seconds). Thus, the 

main outcomes (O) were time (in seconds) or power (in watts). The final 

inclusion/exclusion decision was made by two independent researchers (SKF and 

GM). 

5.1.3. Data extraction  

Two authors (SKF and GM) independently extracted the following data from 

the included studies: study information (authors, published year, number of 

interventions, and exercise task), sample characteristic (sample size, sex, age, and 

training status), tDCS set-up characteristics (polarity, electrodes placement, 

stimulation duration, current intensity and density, and electrode size), outcomes 

(TTE, TT, or power output), and effectiveness (significant differences between 

experimental and control conditions). Authors of the original papers were 

contacted if the means and standard deviations of the dependent variables were 

not provided, but we estimated means and standard deviations from the published 

figure using WebplotDigitizer software (version 4.2, San Francisco, CA, USA) when 

authors did not respond to our request. 
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Figure 6. Study flow diagram. 
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5.1.4. Assessment of methodological quality 

 The methodological quality of the selected studies was quantified through 

the physiotherapy evidence database (PEDro) scale (http://www.pedro.org.au). 

This scale consists of 10 criteria that rate the internal validity and the presence of 

statistically replicable information. Each criteria are rated “yes” or “no”, with “yes” 

only awarded when a criterion is clearly satisfied. The cut-off score for rating a 

study as high quality was ≥ 6/10, with lower scores considered as low 

methodological quality. The methodological quality of each study was rated by two 

reviewers. When there was doubt this was resolved by discussion with another 

researcher until a consensus was reached. 

5.1.5. Statistical analysis  

 Statistical analyses were performed using the Review Manager software 

(RevMan 5.3.5; Cochrane Collaboration, Oxford, UK). The effect size of each study 

was calculated as the difference in performance between the experimental (i.e., 

after a-tDCS application) and control (i.e., sham) conditions. The mean differences 

were standardized by dividing the raw difference by the within-group standard 

deviation. Standardized mean differences (SMD) of all interventions were pooled 

with a random effect model. According to Cohen's guidelines (169), SMD values of 

0.2, 0.5, and 0.8 represent small, moderate, and large effect size, respectively. 

Heterogeneity between studies was assessed using I² statistics. Statistical 

significance was set at P ≤ 0.5. 

5.2. RESULTS  

5.2.1. Study selection and characteristics  

 A total of 950 articles were screened and 31 full texts were assessed for eligibility. 

The reason for exclusion of the screening part was the use of different exercises (i.e., single-

joint exercises) and the inclusion of a patient population (i.e., stroke or Parkinson) (see 

Figure 7). The article selection process resulted in the inclusion of 15 interventions from 13 

studies: nine TTE studies (9, 102, 132, 133, 137, 154-157), three ETT studies (9, 158, 170), 

and two sprint studies (121, 162). Barwood et al. (9) and Andre (1) included different   tDCS
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interventions within the same study and they were considered as independent 

interventions for the current systematic review and meta-analysis. Table 1 shows 

the main characteristics of the studies included in the systematic review and meta-

analysis. The current intensity ranged from 1.5 to 2.0 mA, current density ranged 

from 0.083 to 0.166 mA/cm2, and the duration of stimulation ranged from 10 to 30 

min. Only 30 seconds of stimulation was applied in the sham condition. Four 

studies assessed both men and women (132, 133, 170), one study used only women 

(155), and the remaining studies included only men (9, 102, 137, 154, 156-158, 162). 

The training status of the subjects ranged from physically active to competitive 

athletes. 

5.2.2. Study quality assessment  

 The quality of the studies was generally high with a mean score of 7.0 ± 0.6 in 

the 0-10 PEDro scale (Table S1). 

5.2.3. Effect of tDCS on running and cycling performance  

 The systematic search identified a total 15 interventions that examined the 

effects of a-tDCS on TTE, ETT and sprint performance during running or cycling 

tasks. An overall small effect was observed in favour of the a-tDCS condition (SMD 

= 0.22; 90% CI = 0.05, 0.39; P = 0.04). The subgroup analysis revealed a significantly 

higher TTE performance for the experimental compared to the sham condition 

(SMD = 0.37; 90% CI = 0.13, 0.61; P = 0.01), while no significant differences were 

observed between the experimental and sham conditions for ETT (SMD = 0.00; 90% 

CI = - 0.29, 0.30; P = 1.00) or sprint performance (SMD = 0.19; 90% CI = - 0.23,0.060; 

P = 0.46) (Figure 7). 

5.3. DISCUSSION  

 This systematic review and meta-analysis included 15 interventions with a 

total of 192 subjects examining the effects of applying a-tDCS before cycling and 

running tasks on endurance (TTE and ETT) and sprint performance. Our analysis 

revealed a significant effect of a-tDCS on cycling and running performance when 
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all tasks were pooled together. Moreover, the sub-group analysis evidenced a small 

but significant effect in favour of the a-tDCS compared to the sham condition on 

TTE (SMD = 0.37; 90% CI = 0.13, 0.61; P = 0.01), while ETT (SMD = 0.00; 90% CI = -

0.29, 0.30; P = 1.00) and sprint performance (SMD = 0.19; 90% CI = - 0.23, 0.60; P = 

0.46) did not differ between the experimental and sham conditions. Therefore, this 

meta-analysis suggests that the effect of a-tDCS on whole-body dynamic exercises 

is task dependent. However, it is important to note that only four studies analysed 

ETT task and two studies the sprint tasks. Therefore, more studies are apparently 

needed to firmly establish the effect of tDCS on these types of tasks. 

Figure 7. Forest plot with subgroup analysis for comparison of time to 

exhaustion (TTE), endurance time trial (ETT), and sprint performance 

between the experimental and sham conditions. Andre et al. (1) + - subgroup 

that received a-tDCS over M1 before the task (cycling ETT; mean power output). 

Barwood et al. (9) + - subgroup that received a-tDCS over T3 before the task (20 km 

cycling ETT; mean power output). 
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5.3.1.  Acute effect of anodal-tDCS on TTE performance  

 Nine of the fifteen interventions included in the present systematic review 

and meta-analysis explored the effect of a-tDCS on TTE performance during 

running and cycling revealing a small positive effect (SMD = 0.37, P = 0.01). 

Interestingly, five out of nine interventions reported an improvement in TTE 

during cycling (102, 132, 133, 154, 155), while only one study (156) reported 

enhancement in TTE performance during a running task. 

 Okano et al.(102) were the first to report an increase of ~4% in peak power 

output during a maximal cycling incremental test along with lower RPE values 

following a-tDCS over the left TC. The authors speculated that the application of a-

tDCS over the left TC could have modulated the excitability of the IC, which likely 

led to a decrease in RPE when exercising at submaximal intensities, improving 

endurance performance. This hypothesis is justified because it is known that the IC 

is the main area of the brain responsible for the awareness of subjective feelings 

from the body (171) and it is related to the RPE values reported during dynamic 

exercises (172). Angius et al. (133) also found significant improvements in cycling 

TTE performance by 23%, lower RPE, and increased corticospinal excitability 

following bilateral extracephalic M1 a-tDCS. The authors argued that the lower 

RPE values observed after a-tDCS were related to the increased M1 excitability, 

which in turn needs to receive less input from other brain areas (i.e., premotor 

cortex) to generate the output required to recruit the muscles to produce a given 

power output (133). These data are partially confirmed by Vitor-Costa et al. (154) 

who found an improvement in cycling TTE following M1 stimulation with a trend 

towards a reduction in RPE (P = 0.07). Another recent study conducted by Angius 

et al. (116) demonstrated that a-tDCS over the left DLPFC significantly increased 

TTE during cycling with a concomitant reduction in RPE values, mainly due to 

improvements in the inhibitory control caused by changes in frontal lobe 

excitability. In the same line, Lattari et al. (155) investigated the effect of a-tDCS 

over the left dorsolateral PFC in physically active women and revealed a significant 

increment in exercise tolerance on cycling TTE at 100% peak power by 4%. 

