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RESUMEN  

Palabras clave: Cirurgia Abdominal, Gastroenterologia, Patologia, Biologia 
Molecular 
 
En los últimos años se ha hecho evidente que la gran heterogeneidad del cáncer 
colorrectal (CCR) influye en la biología de la enfermedad, su pronóstico y la 
respuesta al tratamiento. Por esta razón, se requiere una estratificación 
exhaustiva de la enfermedad. El advenimiento del análisis de Big Data en la 
investigación médica ha revolucionado el enfoque tradicional basado en 
hipótesis. El análisis de Big Data brinda una oportunidad única para mejorar la 
salud individual y la salud pública. De hecho, la disponibilidad de grandes bases 
de datos para capturar y almacenar el panorama genómico de los pacientes con 
CCR proporciona información muy valiosa sobre los genes que con frecuencia 
están alterados en el CCR. Además, la posibilidad de utilizar perfiles de expresión 
génica y análisis de secuenciación de próxima generación altamente sensibles 
para diferenciar los subtipos de CCR en grupos pronósticos también puede 
conducir a una mejor comprensión del tratamiento adecuado del CCR, mejorando 
así el pronóstico y la calidad de vida de los pacientes. El objetivo de este estudio, 
realizado en colaboración con el Instituto Italiano de Medicina Genómica (Turín, 
Italia) y el Departamento de Ciencias de la Computación de la Universidad de 
Turín (Turín, Italia), fue dilucidar las relaciones entre múltiples marcadores 
relevantes identificados por un multi- enfoque ómico (transcriptoma codificante y 
no codificante, metagenómica y estado mutacional) investigado, en diferentes 
tipos de muestras biológicas de los mismos sujetos (heces, plasma, tejido 
primario),  firmas moleculares específicas para relacionarlas con el diagnóstico y 
pronóstico de pacientes con CCR. Se analizaron muestras recogidas de pacientes 
con diagnóstico de CCR, reclutados en nuestra consulta externa y sometidos a 
cirugía durante el periodo de estudio. Además, las características demográficas, 
así cómo la información clínico-patológica obtenida tanto en el diagnóstico previo 
(tomografía computarizada, resonancia magnética y colonoscopia) como 



  

 

postoperatorio (examen histopatológico) se relacionaron con los resultados 
clínicos de los pacientes. Los pacientes fueron seguidos regularmente de acuerdo 
con las guías vigentes. Por último, estos datos se compararon con los obtenidos en 
nuestros estudios transversales previos que incluyeron pacientes con CCR, 
controles sanos y sujetos con diferentes tipos de pólipos. Las técnicas Omicas 
utilizadas fueron secuenciación de ARN pequeño (sRNA seq), secuenciación de 
ARN (RNA-seq), secuenciación metagenómica "shotgun" y perfil genómico 
basado en el ensayo de secuenciación de próxima generación (NGS) (estado 
mutacional e inestabilidad de microsatélites). Entre los resultados más relevantes 
demostramos, en primer lugar, que el análisis de miRNoma fecal identificó una 
firma predictiva que discrimina con precisión el CCR y las lesiones precancerosas 
que es de utilidad para un diagnóstico non invasivo destinado a mejorar la 
eficacia de los programas de detección actuales. En segundo lugar, señalamos el 
papel crucial de la expresión alterada de microARN (miARN) relacionados con el 
segmento cromosómico 8q24 para el inicio y/o progresión del cáncer, así como la 
correlación con el sistema de clasificación de subtipos moleculares de consenso 
(CMS). Por último, los perfiles de miARN en las heces permitieron reflejar rasgos 
comunes y hábitos de estilo de vida y deben considerarse en relación con estudios 
de enfermedades y asociaciones basados en la expresión de miARN en heces. 

The high heterogeneity of colorectal cancer (CRC) in the disease biology, therapy 
response, and prognosis has become evident in the recent few years. For this 
reason, an extensive disease stratification is required. The advent of Big Data 
analysis in medical research has revolutionized the traditional hypothesis-driven 
approach. Big Data analysis provides an invaluable opportunity to improve 
individual and public health. In fact, the availability of large databases to capture 
and store the genomic landscape of patients with CRC provides information on 
the genes that are frequently deregulated in CRC. Moreover, the possibility of 
using gene-expression profiling and highly sensitive Next-Generation Sequencing 
(NGS) analyses to differentiate the subtypes of CRC into prognostic groups can 
also lead to a better understanding of adequate CRC treatment, improving 
prognosis and patients’ quality of life. The aim of this study, conducted in 
collaboration with the Italian Institute for Genomic Medicine (Turin, Italy) and 
the Department of Computer Science, University of Turin (Turin, Italy), was to 
elucidate relationships between multiple relevant markers identified by a multi-



 

 

omics approach (coding and non-coding transcriptome, metagenomics, and 
mutational status) investigated in different types of biospecimens from the same 
subjects (stool, plasma, primary tissue) for the diagnosis and prognosis of patients 
with CRC, identifying specific signatures. Samples collected from patients with 
diagnosis of CRC, recruited in our outpatient clinic and undergoing surgery 
during the study period were analyzed. Furthermore, the demographic 
characteristics as well as the clinical-pathological information obtained at both 
pre- (imaging, i.e. TC-scan, MRI, and colonoscopy) and post-operative 
(histopathological examination) diagnosis were related to the clinical outcomes of 
patients. Patients were regularly followed-up in accordance with current 
guidelines. Lastly, these data were compared with those obtained in our previous 
cross-sectional studies including CRC patients, healthy controls and subjects with 
different types of polyps. The Omics techniques used were small RNA-
sequencing (sRNA seq), RNA-sequencing (RNA-seq), shotgun metagenomics 
sequencing and genomic profile based on target sequencing (for the cancer 
mutational and MSI status). In this PhD project, we have obtained several results. 
Firstly, we demonstrated that fecal miRNome analysis identified a predictive 
signature accurately discriminating CRC and precancerous lesions for a non-
invasive diagnosis aimed at improving the effectiveness of current screening 
programs. Secondly, we pointed out the crucial role of the altered expression of 
8q24-related microRNAs (miRNAs) for the initiation and/or progression of cancer 
as well as the correlation with the consensus molecular subtypes (CMS) 
classification system. Lastly, miRNA profiles in stool may reflect common traits 
and lifestyle habits and should be considered in relation to disease and 
association studies based on faecal miRNA expression. 
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"He who loves practice without theory is like the sailor who 

boards ship without a rudder and compass and never knows 
where he may cast".  

 
- Leonardo Da Vinci - 
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I - INTRODUCTION 

 
CRC is a heterogeneous disease, molecularly and anatomically, that 

develops in a multistep-process requiring the accumulation of several genetic and 
epigenetic mutations that lead to the gradual transformation of normal mucosa 
into cancer. 

The worldwide burden of CRC is predicted to increase to more than 2.2 
million new cases and 1.1 million fatalities by 2030, while there were 861700 CRC-
related deaths in 2018 [1]. 

Over 70% of CRC cases are sporadic, 20% of cases have an associated 
hereditary component, and less than 5% of cases are inherited (Lynch Syndrome, 
2-5%). 

There are currently 3 main routes of CRC carcinogenesis: chromosomal 
instability, DNA replication errors and epigenetic regulation, which includes 
aberrant hypermethylation and gene silencing [2]. In fact, recent genome-
targeting investigations confirmed that each patient is genetically and 
epigenetically unique. 