Nevertheless, RPE values did not differ between the control and experimental 

condition in the study of Lattari et al. (155), which may be related to a ceiling effect 

in RPE during high-intensity exercise (i.e., 100/peak power output) (132). However, 
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it should be mentioned that Park et al. (156) reported an increase in running TTE 

performance after a-tDCS over M1 without revealing any effect on RPE values, and 

other studies that applied similar tDCS protocols did not find improvements 

neither in TTE performance nor in RPE (137, 157, 170). 

5.3.2.  Acute effect of anodal-tDCS on ETT performance  

 A self-paced exercise is a physical activity in which the effort has to be 

distributed in the best possible way to cover a given distance as quickly as possible 

or to cover the largest possible distance in a given time (158). During self-paced 

exercise tasks, such as an ETT, athletes should regulate their energetic resources to 

maintain a submaximal sustainable intensity to avoid premature fatigue and 

exhaustion (172). As we know the exercise work rate is regulated by the brain based 

on the integration of numerous signals from various peripheral physiological 

systems (40). However, the role of the brain in pacing is not entirely clear, although 

RPE, which can be modulated by tDCS (9), is a key perceptual anchor for the 

regulation and distribution of effort (40) and it might provide a potential 

mechanism for influence exercise pacing and performance (9). However, few 

studies have tested the effect of a-tDCS on self-paced ETT. 

 Only four out of 15 interventions (9, 158, 170) included in the present meta-

analysis, examined the effect of a-tDCS on self-paced cycling ETT performance 

revealing a trivial effect (SMD = 0.00, P = 1.00). Twenty min. of 1.5 mA a-tDCS over 

the left TC, the M1, or the dorsolateral PFC, before 16km self-paced ETT in male 

and female trained cyclist did not improve performance compared to sham 

condition (170). In the same line, 20 min. of a-tDCS at 2.0 mA over the DLPFC 

applied before a self-paced 20 min cycling ETT on male trained cyclist did not 

improve performance compared to sham condition (158). Therefore, this result 

suggests that a-tDCS does not improve cycling self-paced ETT task performance 

(170). 

5.3.3. Acute effect of anodal-tDCS on sprint performance 

 Sprint performance is a major determinant in many athletic activities (159). 

Ultimately, it represents the equilibrium of propulsive power and resistance (160). 
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However, sprint performance activities such as short-distance running or cycling 

gradually decreases after reaching a maximum speed or cadence (121). The most 

important factors limiting performance during sprints are fatigue occurring in the 

central nervous system as well as in the peripheral system (i.e., at or distal to the 

neuromuscular junction) (121). In this regard, it has been argued that the 

manipulation of supraspinal centers involved in the control of the motor output, 

such as M1, may reduce central fatigue and, thus, increase sprint performance 

(161). 

 However, in the present systematic review and meta-analysis, only two 

studies have tested the effect of a-tDCS on sprint cycling performance (121, 162) 

and revealed a non-significant small effect of a-tDCS on cycling sprint performance 

(SMD = 0.19, P = 0.46). According to these studies, 15 min a-tDCS applied over M1 

before exercise did not improve neither peak nor mean power output during a 

Wingate test (30-sec all-out test) (121). In contrast, Huang et al. (162) demonstrated 

that the application of tDCS using Halo sport© can improve repeated cycling sprint 

performance. Specifically, following 20 min of tDCS with Halo sport© sports 

subjects significantly enhanced the mean power output during a repeated cycling 

sprint test, but any significant differences were found in peak power output (P = 

0.47). Therefore, it seems that the positive effect of a-tDCS described by Huang et 

al. (162) could be related to an improved exercise tolerance without changes in 

maximal force or power capacities, as it has been previously proposed by Alix-

Fages  et al. (141). 

5.3.4. Characteristic of the tDCS protocol  

 According to the findings mentioned above, the potential ergogenic effects of 

a-tDCS on whole-body exercise performance are still inconclusive. Such 

inconsistencies may be explained by the different tDCS set-up characteristics used 

in the mentioned studies (i.e., stimulated brain area, electrodes montage, 

stimulation duration, current intensity and density, and electrode size). 

 Regarding the region of stimulation, numerous brain areas are known to play 

an important role in exercise regulation and, therefore, the rationale for using tDCS 

for performance improvement may differ accordingly (141). As evidenced in the 

present meta-analysis, these regions included the M1, DLPFC and TC. Most of the 
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studies that reported a positive effect of a-tDCS targeted the M1 region (133, 154, 

156), which is considered a key determinant in endurance task performance (173). 

M1 stimulation could be effective to enhance endurance performance since 

increases in M1 excitability may increase the neural drive to the active muscles, 

delay central fatigue, or reduce the pain induced by exercise (137). 

 There is also evidence regarding the role of other cortical regions in 

endurance performance (174). In this context, studies included in our systematic 

review also revealed significant improvements in TTE performance following a-

tDCS over dorsolateral PFC (132, 155). The DLPFC is a crucial brain region for 

inhibitory control, an executive function essential for both behavioral self-

regulation (132) and likely exercise regulation (174). Additionally, there is evidence 

regarding the positive effect on endurance performance following a-tDCS over the 

TC (163). It is plausible that the application of a-tDCS modulated the excitability of 

TC and IC which have been associated with the control of the autonomic nervous 

system (ANS) and awareness of emotional feelings from the body (102, 171). This 

modulation would therefore reduce the RPE values and lead to an improvement in 

TTE performance (102). However, other studies did not find any effect of a-tDCS 

over TC on autonomic control (137).  Furthermore, some studies included in the 

present meta-analysis have failed to find this kind of improvement in endurance 

performance following tDCS stimulation over the same regions mentioned above: 

M1 (121, 157, 162, 170), DLPFC (158) and TC (9). These results suggest that other 

tDCS set-up parameters in addition to the region of stimulation should modulate 

the ergogenic effects of tDCS on endurance performance.  

 Regarding electrodes montage, in those studies which used a cephalic 

montage (i.e., anodal electrode over the target area and the cathodal electrode over 

the contralateral prefrontal cortex) (137, 163), it is plausible that the lower 

excitability expected in the brain area under the cathode may have counteracted 

the positive effect of the anodal stimulation. An extracephalic montage (i.e., anode 

over the main area and cathode on the shoulder) may avoid this problem and this 

could explain the large ergogenic effects of a-tDCS in studies that use an 

extracephalic montage (120). The duration of stimulation is another key parameter 

that may influence tDCS aftereffects (175). Alix-Fages et al. (141), demonstrated a 

higher endurance performance when stimulating the cerebral cortex for 15-20 min 
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compared to 10 min (ES = 0.31 and 0.17, respectively). However, the present 

systematic review and meta-analysis revealed a significant effect on TTE 

performance during cycling regardless of the stimulation duration: 30 min (170), 20 

min (102, 155), 13 min (154), or 10 min. (133). Regarding the current intensity, 

Nitsche et al. (112) reported that cortical excitability was increased more using 

higher (1.5 - 2.0 mA) compared to lower (0.5 mA) intensities.  

 However, no study has directly compared the effects of different intensities 

of tDCS on the performance during the tasks included in the current systematic 

review. Furthermore, the stimulation intensity used in the studies analyzed in the 

present meta-analysis was very homogeneous, ranging from 1.5 mA (170), 1.98 

(156) and 2 mA (the other 13 interventions). To the best of our knowledge, only one 

study has investigated the effect of tDCS intensity (2 vs 4 mA) on knee extensor 

performance during an isokinetic fatiguing task (176).
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VI- STUDY - II 

6.0. EFFECT OF BILATERAL EXTRACEPHALIC TRANSCRANIAL DIRECT CURRENT 

STIMULATION OVER M1 ON CONSTANT-LOAD CYCLING TIME TO EXHAUSTION TASK 

PERFORMANCE 

6.1. METHOD AND MATERIALS 

 In this section, we describe methodological procedures and materials used in 

the experimental study of this thesis. All the data collection and sample analysis in 

this thesis were carried out in the neuroscience laboratory of Catholic University in 

Murcia. 