At the transcriptional level, several classification schemes have identified 
different biologically subtypes of CRCs. The recent identification of four CMS has 
provided evidence that the expression subtypes have clinical relevance 
independent of cancer stage [3] 

Often CRC becomes symptomatic in the more advanced stage of the disease 
and for this reason the patient's probability of survival increases only as the 
diagnosis is made in the early stages.  

In fact, the mortality rate varies greatly depending on the stage of the 
disease and only 80% of patients can be potentially cured.  

However, after thirty years from the first description of a non-invasive 
screening CRC method, the current focus concerns the use of molecular 
biomarkers, e.g. KRAS mutation [4].  
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Currenly, colonoscopy and faecal immunochemical test (FIT) represents the 
most frequently used combination worldwide for CRC screening. Unfortunately, 
colonoscopy is uncomfortable and patient compliance is not particularly 
favorable, with complications occurring in between 3% and 16% of cases.  

In this context, Computed Tomography (CT) colonography has a higher 
acceptability in comparison with colonoscopy, but its effectiveness is still debated. 
Furthermore, FIT has a relatively low sensitivity, and colonoscopy may fail in 
diagnosing lesions below 6 mm diameter. 

The identification of the “ideal biomarkers”, for CRC screening, diagnosis 
and treatment remains a high priority. Due to the rapid increase in the availability 
of patient data, there is significant interest in precision medicine that could 
facilitate the development of a personalized treatment plan for each patient on an 
individual basis. In this context, gut microbiota which has emerged as a central 
player mechanistically linking various risk factors to CRC pathogenesis, have 
added even more complexity to the study of CRC. 

Gastrointestinal disorders are often heterogeneous [e.g., malignancy, 
inflammatory bowel disease (IBD)] with a wide range of clinical phenotypes 
depending on age of onset, severity, natural course of disease, association with 
other diseases and treatment response. Big Data analysis allows for the 
subclassification of a disease entity into distinct subgroups (i.e., phenomapping), 
which enhances understanding of disease pathogenesis, as well as the 
development of more precise predictive models of disease outcomes [5]. The use 
of only clinical and laboratory data (as in traditional clinical research) in 
predicting disease course, outcome and treatment response may not achieve a 
high accuracy  

In fact, personalized cancer treatment requires comprehensive genetic 
information of individual cancers. 

While isolated analysis of genomic data types is of clinical value, an 
integrated and comprehensive analysis of multiple genomic data types from 
individual cancers leverages the predictive power of each data type and allows a 
better understanding of the complex molecular networks that drive tumor 
behavior at systemic level. Such information is extremely valuable in not only 
developing therapeutic strategies, but also predicting tumor response to specific 
treatment modalities for individual cancers.  
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Consequently, the concomitant analysis of DNA (genomics), RNA 
(transcriptomics), proteins (proteomics), metabolites (metabolomics) and images 
(radiomics) may provide a more representative evaluation of tumor heterogeneity 
improving CRC diagnosis and treatment response. 

 
1.1 MicroRNAs 

 
Recently, the field of epigenetics has significantly grown due to the 

discovery of new high-throughput miRNA profiling platforms such as NGS 
allowing genome-wide miRNA and mRNA expression analyses. 

miRNAs are a class of short endogenous single-stranded non-coding RNAs 
that are 18-25 nucleotides in length and are able to post-transcriptionally repress 
gene expression by binding to the 3’ untranslated region (UTR) of their target 
mRNAs. Interestingly, microRNAs can be found in several biospecimens 
including stools and extracellular vesicles (EVs) [6, 7]. In fact, miRNA in EVs 
already represent a promising biomarker in liquid biopsy. In particular, EVs  are 
nanosized, membrane-bound vesicles released from almost all type of cells and 
contain proteins, lipids, nucleic acids, and membrane receptors of the cells from 
which they originate.  

Faecal miRNAs have been shown to correlate with tumour stage, due to 
both their continued release into the intestinal lumen by CRC cells and their 
detection in stool samples. In fact, the rationale for using microRNAs in CRC is 
precisely the direct contact of the stools with the intestinal wall [8]. 

Koga et al [9] studied exfoliated colonocytes by comparing miRNAs 
expression in 197 patients with CRC and 119 healthy controls. The authors 
demonstrated that the miRNA-17-92 cluster and miRNA-135 were most highly 
expressed in patients with CRC (p<0.0001). Several other studies reported the the 
discriminatory power of microRNAs in stool samples, altough the majority of 
studies have investigated a small fraction of the whole human miRNome [10]. 

 
1.2 The 8q24 locus 
The 8q24 locus has been described for years as a “gene desert” due to the 

relatively low number of protein-coding genes mapped in the region [11]. 
Recently, several genome-wide association studies (GWAS) have identified in this 
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region a considerable number of genetic variants linked to susceptibility to 
different cancers, including prostate, breast, colon and many others [12, 13]. 

 In particular, some genetic elements, which resides in 8q24, such as MYC 
oncogene but also genes (FAM84B, GSDMC, FAM49B, and ASAP1) and 
pseudogenes connected to the tumorigenesis have captured the attention of 
researchers [14-18]. Moreover, this region hosts a large number of other small 
non-coding RNAs even if a a deep characterization of miRNA profiles is still 
missing.  
 

1.3 Big Data  
Intratumoral heterogeneity is an important obstacle for effective diagnosis 

and treatment [19]. In this context, the use of omics technologies (epigenomics, 
transcriptomics, proteomics, metabolomics, pharmacogenomics, radiomics) is 
becoming increasingly popular with the potential to contribute in a different way 
in advancing to our understanding of the molecular basis and cellular changes 
occurring in CRC.  

The concept of Big Data was introduced in late 1990s by Michael Cox and 
David Ellsworth [20] but Francis X. Diebold [21], in 2000, was the first to give an 
appropriate definition of Big Data, i.e. “explosion in the quantity (and sometimes, 
quality) of available and potentially relevant data”.  

There is currently no consensus on the core characteristics of Big Data. Over 
the years there have been several changes and from the initial 3v, volume, 
velocity and variety [22], we have moved on to the 5v by adding veracity and 
value. In healthcare, volume and variety refer to the huge amount of different and 
heterogeneous medical data that are often stored in different data formats. The 
velocity concerns the speed of data generation. Veracity refers to the quality of 
data that is to be analyzed and can be influenced by inconsistencies, missing data, 
ambiguities, deception, fraud, duplication, or latency [23]. Last but not least, the 
value represents the benefit that the use of Big Data should bring in terms of 
medical decision by the clinician. 
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II - RATIONALE 

Specific microRNAs detected in surrogate tissues, such as stool samples, are 
shown to be promising diagnostic biomarkers in patients with CRC. However, 
new studies are necessary to establish the sensibility and specificity of the 
individual microRNAs in order to use them in clinical practice.  

 
Large sample size is key to success in genome wide approaches. The 

application of Big Data analysis in healthcare research has revolutionized clinical 
study approaches. Recent developments in computational biology have driven 
the integration of big data and molecular networks using the principles of 
systems biology and machine learning. Machine learning algorithms provide the 
means and opportunity to investigate large amounts of data and thus help 
identify patterns behind complex medical conditions. These analytical approaches 
allow categorization of patients based on their specific differences through 
screening a patient’s genome, transcriptome, proteome, epigenome, immunome 
and microbiome. 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III - OBJECTIVES 
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III - OBJECTIVES 

There is increasing evidence to support the use of molecular biomarkers in 
CRC for the diagnosis as well as tailoring of adjuvant and neoadjuvant treatment 
to individual patients with both economic and clinical benefits. 

Assessing variation only of a single omic data type can miss complex 
models that require variation across multiple levels of biological regulation. Data 
integration approaches can provide a key to making sense of greater complexity 
by identifying the important genomic factors and their interactions. It also enables 
the study of rare exposures, rare events and long-term effects within a relatively 
short period of time. The huge sample size of Big Data permits subgroup analysis 
to investigate interactions between different variables with the outcome of 
interest without sacrificing statistical power. 

A better understanding of diagnostic value, and of the relationships 
between multiple relevant markers identified by a multi-omics approach 
investigated in different types of biospecimens (stool, plasma, primary tissue), are 
the objectives of our study in order to help the clinical decision-making as well as 
the development of personalized-target therapeutic treatments. 

 
In particular, the main objectives are the following: 
 

• To test the predictivity of stool miRNA profiles and their potential 
use to improve screening strategies 

• To explore all miRNAs profiles residing in 8q24 evaluating their 
expression in both tumor tissue and non-malignant adjacent mucosa 
of CRC patients from the whole miRNome análisis as well as 
validating the miRNA expression dysregulation in 8q24 in The 
Cancer Genome Atlas (TCGA) 

• To evaluate the relationship between the stool miRNA levels and 
common traits (sex, age, BMI, and menopausal status) or lifestyle 
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habits (physical activity, smoking status, coffee, and alcohol 
consumption)  

• To integrate data from CMS classification with small RNA 
sequencing and pan-cancer target assay to better describe CRC 
heterogeneity. The outcomes will be explored also in stool 
miRNome of patients in order to identify novel biomarkers in this 
surrogate tissue mirroring tissue alterations 
 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV - MATERIALS and 
METHODS 
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IV – MATERIALS AND METHODS 

 
My PhD work, from October 2020 until September 2022, was focused on the 

following activities:  
 
• Patients’ clinical evaluation and enrollment (including collection of 

demographic characteristics such as lifestyle, dietary and anthropometric 
parameters);  

 
The demographic characteristics, including past medical history, were 

collected and a questionnaire on lifestyle and anthropometric parameters was 
administered in order to better understand the complex interactions between the 
gut microbiome, metabolite composition, host condition and diet validated in the 
European Prospective Investigation into Cancer and Nutrition (EPIC) study [24]. 
In patients undergoing surgical treatment the pathological features were analyzed 
(tumor budding, lymph node involvement, circumferential resection margin, 
grading, type of tumor).  

Patients were regularly followed-up (in accordance with recent guidelines 
[25, 26]. 
Clinical information on surgery and/or treatments (including response to 
therapies, toxicity, living status) were collected for all CRC patients included. 

 
Inclusion Criteria 

- Age > 18 and < 90 years old 
- Diagnosis of CRC 
- Patients undergoing colorectal surgical resection with curative intent 

(any type of surgery) 
- All patients should provide Written Informed Consent 

 
Exclusion Criteria 
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- Current or previous diagnosis of other solid or hematological 
tumors 

- Inability or refusal to give informed consent 
- Inability or refusal to be regularly followed up 

 
• Samples Collection (Plasma and Stool samples plus Pathological tissue 

and corresponding adjacent healthy mucosa, least 20cm proximally from the 
cancer, only in patients undergoing colorectal surgical resection with curative 
intent) from patients recruited in our outpatient clinic; 

 
• Clinical interpretation of the data to be analyzed 
 
During the study period several multidisciplinary meetings were held, 

which included colorectal surgeons, pathologists, biologists, to discuss the 
histopathological classification of the samples and the clinical characteristics 
useful for the subdivision of the samples into the various categories of analysis as 
described in methods section.  
 

All the experimental and bioinformatics/statistical analyzes were perfomed 
in collaboration with the IIGM, Torino.  
 
  

Study I.  
 
Naturally evacuated fecal samples were obtained from all subjects 

previously instructed to self-collect the specimen at home. For all the cohorts, 
stool samples were collected in nucleic acid collection and transport tubes with 
RNA stabilizing solution (Norgen Biotek Corp.) and returned to the endoscopy 
unit. Stool aliquots (200µl) were stored at -80°C until RNA extraction [27]. 

Plasma samples were obtained from 8ml of blood centrifuged for 10min at 
1000rpm, and aliquots were stored at -80°C until use. Plasma EVs were isolated 
from 200µl of plasma using the ExoQuick exosome precipitation solution (System 
Biosciences, Mountain View, CA, USA) according to the manufacturer’s 
instructions. Paired tumor/adenoma tissue and adjacent non-malignant mucosa 
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(at least 20cm distant) were obtained from CRC and adenoma patients during 
surgical resection and immediately immersed in RNA later solution (Ambion). 
All samples were stored at -80°C until use.  

The Study Design is shown in Figure 1.  
 
Italian (IT) cohort – Stool specimens, clinical and demographic data were 

collected from 219 subjects recruited in a hospital-based study at one hospital in 
Vercelli, Italy. Based on colonoscopy results, participants were classified into: (i) 
62 CRC patients (individuals with newly diagnosed sporadic CRC); (ii) 40 polyp 
patients, stratified in hyperplastic polyps (n=6), non-advanced adenomas (nAA, 
n=14), or advanced adenomas (AA, n=20); (iii) 36 subjects with a Gastrointestinal 
(GI) disease, including inflammatory bowel disease (IBD, including Crohn’s 
disease, or ulcerative colitis), or diverticular disease; and (iv) 81 healthy subjects 
with negative colonoscopy. 
 

Czech (CZ) cohort – Stool specimens, clinical and demographic data were 
collected from 162 Czech individuals recruited in two hospitals in Prague and one 
in Plzen, Czech Republic. Based on colonoscopy results, subjects were divided in: 
(i) 66 CRC patients, (ii) 28 individuals with colorectal polyps grouped in 
hyperplastic polyps (n=9), nAA (n=13), and AA (n=6); (iii) 32 patients with other 
GI diseases; and (iv) 36 healthy subjects. 

 
Validation cohort – Stool specimens from 141 CRC patients recruited in the 

hospital in Brno, Czech Republic [28] and 50 stool samples of healthy subjects [29, 
30] were included. 
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Figure 1. Representation of the study design. 

 
 
Other analyzed bio-specimens 
For 135 subjects submitted to a surgical procedure at Vercelli hospital, 

primary tumor (n=105) or adenoma (n=30) tissues paired with adjacent colonic 
mucosa were collected. Among them, 69 (51 CRC and 18 adenomas) provided 
stool and blood samples and were included in the IT-cohort. 

Blood samples were collected from 209 subjects of IT-cohort stratified in 
patients with CRC (n=52), AAs (n=19), nAAs (n=14), hyperplastic polyps (n=6), 
other GI diseases (n=34), and healthy subjects (n=79). 