6.1.1. Study design 

 We conducted a crossover double-blind, randomized and placebo-controlled 

design to investigate the effect of bilateral extracephalic tDCS over M1 during a 

constant-load cycling TTE task with 16 healthy active subjects. The independent 

variable, tDCS (anodal and sham conditions), was applied over bilateral M1 before 

the constant-load cycling TTE task. The dependent variables (HR, RPE, exercise-

induced muscle pain, and TTE) were assessed during the constant-load cycling TTE 

task after tDCS. Control variables (profile of mood state (POMS), beck anxiety 

inventory (BAI), pittsburgh sleep quality index (PSQI)) were collected before the 

application of tDCS. Each subject visited the laboratory on three occasions, each 

separated by at least seven days. During the visit 1, the purpose was to familiarize 

the subject with all procedures performed during the experimental protocol and 

determine their 10 min maximal aerobic power. During visits 2 and 3, each 

participant performed both tDCS experimental sessions in a counterbalanced order 

(A/B – B/A design).  
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6.1.2. Description of the study population 

 All subjects were students at the Catholic University of Murcia or residents 

of the local community. For this study, the subjects were recruited mainly through 

personal contacts and emails. All subjects were between 18 and 40 years old and 

free from any cardiometabolic, neuromuscular, musculoskeletal diseases or 

medication. The demographic information of the subjects from the first session is 

shown in the table 2. Each subject was informed about the procedures, benefits and 

risks before giving their written informed consent (see Annex 1). A total of 16 

subjects were recruited for the study, and they were instructed to avoid strenuous 

physical activity, take caffein, and to rest well the day before and on the same day 

of testing for all the sessions. 

 

 

6.1.3. Inclusion and exclusion criteria  

 Inclusion criteria for subject participation were age between 18 to 40 years, 

physically active participants (who are physical activity for at least one hour per 

day and 4 - 5 days per week), and free from certain medical conditions 

(cardiovascular diseases, respiratory diseases, and neurological diseases). All the 

subjects had to fill in two screening questionnaires. The first of these questionnaires 

was a tDCS screening questionnaire (see Annex 2). Due to the nature of tDCS, the 

subjects were excluded if they had undergone brain surgery, were pregnant, had 

Table 2: Characteristics of the subjects 

 N Media SD Minimum Maximum 

Age (years) 16 23.1 4.5 20 39 

Weight (kg) 16 70.1 10.7 56.4 88.1 

Height (m) 16 1.74 0,06 1.64 1.82 

10-min power test 16 193.5 27.22 129 245 

Note: SD: standard deviation    
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metal in their brain or an implanted neurostimulator. The second was the Physical 

Activity Readiness Questionnaire (Par-Q+) (see Annex 3).  

6.1.4. Variables of the investigation  

 The research variables used for this study are described in the following 

section.     

6.1.4.1. Independent variable 

 The type of stimulation: a-tDCS (experimental) and s-tDCS (sham (control)).  

Transcranial direct current stimulation (tDCS) 

 The tDCS was administered by two transcranial direct current stimulators 

using two rubber electrodes (Anodal 7 x 5 cm, Cathodal 6 x 4 cm) and a water-

soaked synthetic sponge (see Figure 8). The tDCS protocol used by Angius et al. 

(133) was used for this experiment. Two anodal electrodes were placed over  

Figure 8. Materials for instrumentation of the subject. Own elaboration. 
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bilateral M1, while the two cathodal electrodes were placed on the ipsilateral 

shoulders. Electrical current was delivered at an intensity of 2.0 mA for 10 min. The 

same montage was used for the sham condition, but the tDCS time lasted 30 

seconds and was subsequently ramped down to no stimulation. This induced a 

slight itching sensation, which is commonly experienced during tDCS at the 

beginning of the stimulation, but does not produce cortical changes (177). 

6.1.4.2. Dependent variable  

 The dependent variables used in this study were: cycling TTE, HR response, 

RPE, and exercise-induced muscle pain. These are described one by one below. 

Time to Exhaustion (TTE) 

 In sports science, performance tests are often used to control the effectiveness 

of interventions, and therefore each test must be able to provide a reliable and 

consistent measure of performance. Endurance performance is measured in 

laboratories using two types of tests: the ETT and TTE tests. In the ETT test, subjects 

work at a self-selected intensity to complete a set distance or to work as fast as 

possible, whereas, in the TTE tests, work is usually carried out at a predetermined 

and constant work rate until volitional exhaustion, that is, the point where the 

subjects are unable to maintain the required force or intensity. TTE tests have a 

subjective endpoint, as the subject’s task disengagement usually determines the 

termination (10).  

  The study by Laursen et al. (178) reported that TTE tests show greater 

variability than ETT. During the ETT tests, athletes can up/down their exercise 

intensity according to their perception of fatigue and external motivational cues. 

While during TTE tests, exercise intensity or power output is constant. This 

constant intensity allows a better analysis of the physiological and psychological 

response during the TTE test (154). This is not possible during ETT because each 

subject can self-regulate power or speed (i.e., pace), making it difficult to interpret 

the results (178). Therefore, for this thesis, we used a constant-load cycling TTE test. 

To reduce the potential variability in the TTE test, participants were always 

strongly motivated and the experimental sessions were counterbraced to avoid any 

learning effect for the TTE. 
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Heart Rate Measurement   

 The HR response was recorded during the cycling TTE test with a wireless 

chest strap heart rate sensor (M400, Polar Electro, Finland). Before the test, the chest 

strap was moistened and securely fastened to the subject’s chest, according to the 

manufacturer’s guidelines. 

Rating of perceived exertion (RPE) 

 RPE was measured using the Category Ratio 10 (CR 0-10) scale developed by 

Borg (179). The scale shows a list of numbers starting from 0 to 10 in the upper left-

hand corner. On the right side of the scale is a list of words used to anchor the 

perceived feeling, corresponding to the corresponding number (see Figure 9).  

 

 RPE scale was originally developed to monitor the effort perceived during 

exercise. It has recently also been used to monitor the effort perceived during 

various training sessions (180, 181). During the experiment, subjects were asking to 

Figure 9. Modified Borg RPE scale (8). 
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rate how hard the exercise is. All standardized instructions for the RPE were 

provided during the familiarization visit, as follows: 

• While doing the cycling task, we want you to rate your perception of exertion. This 

feeling should reflect how heavy and strenuous the exercise feels to you, combining 

sensations and feelings of physical stress, effort, and fatigue. 

• Do not concern yourself with any one factor such as leg pain or shortness of breath, 

but try to focus on your real feeling of exertion. 

• Look at the rating scale ahead of you while you are engaging in a cycling task; it 

ranges from 0 to 10, where 0 means "no exertion at all" and then relates to extremely 

strong, almost maximal. 

 A printed copy of the scale of RPE scale was affixed in front of the place where 

the subject performed the exercise, making it easier to identify their perceived 

exertion without difficulties. 

Exercise – induced muscle pain sensation 

 Exercise-induced muscle pain was assessed using an accurate and reliable 

pain scale (0-10) by  Cook et al. (182) (see Figure 10). This scale has been used in 

several experiments to quantify the level of exercise-induced muscle pain. 

Similarly, to the RPE scale, this scale presents numbers corresponding to the 

magnitude of the perceived discomfort, rating from 0 (no pain) at the top of the 

scale to 10 (extremely intense pain). The description of each item is located to the 

right of the number. The following instructions of the pain scale were used: 

 

• The scale contains the numbers 0 to 10. You will use this scale to assess the 

perceptions of pain in your legs during the TTE test. In this context, pain is defined 

as the intensity of hurt that you feel. Don’t underestimate or overestimate the degree 

of hurt you feel; try to estimate it as honestly and objectively as possible. 

• The numbers on the scale represent a range of pain intensity from “very faint pain” 

(number ½) to “extremely intense pain-almost unbearable” (number 10). When you 

feel no pain in your legs, you should respond with the number zero. When the pain 
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in your legs becomes just noticeable, you should respond with the number ½. If your 

legs feel almost unbearable extremely strong pain, you should respond with the 

number 10.  

• Repeatedly during the test, you will be asked to rate the feelings of pain in your legs. 

When rating these pain sensations, be sure to attend only to your legs’ specific 

sensations and not report other pains you may be feeling.  

• Your rating of pain intensity must reflect only the degree of hurt you are feeling in 

your legs. Do not use your ratings to expression fatigue (i.e., Inability of the muscle 

to produce force) or believe that the exercise task is completed. 