 
The rationale for the study was based on the following phases:  
 
- stool miRNA biomarkers discovery 
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- stool deregulated miRNA (DEmiRNA) analyses in different contexts 
 
The following analyzes were performed: 
 
- Total RNA extraction 
Total RNA was extracted from stool samples and leftovers from FIT tubes 

using the Stool Total RNA Purification Kit (Norgen Biotek Corp) as previously 
described [27]. Total RNA from plasma EVs was extracted as described in [31]. 
For tissue samples, total RNA was extracted using Trizol reagent (Thermofisher), 
according to the manufacturer’s instructions. 

 
- Library preparation for sRNA-Seq 
Small RNA transcripts were converted into barcoded cDNA libraries for 

Illumina sequencing protocol as previously described [29]. The obtained libraries 
were subjected to 75 cycles of single-end Illumina sequencing pipeline on HiSeq 
2000 sequencer, (Illumina Inc., USA). 

 
- sRNA-Seq bioinformatics and statistical analysis 
sRNA-Seq pipeline analyses were performed using a previously published 

Docker-embedded software to guarantee the computational reproducibility of the 
analysis [27]. Trimmed reads were mapped against an in-house curated reference 
of human miRNAs based on miRbase v22. The age- and sex-adjusted differential 
expression analysis was performed using DESeq2 R package v1.22.2 [32]. For 
tissue samples, to test the significance of miRNA differential expression levels 
between CRC/adenoma tissue and matched adjacent non-malignant colonic 
mucosa, a paired DESeq2 analysis was applied. A miRNA was considered 
differentially expressed if associated with an Benjamini Hochberg (BH) adjusted 
p-value < 0.05 and a median number of reads > 20 in at least one study group. 

Functional enrichment analysis was performed with RBiomirGS v0.2.12 [33] 
in default settings and considering the validated miRNA-target interactions. A 
term was considered enriched if associated with a BH adj. p<0.05 and at least two 
target genes. 

Starting from DESeq2-normalized miRNA levels, a feature selection was 
performed to define the minimal miRNA predictive set by considering an 
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increasing number of features prioritized from ANOVA F-Test or trained logistic 
regression coefficients applied to the training set (70% of IT and CZ-cohorts). Each 
miRNA set was tested concomitantly using a stratified 10-Fold Cross-Validation 
procedure with four methods (Logistic Regression, Random Forest, Gradient 
Boosting, and Support Vector Machines). The smallest miRNA set providing the 
highest AUC was isolated and its predictive power (average AUC) was tested by 
Stratified 10-Fold Cross-Validation repeated 500 times. The identified signature 
was tested on 30% of IT- and CZ-cohorts excluded from the training and on the 
Validation cohort. 

The statistical analyses between continuous variables were performed using 
Wilcoxon Rank Sum test or Kruskal-Wallis’s test while chi-squared test was used 
for categorical variables. 

 
Study II.  
 
Tissues. Primary tumor and adjacent normal mucosa (at least 20cm distant) 

tissues from CRC subjects (Study I) were collected during surgical resection and 
immediately transferred in cryogenic vials with RNAlater™ Solution (Invitrogen, 
Milan) and stored at -80°C until use. 

Stool. Naturally evacuated faecal samples were obtained from all patients of 
Study I, previously instructed to self-collect the specimen at home before the 
colonoscopy. Stool samples were collected in stool nucleic acid collection and 
transport tubes with RNA stabilizing solution (Norgen Biotek Corp.). Aliquots 
(200µl) were stored at -80°C until RNA extraction.  

Urine. Urine samples were collected in the morning from all the participants 
in the Study II and stored at 4°C until they were centrifuged at 3000 g for 10 min. 
The urine supernatant aliquots were then transferred in tubes and stored at -80°C 
until use. 

Plasma. For both study cohorts, plasma samples were obtained from 5-8mL 
of blood, centrifuged at 1000 rpm for 10 minutes. From each tube of blood, about 
1-2ml of plasma was obtained: 200µl aliquots were stored at -80°C until use. EVs 
were isolated from 200µL of plasma using the ExoQuick™ Exosome Precipitation 
Solution (System Biosciences, Mountain View, CA, USA) according to 
manufacturer’s instructions. Briefly, plasma was mixed with 50.4 µL of 
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ExoQuick™ Solution and refrigerated at 4°C overnight (at least 12h). The mixture 
was then centrifuged at 1500g for 30min. The EVs pellet was dissolved in 200µL 
of nuclease-free water and RNA was extracted immediately from this solution.  

 
The study I population consisted of 200 subjects (89 women and 111 men) 

recruited at the Clinica S. Rita in Vercelli, Italy. Based on colonoscopy results, 
participants were classified as healthy controls (80 subjects with negative 
colonoscopy for tumor or other GI disorders) or CRC patients (120 subjects)[27]. 
CRC patients were also stratified according to the localization of the tumor 
(colon/sigma-region or rectum), the stage of the cancer (stage 0-IV) and its grade 
(G1-G3)[34] Stool and blood samples were collected at the time of recruitment 
and, for CRC cases only, tissue pairs of primary tumor and adjacent normal 
mucosa were also collected at the surgery. 

 
The study II consisted of a set of subjects recruited in the context of previous 

research [35] nested in the Turin Bladder Cancer Study [36, 37] and consisting of 
116 men. For all the subjects, urine and plasma samples were collected. The 
results of the latter population were not reported in the present project. 

 
The following analyzes were performed: 
 
- RNA extraction 
Extraction of total RNA from stool, urine, plasma EVs and tissues was 

performed using appropriate kits/methodologies for total RNA purification 
according to the specimen to be analysed. 

RNA from tissues was isolated using QIAzol (QIAGEN, Hilden, Germany) 
after tissue homogenization performed with ULTRA-TURRAX® Homogenizer 
[37], followed by phenol/chloroform extraction accordincg to the manufacturer’s 
standard protocol. 

Total RNA from stool samples was extracted with the Stool Total RNA 
Purification Kit (Norgen Biotek Corp., Canada) following the manufacturer’s 
standard protocol. Total RNA from plasma EVs was extracted with the miRNeasy 
Plasma/Serum Mini-kit (Qiagen, Hilden, Germany) using the QIAcube extractor 
(QIAGEN, Hilden, Germany). Total RNA from urine samples was extracted with 
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the Urine microRNA Purification Kit (Norgen Biotek Corp., Canada), following 
the manufacturer’s standard protocol. The RNA concentration was quantified by 
Qubit™ 4 fluorometer with Qubit™ microRNA or RNA Broad range Assay kits 
(Invitrogen, Monza, Italy). 

 
- Library preparation for sRNA-seq [30, 38] 

 
sRNA-seq libraries were prepared from RNA extracted from tissues, stool, 
plasma EVs, and urine. Small RNA transcripts were converted into barcoded 
cDNA libraries using NEBNext® Multiplex Small RNA Library Prep for 
Illumina® (New England Biolabs, Inc., Ipswich, MA, USA). For each library, 6µL 
of RNA (35ng for EVs RNA, and 250ng for tissue/stool/urine RNA) were used in 
all the experimental procedures as starting material. Each library was prepared 
with a unique indexed primer. Multiplex adaptor ligations, reverse transcription 
primer hybridization, reverse transcription reaction and PCR amplification were 
performed according to the manufacturer's protocol. Further details concerning 
cDNA constructs and final libraries preparation are described in [30].  
The obtained libraries were subjected to the Illumina® sequencing pipeline, 
passing through clonal cluster generation on a single-read flow cell (Illumina Inc., 
San Diego, CA, USA) by bridge amplification on the cBot (TruSeq SR Cluster Kit 
v3-cBOT-HS, Illumina, Inc., San Diego, CA, USA) and 50 cycles sequencing-by-
synthesis on the HiSeq™ 2000 Sequencing System (Illumina, Inc., San Diego, CA, 
USA) (in collaboration with EMBL, Gene core facility, Heidelberg, Germany). 
 