•  In summary, you will be asked to: (a) provide pain intensity ratings in your legs 

only, (b) give ratings as accurate as possible, and (c) not under-or-over- estimate the 

pain, but rate your pain honestly. It would be best if you used verbal expressions to 

help rate your sensations. 

Figure 10. Category ratio scale for assessing pain (6).  
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A printed copy of the scale was placed in front of the subject. Pain ratings 

were obtained every minute until the participant was unable to maintain the 

minimum pedal rate. In this thesis, the instructions for each scale were given at the 

beginning of the experimental session. The subjects were fully familiarized during 

the first visit to neither overestimate nor underestimate each parameter. 

6.1.4.3. Control variable 

Profile of mood state (POMS) 

 The mood was measured using the POMS instrument developed by McNair 

et al. (183) (Annexe 5), which measures the variability of tension, depression, anger, 

vigour-activity, fatigue, and confusion. The POMS is one of the most widely used 

and accepted instruments for mood measures in sports and physical activity 

settings (184) and assesses temporary different mood states. The advantages of 

using this assessment include the simplicity of use and ease of understanding for 

the participant. A five-point scale ranging from "not at all" to "extreme" is 

administered to subject by experimenters to assess their mood states. Completing 

the assessment may take 5 – 15 min. For current experiment, we used the short form 

of the POMS, which was applied before the initiation of each session. The examiner 

explained the questionnaire to the subjects during the first session (familiarization). 

 

Read each word/statement below, decide how you have been feeling, in respect to the 

word/statement, in today (before the start of the session), and select the appropriate 

statement "Not at All", "A Little", "Moderately", "Quite a Lot" or "Extremely" to indicate 

your feeling.           

Beck Anxiety Inventory (BAI) 

 BAI is a widely used anxiety scale in both clinical practice and research. The 

BAI by Beck et al. (185) is a 21-point self-report questionnaire that uses a Likert 

scale that measures common symptoms of clinical anxiety, such as nervousness 

and loss of control. The subjects’ degree of discomfort corresponds to a sign and is 

rated on a 4-point scale from 0 (not at all) to 3 (severely, I could barely stand it). In 
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the inventory, total scores range from 0 to 63. The anxiety level is directly 

proportional to the higher scores. 13 of the 21 symptoms assess psychological 

symptoms, 5 of which consider cognitive aspects, and 3 assess both somatic and 

cognitive symptoms. Various psychometric studies guarantee the reliability and 

validity of the BAI in different subjects (psychiatric patients, patients with anxiety 

disorder, adolescents with mental disorders, elderly people, university students) 

(186), including adults from the general population (187). In the present 

experiment, we use the BAI (Annexe 6) before the start of each tDCS session. The 

investigator explained the questionnaire to the participants during the first session 

(familiarization). 

Pittsburgh sleep quality index (PSQI)  

 The PSQI was developed in 1988 by Buysse et al. (188) (Annex 7) to provide 

a standardized measure that could collect consistent information about the 

subjective nature of people's sleep habits and provide a clear index that could be 

used by clinicians and patients alike (188). It has gained popularity as a measure 

that could research how sleep might be associated with sleep disorders, depression, 

and bipolar disorders. The PSQI consists of 19 questions about sleep during the last 

month, resulting in seven components: subjective sleep quality, sleep latency, sleep 

duration, sleep disturbances, sleep efficiency, sleep disturbances, sleep medication 

and daytime dysfunction. Each element contains four-level Likert scales (0-3) with 

higher scores indicating poor sleep. The sum of the score these seven components’ 

score gives a global score ranging from 0 to 21, which is composed of sleep quantity 

(189).  Acceptable measures of internal homogeneity, reliability and validity were 

obtained for the PSQI (188). For this experiment, we used PSQI questionnaire 

before they start each session. We explained the questionnaire to the subjects 

during their first session (familiarization). 
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6.1.5. Experimental Procedure  

Familiarization session 

 Before participating in the study, all subjects attended a familiarization 

session that corresponded to the study’s first visit. In this session, each subject was 

familiarized with all the methodological procedures performed in the subsequent 

visits. In this session, individual subjects’ information was recorded together with 

their anthropometric data (see Table 2). Before starting the study, subjects 

completed a tDCS screening questionnaire, and Physical Activity Readiness 

questionnaire (PAR-Q). PAR-Q was used to monitor individual health status and 

recognize any medication or pathologies that would have excluded them from 

participate in the study. If the subject fulfilled all the inclusion criteria for 

stimulation and health status, they were offered to sign the consent form and also 

permitted to withdraw from the study at any time and for any reason. Following 

anthropometric measurements, the subject fulfilled different questionnaires. 

International physical activity questionnaire (IPAQ) was used to analyse the 

subject physical activity level in the last 7 days (see Annex 4). POMS was used to 

assess transient and distinct mood states (see Annex 5). The BAI was used to 

measure the severity of anxiety before starting the study (see Annex 6), and finally, 

PSQI was used to evaluate the subject’s sleep quality (see Annex 7). Afterwards, 

they were instructed to perform a 10-min maximum aerobic power test in a cycle 

ergometer. 

10-minute power test 

 During the familiarization visit, subjects performed a 10 min power test on a 

cycle ergometer (Exite, TechnoGym, Italy) to determine the power each subject 

could maintain during 10 min. Before the test, subjects performed a 5 min warm-

up, and they allowed 5 min rest period. Then they were started 10 min power test, 

which consisted of cycling at a cadence of 65-70 revolution/min (rpm) with the self-

selected maximal power that they believed they were able to maintain during 10 

min. The cycle ergometer rider position was recorded for each subject to be 

reproduced for all the subsequent visits. Besides, the examiner recorded the 

appropriate power level at each end of the minute during the entire 10 min to 
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obtain the mean value required to perform the constant-load cycling TTE test. 

Besides, the HR, RPE, and exercise-induced pain were recorded in each minute to 

familiarize with the procedure. Finally, familiarization with the TTE was 

performed in the same session following 30 min of recovery. During the test, each 

subject was strongly verbally encouraged during all the 10 min power test. 

Experimental session I and II 

 The remaining two sessions were completed using identical methodology. 

The two sessions were separated with at least 7 days of rest to allow the full 

recovery and minimize carryover effects. First, subjects completed the three 

questionnaires (i.e., POMS, BAI, PSQI), and the subjects were prepared for the 

administration of tDCS.  

 We used a bilateral extracephalic tDCS montage with the anodes (size: 7 x 5 

cm) over the bilateral M1 (C3 and C4 according to the 10-20 EEG system) and the 

cathodes (size: 4 x 6 cm) placed over the ipsilateral shoulders. We used this 

montage because it was previously recommended by Angius et al. (133), showing 

favourable effects during the constant-load cycling TTE test performance. Ensure 

good conduction, each electrode sponges were soaked with saline solution (NaCl), 

and elastic straps were used to maintain the electrodes on the scalp and both 

shoulders. During a-tDCS condition, stimulation lasted 10 min at 2mA of current 

intensity. In contrast, in the sham condition, the current was disconnected at 30 

seconds after the beginning of the stimulation (duration of the fade in and fade out 

period-10 seconds). In this manner, the subject felt the itching sensation below the 

electrode at the beginning and that the end of the stimulation, making this 

condition indistinguishable from the real stimulation (190). Moreover, this 

procedure allows the subjects to blind to the type of stimulation they are receiving 

during the test, ensuring a control effect (177). 

 After the tDCS period, the subject performed a 5 min warm-up at 50 watts, 

followed by a constant-load cycling TTE test at the mean value of their 10 min 

power test. The TTE test ended when the subjects could not maintain a pedal 

frequency between 65-70 rpm for more than five seconds despite strong verbal 

encouragement. During the constant-load cycling TTE test, RPE values and 

exercise-induced muscle pain were recorded respectively, using the 10-point RPE 
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scale and a 10-point numerical scale for Pain. HR response was monitored using an 

HR monitor (polar M400, polar electro, Finland) in each minute until they stopped 

the test. Subjects were not aware of the elapsed time or feedback on performance 

during or after the TTE task. The experimental protocol is represented in Figure 11. 