- Library preparation for total RNA-seq 
 

Before RNA-seq library preparation, total RNA from tissue samples was cleaned 
up and DNase-treated with the RNA Clean & Concentrator™-5 kit, following 
manufacturer`s protocol (Zymo Research, USA) to remove all traces of DNA. 
Next, the quality of the input RNA was determined by RNA Integrity Number 
(RIN) measurement obtained by running the samples on an Agilent Bioanalyzer® 
RNA 6000 Nano chip (Agilent Technologies, Milan, Italy). For each sample, 500ng 
of RNA was used as starting material to libraries preparation. RNA-seq libraries 
were prepared with the NEBNext® Ultra II Directional RNA Library Prep for 
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Illumina® kits (New England Biolabs, Ipswich, MA, USA) after ribosomal RNA 
depletion, following manufacturer`s instructions. The generated barcoded 
libraries of about 300bp fragments were run on an Illumina® NovaSeq™ 6000 
platform (Illumina, Inc., San Diego, CA, USA). 
 

- DNA extraction 
 
For DNA extraction, tissues were initially homogenized in a homogenization 
solution (Promega, Milan) and then processed with Maxwell® RSC Tissue DNA 
Kit (Promega, Milan). Before loading samples onto Maxwell® RSC Cartridges, 
300µL of Lysis Buffer and 30µL of Proteinase K were added to the homogenized 
samples, and further incubated for 20min at 56°C. DNA was quantified with 
Qubit™ 4 fluorometer using Qubit™ dsDNA High Sensitivity Assay Kit 
(Invitrogen, Carlsbad, CA, USA). 
 

- TruSight™ Oncology 500 High-Throughput (TSO500-HT). 
 
DNA libraries were prepared using the hybrid capture based TruSight™ 

Oncology 500 High Throughput (TSO500-HT) Library Preparation Kit (Illumina, 
San Diego, CA, USA) following Illumina® TruSight™ Oncology 500 Reference 
Guide (document # 1000000094853 v02). In brief, the genomic DNA was 
fragmented using the Covaris® ME220 focused-ultrasonicator (Covaris, Woburn, 
MA) for 10 seconds at 50 watts. After end repair, A-tailing, and adapter ligation, 
the adapter-ligated fragments were amplified using primers to add index 
sequences for sample multiplexing. Libraries were enriched through two 
hybridization/capture steps using specific probes: a pool of oligos specific to 523 
genes targeted by TSO500-HT was hybridized to the DNA libraries overnight. 
Next, streptavidin magnetic beads were used to capture probes hybridized to the 
targeted regions. PCR amplification, cleanup, and quantification of the enriched 
DNA using Qubit™ dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA) were 
the final steps. Following pooling and denaturation, libraries were diluted to the 
appropriate loading concentration and finally sequenced on Illumina® 
NovaSeq™ 6000 Sequencer (Illumina, Inc., San Diego, CA, USA) (read length of 
200 bp paired end). 
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- 8q24 region miRNA profiles from TCGA data 

The locus 8q24 is a genomic region enriched in cancer-associated polymorphisms, 
it has been described as a “gene desert” due to sparse presence of protein-coding 
genes [39]. Nevertheless, this locus hosts the MYC oncogene and genetic elements 
connected to tumorigenesis, such as pseudogenes and long non-coding RNAs. 
This region hosts also many genes coding for 30 miRNAs genes, scarcely 
investigated so far. Research on such miRNAs may provide new insights to 
characterize the multiple-cancer associated variants annotated in this genomic 
region. 
Data of the TCGA related to CRC (COAD, colon adenocarcinoma and READ–
rectum adenocarcinoma) and BC (BLCA–Bladder carcinoma) were retrieved from 
TCGA Data portal (v.29.0). For each project, the 
isoform_expression_quantification.txt file, containing information on miRNA 
expression levels as raw counts, was downloaded along with information on the 
coordinates for each miRNA and their accession number on miRBase (v.22). Raw 
counts were then normalized using the DESeq2 package (v.1.28.1) [32] for the 
statistical software R (v. 4.0.2). TCGA-COAD and TCGA-READ data were 
merged in the same dataset of CRC patients. Files containing clinical data, 
information on patient biospecimen, and metadata were downloaded from the 
TCGA Data portal (v.29.0). To prepare the count matrix, each mature miRNA 
name was retrieved with the use of the ‘miRBaseConverter’ [40] R package. Data 
were filtered to keep only white-Caucasian individuals. Differential expression 
analyses were performed initially on tumor tissue samples and paired adjacent 
mucosa and then considering also non-matched tumor samples. 
 

- miRNA targets functional enrichment analysis 
To perform a functional enrichment analysis, miRNA target genes were retrieved 
using miRWalk database (v 2.0) as previously described in Sabo et al. [31]. Only 
miRTarBase validated interactions involving miRNAs targeting the gene 3’UTR 
and associated with a score greater or equal than 0.95, were retained. Target genes 
were subset based on miRNAs log2 fold-change (log2FC, up- or down-regulated) 
and separately analysed with the Metascape web tool [41] to retrieve the enriched 
functional terms. 
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Study III.  
 
Sample collection was perfomed as described in Studies I-II.  
We collected stool samples from healthy donors participating in different 

studies (Figure 2). Briefly, 132 volunteers were recruited from a study 
investigating the role of different dietary habits described in Tarallo et al. (Study 
1) [29], 76 individuals were recruited as controls in a study on colorectal cancer 
(i.e., negative at colonoscopy for any other gastrointestinal diseases) (Study 2) 
[38], and 127 individuals from a comparative study (healthy individuals either on 
gluten-free diet or with no dietary restrictions).  

 

 
Figure 2. Workflow of the study 
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The rationale for the study was based on the need to correlate miRNA 

expression levels in stool with sex, age, BMI, smoking, alcohol and coffee 
consumption, and physical activity in order to understand their possible 
modulatory effects on the human faecal miRNome. 

 
The following analyzes were performed: 
 
- Total RNA extraction from stool 
Total RNA was extracted from 200 µl faecal aliquots with the Stool total 

RNA purification kit (Norgen Biotek Corp) using the protocol recommended by 
the manufacturer. RNA quality and quantity were verified according to the MIQE 
guidelines (http:// miqe. gene- quant ifica tion. info/). For all samples, RNA 
concentration was quantified by Qubit fluorometer with a Qubit microRNA assay 
kit (Invitrogen). 

 
- Library preparation for sRNA-Seq 
The present step was performed according to the previous described 

studies.   
 

- Analysis of miRNAs from sRNA-seq data 
A full description of miRNA data analysis is detailed elsewhere [30, 40, 42].  
 
- Classification criteria for common traits and lifestyle habits 
 
Information on smoking status, alcohol and coffee consumption, and 

physical activity were collected from the quantitative and qualitative EPIC dietary 
and lifestyle questionnaires [24] whereas individual characteristics (i.e. age, 
height and weight) were reported in a baseline questionnaire. For women, 
menopausal status information (premenopausal and postmenopausal) was also 
included in EPIC lifestyle questionnaire. 
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Considering the age distribution of the study population, miRNA profiles 
were investigated comparing three categories: <37 (n=122), 37-53 (n=111) and >53 
(n=102) years old. 