 

 

 

 

 

 

 

 

Figure 11. Schematic view of the set-up and protocol. 
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6.1.6. Data analysis  

 Once the data of the variables of interest were collected, they were dumped 

and ordered in an Excel matrix datasheet. The iso-time data of HR, RPE and 

exercise-induced muscle pain were measured at the selected time points (0%, 25%, 

50%, 75% and 100%) to allow the within-subjects comparison of temporal changes 

during the constant-load cycling TTE test. According to Niccolò et al. (191), in the 

individual iso-time data method, each subject was considered in isolation when 

dividing the test into time points. Consequently, that allows for the estimating an 

experimental intervention’s effect while greatly reducing the data loss during 

experimental interventions. The shortest TTE was identified for each subject over 

the two experimental sessions and considered as 100% iso-time to obtain these iso-

time data. The value for each variable attained during the final full minute of the 

shortest TTE test was then compared to the value achieved during the equivalent 

minute of the longer TTE test. The respective 25%, 50% and 75% iso-time were 

obtained by multiplying the minute identified as 100% (shortest TTE) iso-time for 

0.25, 0.50 and 0.75. Iso-time values for 0% were attained by comparing values for 

the first full minute of each TTE test (133, 192). 

6.1.7. Statistical analysis 

 Statistical analysis was performed using the Statistical Package for the Social 

Sciences 25 (SPSS Inc., An IBM Company, Chicago, IL, USA), and significance was 

based on an alpha level of .05. All data are presented as mean ± SD unless otherwise 

stated. Each variable was examined with the Shapiro-Wilk normality test. Two-way 

repeated measures analysis of variance (RM-ANOVA) were performed with the 

condition (a-tDCS and s-tDCS) and time (0%, 25%, 50%, 75%, 100% of TTE) as 

factors for the following variables: HR, RPE, and exercise-induced muscle pain 

during constant-load cycling TTE test. Post hoc analysis was performed using 

paired comparisons with Bonferroni correction. A paired t-test was performed to 

verify the effect of experimental conditions on constant-load cycling TTE 

performance and the POMS, BAI and PITTSBURGH influences on experimental 

conditions. Partial eta-squared (ηp2) values and Cohen-d were calculated as effect 

sizes. 
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6.2. RESULTS  

6.2.1. TTE performance  

The results of the cycling TTE task performance are shown in Figure 12. A 

paired t-test was conducted to compare the effect of bilateral extracephalic tDCS 

applied over M1 during constant-load cycling TTE task between a-tDCS and s-

tDCS conditions. There was a significant difference in the cycling TTE between the 

experimental (M = 684.0, SD = 230.11) and sham (M = 609.0, SD = 193.00) tDCS 

conditions (t (15) = 2.25, p = 0.04; d = .58). And this indicated that there is a tended 

to increase in TTE performance following a-tDCS stimulation. 

 

 

Figure 12. Effect of tDCS on performance during constant-load cycling TTE test 

under the experimental conditions. * Significant difference compared to the sham 

condition (P = 0.04). Data are presented as mean ± SD. 

* significant difference following a-tDCS. 
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6.2.2. HR during constant-load cycling TTE task performance 

 The results of RM-ANOVA revealed that there was no significant main effect 

for HR response between a-tDCS and sham conditions (F (1,15) = 2.7, p = .120, ηp2 

=.15) (see figure 13). However, significant main effect for time was observed (F (2, 

32) = 238.5, p = < .01, ηp2 = .94). The interaction effect (condition * time) was not 

significant (F (4,60) = 2, p =. 11). 
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Figure 13. Effect of tDCS on HR response during constant-load cycling TTE task 

between a-tDCS and sham conditions. Data are presented as mean ± SD. 
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6.2.3. RPE during constant-load cycling TTE task performance 

 The ANOVA for the RPE did not show a significant main effect for the 

condition factor (F (1,15) = 2.51, p = .134, ῃ2 =.14) However, there was a significant 

main effect of time for RPE (F (2,35) = 270.89, P = < .01, ηp2 =. 95). RPE increased 

significantly from the beginning to the end of the TTE task in both conditions (p < 

0.001; see Figure 14). The interaction effect (condition * time) was not significant, (F 

(4,60) = 1.83, P =. 136). 
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Figure 14. Effect of tDCS on RPE during constant-load cycling TTE task between 

a-tDCS and sham conditions. Data are presented as mean ± SD. 
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6.2.4. Exercise-induced muscle pain during constant-load cycling TTE task 

performance 

 The results of RM ANOVA revealed no significant main effect for exercise-

induced muscle pain between a-tDCS and sham conditions (F (1,15) = 2.21, p = .16, 

ηp2 =. 13). However, significant effects were observed for the time factor (F (2, 38) = 

316.1, p = < .01, ηp2 =. 96). Exercise-induced muscle pain was increased significantly 

from the beginning to the end of the TTE test in both conditions (P < 0.003; see 

Figure 15). The interaction effect (condition * time) was not significant (F (4,60) = 

1.8, P = 0.15). 
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6.2.5.  Control variables 

Our results yielded no significant differences for any control variables (see 

Table 3). 

 

 

6.3. DISCUSSION  

 The main objective of the present study was to determine the effect of 

bilateral extracephalic tDCS over M1 during constant-load cycling TTE task in 

physically active people. We also analyzed HR response, RPE, and exercise-

induced muscle pain during the abovementioned task. 

6.3.1. Effect of a-tDCS over M1 on TTE performance 

 We hypothesized that extracephalic a-tDCS over bilateral M1 would increase 

TTE performance during the constant-load cycling TTE task. Likewise, we also 

consider that tDCS over M1 could decrease HR response, RPE, and exercise-

induced muscle pain.  

Table 3:  Results of the questionnaires 

Questionnaire Sub scales N  a-tDCS Sham t p 

M ± SD M ± SD 

 

 

POMS 

Tension 16 19.5 ± 10 16.9 ± 8 1.10 0.29 

Depression 16 2.5 ± 4.5 2.8 ± 5.2 - 0.24 0.82 

Anger 16 10.8 ± 12.5 10.4 ± 7 0.21 0.83 

Vigour 16 47.2± 21.8  50.9 ± 18.3 -1.22 0.24 

Fatigue  16 14.1 ± 10.5 16.9 ± 14.8 - 0.79 0.44 

BAI  16 3.8 ± 4.1 3.1 ± 2.7 0.87 0.40 

PITTSBURGH  16 4.4 ± 2.3 4.6 ± 2.4 -0.38 0.71 
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 As hypothesized, the main finding of our study is that a-tDCS increased 

cycling TTE performance by 12%. This finding coincides with previous studies that 

showed increases of TTE following a-tDCS over the M1 (133, 137, 138, 154, 156). For 

example, Angius et al. (133) found that TTE performance was improved 

remarkably by 23%, and Vitor-Costa et al. (154) showed an increase in exercise 

tolerance during constant-load cycling TTE test after a-tDCS stimulation over the 

Cz region. In contrast, Angius et al. (137) did not show improvements in cycling 

TTE after a-tDCS than a sham condition. These differences might be related to the 

electrode montage used in those studies (165). According to Angius et al. (138), 

cephalic montage (anode over M1 and cathode over right DLPFC) may induce an 

effect under the cathode that may modulate or even negate the anode effect over 

M1. Moreover, in their follow-up study, they compared cephalic and extracephalic 

tDCS montage by targeting anode over M1. They observed a significant increase in 

TTE of knee extensor muscles when the extracephalic montage was used. In 

additionally, our tDCS electrode montage those described by Angius et al. (133) 

(anode: M1 and cathode: shoulder) and Vitor-Costa et al. (154) (anode: Cz and 

cathode: occipital protuberance) have also found increment in TTE performance 

during constant-load cycling. 

   Furthermore, it should be noted that other electrode montages, such as the 

stimulation of the DLPFC (132, 155) or the TC (102), are also effective to increase 

cycling TTE. According to the authors mentioned above, the possible mechanism 

of longer exercise tolerance mediated by a-tDCS could be related to an increase in 

motor cortex excitability. This increased excitability would counteract supraspinal 

fatigue leading to a prolonged cycling time during the TTE task (i.e., more exercise 

tolerance). However, there is no direct evidence about this, and further studies are 

needed to test this hypothesis. 