 
Study IV. 
 
Sample collection was perfomed as described in Studies I-II.  
In this study, paired tissue specimens were collected from 115 CRC patients 

(tumor and adjacent normal mucosa). RNA-seq and sRNA-seq were performed 
on each sample. After the CMS classification, each subtype was genomically 
characterized with the TruSight Oncology 500 (TSO) cancer-panel. Specific genes 
and miRNA signatures of each CMS were identified using differential expression 
analysis. 

 
The rationale for the study was based on the integration of data from CMS 

classification with sRNA sequencing and pan-cancer target assay to better 
describe CRC heterogeneity.  

 
The following analyzes were performed (according to the previous 

described studies): 
- Library preparation for sRNA-seq 
- Library preparation for total RNA-seq 
- TruSight™ Oncology 500 High-Throughput  

 
The TSO 500 was employed as a comprehensive NGS assay targeting 523 

full coding gene regions implicated in solid tumors pathogenesis [44]. Besides 
somatic mutations, single nucleotide variants, indels, amplifications (1.94 Mb 
genomic content) tumor mutation burden (TMB) and microsatellite instability 
(MSI) were assessed. Libraries from FFPE samples or tissues in RNA later (40ng 
of DNA in input) were prepared as manufacturer’s protocol and sequenced on 
NovaSeq 6000 System.  
 

- miRNA targets functional enrichment analysis 
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Ethical Approval 
Local ethics committees (Universidad Católica San Antonio de Murcia 

(UCAM); Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo di 
Alessandria; Institute of Experimental Medicine in Prague; Masaryk Memorial 
Cancer Institute and Masaryk University in Brno) approved the study. All 
patients gave written informed consent following the Declaration of Helsinki 
prior to participating in the study. 
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V - RESULTS 

Study I.  
 
Study Population (Figure 1) included stool specimens, clinical and demographic 
data from an IT Cohort (219 subjects recruited in a hospital-based study at one 
hospital in Vercelli), a CZ cohort (162 CZ individuals recruited in two hospitals in 
Prague and one in Plzen) and a Validation cohort (141 CRC patients recruited in 
the hospital in Brno, CZ Republic and 50 stool samples of healthy subjects from 
Italy).  
 
The mean age of cases in the IT Cohort was 58.5 (39-84) years, 55.9 (30-82) years, 
65.4 (42-93) years and 71.1 (54-87) years, respectively, in Healthy, GI disease, 
Polyps and CRC patients (p < 0.001). Overall, 56.6% of patients were male 
(124/219) but without statistically significant differences (p = 0.079). 
 
Moreover, the mean age of cases in the CZ Cohort was 57.8 (40-76) years, 58.7 (41-
75) years, 63.1 (48-82) years and 68.0 (40-88) years, respectively, in Healthy, GI 
disease, Polyps and CRC patients (p < 0.001) with 55.5% of male patients (90/162) 
(p = 0.17).  
 
In both groups, there were no statistically significant differences regarding BMI 
(IT p = 0.096; CZ p = 0.16). Conversely, while the smoking status was 
homogeneous in the ITCohort (p = 0.55), there was a significant difference in the 
CZ Cohort (p = 0.025).  
 
 
Stool miRNA profiles  
An average of 267±112 miRNAs were detected in each stool sample by sRNA-Seq. 
Differential expression analysis, adjusting for age and sex, was performed 
between CRC and healthy subjects independently in each of the two data sets, the 
IT-cohort and the CZ-cohort. A total of 116 and 30 significant DEmiRNAs 
(median expression >20 reads and adj. p<0.05) were detected in the IT-cohort and 
the CZ-cohort, respectively (Figures. 
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The two cohorts shared 20 common stool DEmiRNAs (Figure 3), all with a similar 
trend of expression (17 up-regulated and 3 down-regulated, rho=0.83, p<0.001, 
Figure 3). 
DEmiRNA profiles were further explored in relation to clinical data of cancer 
patients (Figure 4). The levels of three down-regulated miRNAs significantly 
decreased with increasing tumor grade and size (T). miR-607 also significantly 
decreased in patients with advanced stages of the disease or lymph node invasion 
(Figure 4). On the contrary, the levels of 10 CRC-up-regulated miRNAs 
significantly decreased in patients with metastatic disease.  
 
 

 
 
Figure 3. Scatterplot reporting the correlations of log2FC of the 20 stool 
DEmiRNAs from the comparison between CRC and healthy subjects in common 
between the IT-cohort (x-axis) and the CZ-cohort (y-axis). In red are represented 
the up-regulated miRNAs, in blue the down-regulated ones. 
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Figure 4. DEmiRNA levels comparing CRC patients stratified for clinical data. 
The color of the dot is related to the log2FC while the -size is proportional to the 
statistical significance. 
 
A fecal miRNA predictive signature distinguishes CRC patients from healthy 
individuals 
 
From the integrated machine-learning pipeline, the best miRNA predictive 
signature which accurately distinguished CRC patients from healthy controls was 
composed of five miRNAs (miR-607, miR-6777-5p, miR-4488-3p, miR-149-3p, and 
miR-1246-3p, AUC=0.83).  
By stratifying patients for CRC stage, the same five miRNA signature accurately 
distinguished both stages III-IV patients (Validation cohort, AUC=0.89) but also 
stages I-II patients from from healthy subjects (Validation cohort, AUC=0.85). 
Results remained similar even not including age and sex in the analysis. 
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DEmiRNA profiles in tumor tissue and adjacent mucosa  
 
A differential expression analysis was performed between paired tumor tissues 
and matched adjacent mucosa collected of 105 CRC patients. Eleven miRNAs 
among the 20 DEmiRNAs were also significantly differentially expressed (adj. 
p<0.05) in tumor tissue (Figure 5), with seven miRNAs (miR-21-5p, miR-1246-3p, 
miR-1290-5p, miR-148-3p, miR-4488-3p, miR-149-3p, miR-219-3p) up-regulated in 
tumor tissues coherently with their increase in stool of CRC patients.  
 
 

  
 
Figure 5. Characterization of the 20 fecal DEmiRNAs in different sample types. 
Bar plot reporting the median expression levels in tumor, advanced (AA) and 
non-advanced adenoma (nAA) tissues. The color code represents the log2FC from 
the paired differential expression analysis between CRC/adenoma tissues and 
matched adjacent mucosa ***, adj. p<0.001; **adj. p<0.01; *adj. p <0.05. 
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DEmiRNA profiles in circulating EVs  
 
sRNA-Seq was performed on RNA isolated from EVs obtained from plasma 
samples collected from 209 subjects in the IT-Discovery cohort, detecting an 
average of 292±57 miRNAs in these samples. Among the 20 DEmiRNAs identified 
in stool samples of CRC patients, only miR-4488-3p emerged as significantly 
dysregulated also in plasma EVs, albeit associated with low median levels (<10 
normalized reads) 
 
 
Study II 
 
The Study I cohort consisted of 120 CRC patients and 80 controls. The mean age 
of cases was 70.5±10.5 years, with 59.2% of males. The control group mean age 
was 57.9±11.3 years, with 40 males and 40 females. Stool samples were available 
for 62 patients, while plasma EVs were available for 53 cases. For the control 
group, stool, and plasma EVs were available for all individuals. Tissue pairs were 
available for 108 patients. Forty-three CRC patients had all three biospecimens 
collected. In this population, 53 out of the 54 known miRNAs in the 8q24 region 
were detected in all specimens analysed (tissue, stool, and plasma EVs samples). 
 