6.3.2. Effect of a-tDCS over M1 on HR response during constant-load cycling 

TTE task performance 

 However, whether HR responses are affected by tDCS during physical 

exercise remains unclear. Like these previous studies, the present study also did 

not find the change in HR response after bilateral extracephalic tDCS applied over 

M1 compared to the sham condition as we hypothesized previously. This result is 
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consistent with previous studies findings whereas described that there was no 

significant effect induced by tDCS over M1 on HR response during the constant-

load cycling and running. For an example, Vitor-Costa et al, (154) failed to observe 

any significant HR response changes between three experimental sessions (anodal, 

cathodal and sham), whereas exercise tolerance was a higher under the a-tDCS 

condition. Angius et al. (133), have found no difference in HR between 

experimental conditions while reported a significant increment in constant-load 

cycling TTE test. Besides, Park et al. (156), have reported no changes in HR response 

changes during a constant-load running test at 80% intensity following tDCS over 

M1, whereas running TTE increased following a-tDCS. 

 Recent studies have discussed that tDCS affects different brain areas on HR 

response during different physical exercise. Okano et al. (102) reported that the 

ANS activity modulates following tDCS over the TC, reduction in HR response 

during the initial phases of maximal incremental cycling test. Besides, Angius et al. 

(132), for the first time, have demonstrated that the tDCS over left DLPFC reduction 

in HR response during constant-load cycling TTE test with longer exercise 

tolerance in TTE test. This may be the PFC, whereas identified to modulate brain 

areas involved in the regulating the cardiovascular autonomic control (132). 

Therefore, observed HR response could be related to the ANS differential function 

following this brain region stimulation (PFC). Taking together, these results 

propose that tDCS could increase ANS activity during physical exercise. 

 Finally, as in previous studies, the present study finding supports the theory 

that tDCS does not affect the physiological variable such as HR. Moreover, it 

recommended that the connection between the CNS and motor units is entirely 

regulated by afferent responses (156). Although tDCS, montage used in each study 

may differ, the findings reported up to date implies that tDCS on motor M1 has no 

effect on HR response during physical exercise such as constant-load cycling and 

running TTE test (133, 137, 154, 156). 

6.3.3. Effect of a-tDCS over M1 on RPE during constant-load cycling TTE task 

performance 

 In contrast to our initial hypothesis, we did not find any changes between 

experimental conditions in the RPE value during the constant-load cycling TTE 
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task following tDCS over bilateral M1. When voluntary action involves dynamic 

contractions of a large muscle group, RPE is an important aspect of volition 

subjective experience. The conscious sensation of effort provides information about 

task difficulty. RPE during physical tasks is the conscious awareness of the central 

motor command sent to the active muscle (97).  

 The present study results are consistent with the findings of Vitor-Costa et al. 

(154), who also failed to observe an alteration in RPE value after applying tDCS 

over the Cz region. In the same line, the study conducted by Angius et al. (137) 

showed that cephalic tDCS montage over M1 did not alter RPE value during the 

cycling task. This montage, can negatively affect M1 excitability; therefore, it did 

not observe any enhancement of the performance or perceptual parameters. In the 

present study, we used bilateral extracephalic montage (anode: both M1 and 

cathode: ipsilateral shoulders). Still, we did not observe a decrement in RPE 

following a-tDCS compared with a sham condition. Moreover, Park et al. (156) have 

shown  an improvement in TTE during running at 80% intensity by applying an a-

tDCS to M1 without any alteration in RPE values. 

 Our study found that RPE was unchanged, whereas other studies found that 

the manipulation of M1 decreases RPE and increased TTE performance. These 

results demonstrated that an RPE decrease following a-tDCS could increase M1 

excitability, increase central motor command and show a lower RPE. For example, 

Angius et al. (133) demonstrated that bilateral extracephalic tDCS over M1 induced 

lower RPE values related to improved cycling TTE. In the same line Angius et al. 

(138)  have found longer  isometric TTE of knee extensors with lower RPE following 

extracephalic a-tDCS. It has been documented that the RPE change is related to 

various activities across different regions in the motor cortex, including premotor 

cortex, M1, prefrontal cortex, supplementary motor areas (97).  

 In this context, there is an evidence that the effect of a-tDCS over other brain 

areas such as IC also reduced the RPE value. However, these results are 

contradictory. For example, Okano et al.  (102) reported a reduction in RPE and 

~4% improvement in peak power output during an incremental cycling test. In 

contrast, Barwood et al. (9) did not find any perceptual or performance 

improvement during a fixed intensity cycling TTE in hot condition (33°C). 

According to these authors, differences in the testing procedures and the 
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environmental conditions may explain these contrasting results. In addition, 

Angius et al. (132) have found lower RPE values in the real-tDCS applied over the 

left DLPFC with longer cycling TTE performance than the s-tDCS condition. Unlike 

the DLPFC, which is directly related to emotions such as discomfort levels, the 

montage used in this study applies an a-tDCS to both M1, which is not generally 

associated with emotion control. The high-intensity physical task requires 

inhibitory control to prevent task failure, and this cognitive process is associated 

with a subjective feeling of effort that might contribute positively to the overall RPE 

during exercise (132).  

 RPE might have been different owing to the subjects’ motivational level. The 

interoceptive model considers various factors that can be used to explain our study 

results. According to the interoceptive model, different factors including afferent 

feedback, sensory, emotion, and motivation, collectively involves central fatigue 

based on the whole-body exercise physiological state (193). However, recent 

evidence suggests that a-tDCS might increases TTE performance by altering RPE 

value. Thus, further study is needed to understand the effect of tDCS on RPE 

during physical performance. 

6.3.4. Effect of a-tDCS over M1 on exercise-induced pain during constant-load 

cycling TTE task performance 

 In contrast to our expectation, exercise-induced muscle pain did not differ 

between experimental conditions following bilateral extracephalic tDCS over M1, 

during constant-load cycling. Our result is consistent with Angius et al. (133). They 

observed a lack of variations in exercise-induced muscle pain during constant-load 

cycling TTE test following bilateral extracephalic tDCS over M1 compared to a 

sham condition while showed an increase in TTE performance. Further, these 

findings were also consistent with their previous studies. The study conducted by 

Angius et al. (137) investigated the effect of tDCS on exercise-induced muscle pain 

during fixed intensity cycling TTE and on pain perception during a cold pressor 

test. The authors observed significant reduction in perceived pain during the cold 

pressor test following cephalic tDCS montage over M1. Moreover, our result 

contrarily to some previous studies where a-tDCS over M1 induced pain 

perception changes during different experimentally induced pain types (177, 194). 
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 Exercise-induced muscle pain is considered an important factor in exercise 

performance regulation (195).  Recently, have reported several key factors that may 

explain why exercise-induced muscle pain appears to be insensitive to the effects 

of tDCS over M1 (137, 138) which to include the type of nociceptive stimulus, 

attentional factors, release of endogenous opioids or catecholamines and 

supraspinal nociceptive inhibitory mechanism (137). Exercise-induced muscle pain 

plays an essential role in exercise tolerance because of its afferent feedback (165). It 

has been documented that the effect of tDCS over M1 reduces thermal and electrical 

pain that (137). It has been suggested that key areas for exercise-induced pain 

include the primary sensorimotor cortex, secondary somatosensory cortex, and 

anterior insular and cingulate cortex and thalamus (6). tDCS application of M1 has 

been proposed to induce analgesia through a corticothalamic inhibition of epicritic 

(consistent with type III afferents) and nociceptive sensation at the ventral 

posterolateral and  ventral posteromedial thalamic nuclei (177). But, as skeletal 

muscle is more densely populated by type IV afferents, which are more related to 

a progressive build-up of pain that is dull, burning and painful (6), it may be tDCS 

over M1 produces a small analgesic effect to exercise-induced muscle pain. 

  There is a strong emotional response to exercise-induced pain. tDCS applied 

over DLPFC may reduce the emotional response to pain (196). The DLFPC has been 

proposed to play an important role in the affective, cognitive, and attentional aspect 

of pain (197). Studies applying tDCS over left DLPFC found a reduction in cold 

pain perception (198), increase in thermal pain threshold (197) or decreased of self-

unpleasantness when viewing emotionally aversive pictures (196). But still, Angius 

et al. (132) have reported that exercise-induced pain was not affected by tDCS 

applied over left DLFPC. Several methodological aspects, as well as the different 

type of pain investigated may explain these discrepancies. 

 With the lack of analgesic effect of tDCS over M1 on exercise-induced muscle 

pain, it may be the case that the constant-load cycling TTE task did not produce the 

level of pain high enough for an analgesic effect to be detected. This may be in part 

due to intense exercise stimulating the body’s inherent analgesic system, including 

the release of endogenous opioids. The endogenous pain inhibition acts by 

inhibiting nociceptive input in the CNS at both spinal and supraspinal levels. 

Descending neural pathways with inputs from cortical, subcortical and spinal 
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regions have been propose to be involved in this modulatory process (199, 200). all 

of which are likely to mitigate the strength of pain signal reaching the brain. 

Consequently, the additive effect of tDCS may not improve this powerful natural 

analgesic response to exercise. Additionally, the stimuli direct attention is one of 

the requisites of the pain perception, and any distraction from pain sensation can 

reduce reporting of pain. During the constant-load cycling TTE, the subject 

provides more attention to the exercise task (201). Finally, all these factors during 

exercise might reduce the benefits of tDCS. 
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VII – GENERAL DISCUSSION 

 The present thesis aimed to investigate the ergogenic effect of a-tDCS on 

endurance exercise performance in physically active people. For this purpose, it 

has been performed a systematic review of the literature and meta-analysis 

concerning the effectiveness of a-tDCS on endurance whole-body dynamic 

physical performance. Finally, the experiment investigated the effect of bilateral 

extracephalic a-tDCS over M1 during a constant-load cycling TTE task in 16 

physically active people. 

 For that purpose, we performed two studies. First, the systematic review and 

meta-analysis to quantify the effect of a-tDCS on endurance (TTE, ETT) and sprint 

performance during cycling and running tasks, where we compared the effect of a-

tDCS against sham stimulation. The results showed that a-tDCS could increase TTE 

performance during cycling and running task but not during ETT or sprint task, 

and the task should be considered as it probably influences the results obtained 

through a-tDCS (202). In the second study we found that bilateral extracephalic a-

tDCS over M1 increases TTE performance by 12% compared with the sham 

condition, without a change in HR response consistent with our initial hypothesis. 

However, in contrast to our expectations, RPE values and exercise-induced muscle 

pain variables did not differ between experimental conditions. It has been 

documented that the endurance task involving cycling, running or sustained 

submaximal isometric contraction promote a progressive decline in the excitability 

of the spinal motoneurons and contractile capacity of the active muscle fibres (68, 

98) so that to maintain the required force or power, the input to the spinal 

motoneurons must increase (203). Previous studies have suggested that increasing 

M1 excitability may lead to a more efficient motor command that can ultimately 

enhance TTE performance (120). This hypothesis has been examined in different 

studies using tDCS. 

 Previous systematic reviews and meta-analyses shed mixed results 

concerning the effect of a-tDCS on endurance and strength performance (135, 166, 

167). Moreover, most of these meta-analyses did not consider the nature of the task 

performed when assessing the effect of a-tDCS. Calculations conducted by pooling 
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together such different task provide unclear and confounding results on the 

possible after effect of tDCS on physical performance. Therefore, we conducted a 

systematic review to identify the state of the literature regarding the effectiveness 

of the acute effect of a-tDCS in endurance physical performance to identify whether 

the effect of tDCS depends on the characteristic of the task performed (i.e., TTE, TT 

and sprint). However, it is important to note that only four studies analyzed the 

ETT task and two studies the sprint tasks (202). Therefore, more studies are 

apparently needed to firmly establish the effect of a-tDCS on these types of tasks. 

 The inconsistency in the results of the included studies regarding the 

potential ergogenic effect of a-tDCS on endurance cycling and running exercise 

could be related to differences in multiple parameters such as brain stimulation 

area, electrode size, electrode montage, current intensity and duration (141). The 

present review shows that most of the above mentioned experiments targeted brain 

areas such as M1 (133), DLPFC (132), TC (102). All included studies have used 

endurance (TTE, ETT) and sprint tasks during cycling and running. Authors 

suggested that the TTE test has more sensitivity evaluating factors that alter 

endurance exercise performance, such as physiological and perceptual responses 

in a controlled manner (27). 

  Nine of fifteen interventions in current systematic review and meta-analysis 

have reported the positive ergogenic effect of a-tDCS on TTE performance during 

cycling and running. Some of these included studies demonstrated an increase of 

cycling TTE performance related to a lower RPE value after tDCS applied over M1 

(133). The increased excitability of the M1 could have increased the output to the 

working muscles by reducing the central command required. This could have 

caused the lower RPE, thus, exercise feels easier for a given intensity (138, 163). 

Additionally, Angius et al. (132) reported that a-tDCS targeting the left-DLPFC  

increased cycling TTE performance in parallel to a lower RPE. Authors have argued 

that tDCS can modulate cortical neurons or affective responses, leading to a lower 

RPE or reduced pain perception. However, the redaction of RPE has not been 

reported in all cases (154, 155). 

 The acute effect of a-tDCS on ETT performance is not entirely clear. 

Considering the limited available literature of tDCS on ETT task (9, 156),  a-tDCS 

applied to brain areas such as M1, DLPFC, TC are unlike to increase performance 
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during this type of task. It is, therefore, possible that the effect of a-tDCS on exercise 

performance is task-dependent. The most important factors limiting performance 

during the sprint activities are fatigue occurring in the CNS. Therefore, the 

manipulation of supraspinal centres involved in the control of the motor output 

such as the M1 could reduce CNS fatigue and thus enhance performance (47). 

However, only two studies have been performed to investigate the effect of a-tDCS 

on sprint performance (121, 162). The results of these studies demonstrated that the 

tDCS do not induced improvement in sprint performance. Further studies are 

needed to clarify the deferent mechanism by which tDCS could improve 

performance in such a task (i.e., sprint). 

 Based on the systematic review and meta-analysis, we performed a second 

study to determine the effect of bilateral extracephalic a-tDCS over M1 during a 

constant-load cycling TTE test. During the TTE test, we measured HR response, 

RPE, and exercise-induced muscle pain. Results show that the bilateral 

extracephalic a-tDCS over M1 increase TTE performance by 12% during constant-

load cycling task, without any change on HR response, RPE, and exercise-induced 

muscle pain between both experimental conditions. The results from the previous  

experiment suggest that endurance cycling TTE performance can be increased by 

a-tDCS (133, 154). The increased M1 excitability could have made exercise feel 

easier due to a lowered RPE (165). However, this hypothesis could not be 

confirmed because we did not measure the excitability of M1 following a-tDCS 

during this study. Furthermore, we did not find any alterations in RPE values with 

longer exercise tolerance. There are also some studies that demonstrated increased 

TTE without changes in RPE (154, 156). 

 It was hypothesized that bilateral extracephalic tDCS over M1 would not 

change HR response. This finding supports our initial hypothesis; there was no 

change observed in HR during cycling TTE test following a-tDCS. In this regard, 

HR is well controlled in the TTE test as suggested by Amann et al. (27) because the 

load was constant through the test, and it is used across all the experimental 

conditions. It has been documented that the HR responses did not change after a-

tDCS over M1 during the constant-load cycling TTE task (133, 137, 154). However, 

Angius et al. (132) have reported lower HR response in the a-tDCS applied over left 

DLPFC during constant-load cycling. It has been identified that the PFC is linked 
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to brain areas involved in the regulation of cardiovascular autonomic control (204). 

Increased PFC activity is related to an increased parasympathetic tone that induced 

variations in HR (204). In light of this evidence, the reduction in HR during exercise 

task, can result from an increased parasympathetic activity induced by tDCS.  It 

should be considered that we did not monitor heart rate variability during the 

current study; therefore, further investigation should be performed to explore 

mechanisms leading to lower HR during constant load cycling following tDCS. 