Small RNA sequencing results in CRC tissue samples 

 
Twelve 8q-related miRNAs were differentially expressed (adj p-value<0.05) in 
cancer tissues when compared with the adjacent colonic mucosa. Among them, 
nine resulted up-regulated: miR-151a-3p (log2FC=0.23; Figure 6A), miR-151a-5p 
(log2FC=0.22), miR-548az-5p (log2FC=0.37), miR-548d-3p (log2FC=0.38), miR-937-
3p (log2FC=0.84), miR-939-5p (log2FC=0.98), miR-1302 (log2FC=1.16), miR-4472 
(log2FC=0.32), and miR-4664-3p (log2FC=1.76). Three DE miRNAs were down-
regulated: miR-30b-3p (log2FC=-0.31), miR-30d-5p (log2FC=-0.23; Figure 6B), and 
miR-4662a-5p (log2FC=-0.46) 
Seven miRNAs (namely miR-30b-3p, miR-30d-5p, miR-548d-3p, miR-937-3p, miR-
939-5p, miR-1302, miR-4664-3p) resulted differentially expressed in both tumors 
with stages I-II and III-IV in comparison to their respective adjacent tissues. 
 
When tumors were stratified for grade, six miRNAs (miR-151a-3p, miR-548d-3p, 
miR-937-3p, miR-939-5p, miR-1302, and miR-4664-3p) were up-regulated in G1-
G2 cancers vs adjacent mucosa. Conversely, miR-30b-3p and miR-30d-5p were 
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down-regulated. In G3 CRC, miR-548az-5p, miR-548d-5p, miR-937-3p, miR-939-
5p, miR-1302, miR-4664-3p, and miR-4472 were significantly up-regulated, while 
miR-30b-5p, miR-30d-5p, and miR-4662a-5p resulted down-regulated compared 
to adjacent tissues. 
 
Validation with TCGA data 
8q24-related miRNAs were investigated on the TCGA dataset. Out of 52 miRNAs, 
four were up-regulated in tumor tissues with respect to normal adjacent mucosa 
(22 matched samples): miR-151a-3p (log2FC=1.82 Figure 6C), miR-151a-5p 
(log2FC=0.84), miR-30b-5p (log2FC=2.84), and miR-4662a-5p (log2FC=3.84). 
Conversely, miR-30d-5p (log2FC=-1.11; Figure 6D) and miR-937-3p (log2FC=-2.23) 
resulted down-regulated. miR-151a-3p (Figure 6C) and miR-30d-5p (Figure 6D) 
showed similar significant expression levels also when also unmatched tumor 
tissue samples (n=574) were included in the analysis. 
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Figure 6. Box plots representing expression levels respectively of miR-151a-3p 
and miR-30d-5p in (A, B) CRC tissues versus normal adjacent mucosa from Study 
1; (C, D) in the CRC-TCGA database (both for paired and not paired tissues); (D, 
E) in stool samples from CRC patients and healthy controls. 
 
Functional enrichment analysis 
In total, 213 genes are targeted by miRNAs up-regulated in tumor tissues, as 
retrieved from the miRWalk database.  
 
sRNA sequencing in surrogate tissues  

Stool samples. Out of the 54 miRNAs detected in the 8q24 region, four were 
differentially expressed in faecal samples of CRC cases in comparison with 
controls. Specifically, in patients, miR-6849-5p was down-regulated (log2FC=-0.71, 
adj p-value=0.05) while miR-151a-3p (log2FC=1.40, adj p-value<0.0001; Figure 6E), 
miR-30d-5p (log2FC=4.10, adj p-value<0.0001; Figure 6F), and miR-10400-5p 
(log2FC=2.46 adj p-value<0.0001) were up-regulated 
 
miR-6849 was down-regulated in CRC stage I-II (log2FC=-1.44) and stage III-IV 
(log2FC=-1.04) when compared to healthy controls. miR-151a-3p (log2FC=2.08) 
and miR-1302 (log2FC=-0.97) were respectively up- and down-regulated only in 
stage III-IV. 
After a stratification of CRC cases for tumor localization, miR-30d-5p was up-
regulated both in colon/sigma (log2FC=4.11, adj p-value<0.0001) and rectal cancer 
(log2FC=4.72, adj p-value<0.0001) when compared to healthy controls while miR-
6849-5p was down-regulated in colon/sigma patients only (log2FC=-1.00, adj p-
value=0.01).  
 
Plasma EVs samples. Only miR-30d-5p were significantly down-regulated in 
samples from patients with G1-G2 tumors (log2FC=-0.31, adj. p-value=0.02).   
 
Study III. 
 
Overall, 342 faecal samples were collected. Six patients provided a second stool 
sample one year after the first collection: for them, only data from the first 
sampling were considered in the analyses while the second sample was used to 
assess intra-individual variability. One patient was excluded because few sRNA-
Seq reads were aligned on miRNA sequences. The final study population 
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consisted of 335 subjects [average age of 44.7 ± 14.7 years old (range: 18–81); 63.6% 
were females] provided by both stool sRNA-seq data and lifestyle questionnaires 
(Figure 2).  
 
Stool miRNA profiles and analysis of the intra/inter-individual expression 
variability. 
 
Four hundred and forty-nine miRNAs (13.8%) were detected in at least half of the 
analysed samples. Among them, nine miRNAs (miR-320e-5p, miR-607, miR-647-
3p, miR-1246-3p, miR-1302, miR-3125, miR-5698, miR-6075, and miR-6777-5p) 
were detected in all the samples analysed. miR-3125 was characterised by the 
highest median expression levels (2,051 reads), followed by miR-6075 (921 reads), 
and miR-1246-3p (884 reads). Repeated samples collected from six subjects were 
used to assess the stability of stool miRNA expression levels over time. A second 
faecal sample was collected approximately one year after the first collection (min 
= 378 days, max = 560 days). No significant changes in lifestyle habits were 
reported from the questionnaires compiled by the participants on both occasions. 
 
miRNA profiles in relation to common traits. 
 
miRNA expression levels were analyzed in relation to sex, age, menopausal 
status, and BMI. Initially, miRNA profiles of 122 males and 213 females were 
compared and nine DEmiRNAs were observed between sexes. Specifically, five 
were up-regulated (miR-324-3p, miR-324-5p, miR-1255b-5p, miR-3935, and miR-
4675) and four down-regulated (miR-3615-5p, miR-4326, miR-4418, and miR-4632-
5p) in males. The expression levels of miR-324-5p, miR-4326, and miR-4418 are 
reported as an example of DEmiRNAs associated with sex. (Figure 7a). 
In total, 19 DEmiRNAs were identified in at least one comparison among these 
categories. miR-1231 and miR-4276-3p were down-regulated and miR-4487 was 
up-regulated in subjects of the age class 37–53 compared with those of the age 
class < 37. Comparing subjects of age class > 53 with those of the class < 37, 7 
DEmiRNAs (6 down- and miR-3169 up-regulated in the older group) were 
identified. Between the age classes 37–53 and > 53, 10 DEmiRNAs (3 down and 7 
up-regulated in the eldest group) were identified. Progressive reduced expression 
levels with increasing age were observed across categories for miR-4276-3p and 
increased for miR-3169 and miR-4505-3p (Figure 7b). For the 19 DEmiRNAs, a 
similar expression pattern among age classes was observed when the analysis 
was performed considering males and females separately. However, only miR-
550a-3-5p was significantly down-regulated in males of the age class 37–53 with 
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respect to the other two classes. Additionally, 13 and 6 DEmiRNAs were 
specifically associated with age in males and females, respectively.  