 The results of the current study demonstrated that the exercise-induced pain 

during constant-load cycling was not affected by tDCS. A lack of effect of tDCS on 

exercise-induced muscle pain during constant-load cycling TTE test has been 

previously reported (133). It was likely caused by the different type of pain 

stimulus, pain intensity perceived, or the attentional focus. Therefore, it might be 

still difficult to understand the mechanism underlining tDCS effects on exercise-

induced muscle pain. In contrast, a-tDCS over the M1 produced a significant 

reduction in cold pain perception (137) while exercise-induced muscle pain did not 

show any change during fixed intensity TTE cycling test (133, 137). Additionally, 

studies have reported an increase in thermal pain threshold (197). Probably, 

different methodological aspect as well as different kind of pain investigated, may 

explain discrepancies. 

 To sum up, the present thesis aimed to investigate the ergogenic effect of a-

tDCS on endurance exercise performance in healthy people. At the actual level, the 

overall result from the present thesis shows that the ergogenic effect of tDCS can 

potentially increase endurance cycling and running TTE performance. However, 

the task should be considered as it probably influences the result obtained though 

acute a-tDCS. In the second study of the present thesis, despite the increase in 

constant-load cycling TTE following bilateral extracephalic tDCS over M1 agrees 

with the results of other studies (133, 154). Further, no changes observed in HR, 

RPE, and exercise-induced muscle pain. 
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VIII – CONCLUSIONS 

General conclusions 

 

 The results of the present thesis suggested that the ergogenic effect of tDCS 

can potentially increase endurance TTE performance during cycling and running 

in physically active people. However, the task should be considered when 

examining the effect of tDCS on physical exercise. This is due to the influence of 

individuals’ anatomical, physiological, perceptual, and tDCS parameters. Further, 

bilateral extracephalic a-tDCS montage over M1 can effectively enhance TTE 

performance during constant-load cycling task. This finding implies that tDCS is a 

sports supportive tool. Precisely, need more studies to understand the specific 

mechanism that associating with different targeted brain areas during different 

kinds of physical activities.   

 

Specific conclusions  

 

Study 1 

 

• The acute increase in performance during the endurance cycling and running 

in whole-body dynamic exercise occurred after a-tDCS.  

• Only increased the TTE performance during endurance cycling and running 

after a-tDCS over targeted brain areas, but no changes occurred in the ETT and 

sprint performance. Therefore, the task should be considered, as it influences 

the result obtained following a-tDCS.  

• It should be noted that only four studies have analyzed the ETT task and two 

studies have analyzed the sprint task. Therefore, further studies are needed to 

establish the effect of tDCS on this type of task. 
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Study 2 

 

• Bilateral extracephalic a-tDCS over M1 increase TTE performance by 12%, 

during constant-load cycling task. The performance was enhanced in the 

absence of changes in HR, RPE, exercise induce muscle pain variables. 

• The acute effect of bilateral extracephalic a-tDCS applied over M1 was not 

associated with reducing HR response during the constant-load cycling TTE 

test. 

• The RPE value during constant-load cycling was not decreased after bilateral 

extracephalic a-tDCS applied over M1 due to subjective motivational level. 

• The exercise-induced muscle pain did not decrease during constant-load 

cycling task performed after bilateral extracephalic tDCS applied to M1. 
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IX – LIMITATIONS  

 Considering, contradictory evidence regarding the effect of a-tDCS on whole-

body dynamic exercise such as cycling and running, it is still challenging to 

understand the exact mechanism that underline the effect of tDCS on brain 

stimulation during physical performance. There are some limitations of two studies 

composing the present thesis must be addressed. 

 

Study 1:  

• The limited number of studies included in the systematic review and meta-

analysis, due to the few existing publications in the relative literature that 

attempt to analyse the acute effect of a-tDCS on endurance cycling and running 

performance. In particular, only four studies have been examined ETT, and the 

other two studies have evaluated the effect of tDCS on sprinting performance. 

 

Study 2:  

• Application of bilateral extracephalic tDCS to M1 does not modulate HR, RPE 

and exercise-induced muscle pain during constant-load cycling TTE task. 

However, the results are applicable to the type of tDCS protocol used including, 

the modification in the brain stimulation area, current intensity, duration and 

electrode size could be substantially altering these variable responses. 

Furthermore, this may also have an impact by each individual’s anatomical, 

physiological characteristics. 

• In this study, the tDCS mechanism is not entirely understood. We supposed that 

a-tDCS modulate M1 excitability, and therefore, increased TTE performance. In 

this study, we did not measure parameters that allowed to assess the M1 

excitability. Hence, it is unknown how a-tDCS intervention affected to enhance 

TTE performance. during constant-load cycling TTE task 

• .
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X – FUTURE LINES OF INVESTIGATION 

 After the completion of the present thesis, future investigation lines arise 

from the results achieved. In this regard, potential future investigations that could 

bring further understanding on the topics studied herein are presented below: 

 

• Considering the findings of the systematic review and meta-analysis, the effect 

of tDCS is depended on the nature of the task performed. Future research 

should explore this concept to better understand the mechanism which 

underlines tDCS during different sports activities. 

 

• It is considered that the heterogeneity of the tDCS protocols makes the 

comparison between studies difficult and is probably one of the reasons why 

contradictory results are found. Therefore, when preparing tDCS protocols, it 

should take into account the selected tDCS parameters. In particular, electrode 

montage, electrode size (i.e., 35 cm, 12cm, 24cm), stimulation time (i.e., ≥ 

10min), brain stimulation area (i.e., M1, DLPFC, TC… etc…). 

 

• Future research should take into account the effect of tDCS stimulation on 

other cortical areas (IC, PFC), which has associated with regulating the HR 

responses, RPE, exercise-induce pain during endurance whole-body dynamic 

exercise. 

 

• Elaborate a long-term training program that allows investigating the long-term 

effect of a-tDCS on M1. 
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Annex 1. Informed Consent form 
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Es importante que responda todas las preguntas siguientes con sinceridad. Si 

alguna de las preguntas / términos de este formulario no está clara, o si no está 

seguro de cómo responderlas, no dude en preguntar al investigador del 

estudio. 

 Yes No 

¿Ha tenido convulsiones alguna vez?   

¿Alguna vez ha tenido una lesión en la cabeza que haya provocado la 

pérdida del conocimiento? 
  

¿Sufre de migrañas?   

¿Tiene actualmente un diagnóstico médico de una condición psicológica 

o neurológica? 
  

¿Tiene algún metal en la cabeza (fuera de la boca) como metralla o clips 

quirúrgicos? 
  

¿Tiene algún dispositivo implantado (por ejemplo, marcapasos cardíaco, 

estimulador cerebral)? 
  

¿Tiene una afección cutánea en el cuero cabelludo? (por ejemplo, 

psoriasis) 
  

¿Tiene una herida en la cabeza que no ha sanado por completo?   

¿Ha tenido una reacción adversa al tDCS/TMS?   

Para las mujeres participantes: ¿Existe la posibilidad de que esté 

embarazada? 
  

¿Está tomando actualmente algún medicamento?   

He comprendido la información que antecede y que me ha sido explicada 

satisfactoriamente 

Fdo: El voluntario: 

Nombre: ………………………………………….. DNI……………………………… 

Annex 2. tDCS screening questionnaire (205). 
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Annex 3. The Physical activity readiness questionnaire (PAR-Q & YOU). 
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Annex 4. International physical activity questionnaire (IPAQ). 
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Annex 5. Profile of state (POMS) 
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Annex 6. Beck Anxiety Inventory (BAI) 
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Annex 7. Pittsburgh Sleep Quality Index (PSQI) 
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Annex 8. Study 1. Reference: Fernando Shyamali Kaushalya, Salvador Romero-

Arenas, Amador García-Ramos, David Colomer-Poveda & Gonzalo Marquez 

(2020) Acute effects of Transcranial Direct Current Stimulation on Cycling and 

Running Performance. A Systematic Review and Meta-Analysis, European Journal 

of Sport Science, DOI: 10.1080/17461391.2020.1856933 
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