 
 
Figure 7. Box plots showing the expression levels of selected DEmiRNAs among 
individuals stratified according to the investigated common traits features. P 
values were computed using DESeq2 and adjusted using the FDR method. ***adj. 
p value 0.001, **adj. p value 0.01, *adj. p value 0.05. 
 
miRNA profiles according to lifestyle habits (Figures 7 and 8) 
miRNA levels were further investigated in relation to smoking status, alcohol, 
and coffee consumption as well as physical activity. 
For smoking habits, miRNA levels were analysed comparing subjects who 
smoked more than 16 cigs/day (n = 16), those smoking less than 16 cigs/day (n = 
41) and former smokers (n = 94) with never smokers (n = 181). Overall, 84 
DEmiRNAs were identified from the three comparisons. Comparing individuals 
who smoke more than 16 cigs/day with non-smokers, 59 DEmiRNAs were 
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identified (50 up- and nine down-regulated) while 22 miRNAs were differentially 
expressed in those who smoke less than 16 cigs/day compared to non-smokers 
(three up- and 19 down-regulated). Interestingly, mir-8075-5p and miR-12128 
were down-regulated in both smoking categories compared to non-smokers. 
Finally, 13 miRNAs were differentially expressed in former smokers vs non-
smokers, with miR-5090-3p up-regulated and the other 12 DEmiRNAs down-
regulated in the former group. 
 
A similar expression pattern was observed for the 84 DEmiRNAs when the 
population was stratified by sex, with 14 and 26 out of 84 DEmiRNAs 
significantly dysregulated in men and women, respectively. Other additional sex 
specific DEmiRNAs were uniquely identified in men (n = 17) and women (n = 14) 
 
Partecipants were also categorized by their self-reported alcohol consumption 
(i.e., gr/day intake of alcohol) in non-drinkers (0 gr/day), low intake (0.1–24.0 
gr/day for male and 0.1–12.0 gr/day for female), and high intake (> 24.0 gr/day for 
male and > 12.0 gr/day for female) according to WHO guidelines. 
The relationship between miRNA expression levels and alcohol consumption was 
assessed comparing nondrinkers (n = 29) with low (n = 230) and high (n = 75) 
intake drinkers. Comparing high intake drinkers with non-drinkers, miR-3972 
was down-regulated in the latter, whereas in low intake drinkers vs non-drinkers, 
miR-4254 and miR-4254-5p were down-regulated, and miR-6895-3p up-regulated 
in drinkers 
 
miRNA profiles in relation to coffee consumption were studied comparing low ((< 
8.0 gr/day; n = 149) and high ((> 8.0 gr/day; n = 50) intake coffee drinkers with 
non-drinkers (n = 135). In high intake coffee consumers vs non-drinkers, 44 
miRNAs were differentially expressed, with three up- and 41 down-regulated, in 
drinkers 
 
The stratification of the study population according to the physical activity 
identified the following categories: inactive (n = 90), moderately inactive (n = 114), 
moderately active (n = 108), and active (n = 21) subjects. Comparing each of the 
first three categories against active individuals, 11 DEmiRNAs were identified 
 



CHAPTER V: RESULTS  

 

63 

 
 
 
Figure 8. Box plots showing the expression levels of selected DEmiRNAs among 
individuals stratified according to the investigated lifestyle features. P values 
were computed using DESeq2 and adjusted using the FDR method. ***adj P value 
0.001, **adj P value 0.01, *adj P value 0.05 
 
Overview of common miRNAs altered among investigated variables. 
From a total of 3,041 miRNAs detected, 151 (5%) were associated with at least one 
of the analysed common traits or lifestyle habits while 52 DEmiRNAs were 
significant in two or more comparisons. Considering separately for males and 
females the stool levels of the latter group of DEmiRNAs, a subtle clustering of 
miRNAs emerged for both sexes, mainly related to smoking habit, BMI and coffee 
consumption, as reported in the heatmap in Figure 9.  
To test the temporal stability of all the identified stool DEmiRNAs expression 
levels in repeated samples collected from the same individuals, a Wilcoxon paired 
test was performed between the available samples collected at two time points. 
One hundred and seventy-three miRNAs (85.2%) showed no significant variation 
between the two measurements (p ≥ 0.05, Supplementary Table 1D). The 
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remaining 30 DEmiRNAs (among which two variables shared 11 miRNAs), 
showing a significant variability between the two time points, were mostly 
related to BMI (n = 13), smoking habit (n = 14) or coffee consumption (n = 11). 
 

 
 
Figure 9. Heatmap of the hierarchical clustering of significant associations 
between miRNAs and the investigated common traits and lifestyle variables (p-
values adjusted for multiple testing). For each DEmiRNA, the log2FCs of all the 
comparisons are reported. 
 
Study IV (Figures 10 to 15). 
 

Starting from RNA-seq data, patients were assigned to CMS1 (n=9), CMS2 
(n=24), CMS3 (n=26) and CMS4 (n=24). Differential expression analyses revealed 
1096 differentially expressed genes in CMS1, 4218 in CMS2, 27 in CMS3 and 190 
in CMS4. Notably, only cell migration-inducing and hyaluronan-binding protein 
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(CEMIP) was differentially expressed in all subtypes. CMS3, the most represented 
group, showed the highest number of coding variants (n=683) of which 384 were 
unique missense variants. CMS1 was the least represented subtype but it 
included almost all subjects with microsatellite instability. APC harboured the 
most coding variants in all CMS groups but CMS1. 
 
In total, 380 miRNAs were differentially expressed in tumor tissue compared to 
adjacent mucosa. Based on these results CMS-specific miRNA-target interactions 
will be defined based on validated annotations and co-expression analysis. 
Putative upstream regulators will also be identified by functional enrichment 
analysis. 
Our data are a reflect of the CMS classification system and ongoing investigations 
will aim to elucidate if the miRNome could implement RNA-seq-based CMS 
classification to facilitate patient prompt diagnosis and stratification and 
eventually further therapeutical approaches. Integration of TSO, RNA-seq and 
sRNA-seq data is a feasible approach to shed new light on CRC heterogeneity.  
  
 
 

 



GAETANO GALLO 

 

66 

 
Figure 10. Volcano Plot showing 3.849 differentially expressed genes between 
tissues that were observed after RNA-sequencing. On these genes we can build 
Consensus Molecular Subtypes. 
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Figure 11. Illumina TruSight Oncology 500 (TSO500 HT) was used as Next 
Generation Sequencing assay targeting 523 genes, assessing somatic mutations, 
SNV, indels, TMB and MSI. Eleven subjects of the cohort with MSI high were 
further investigated in blood samples where they resulted all MSI stable 
 
 
Eleven subjects of the cohort with MSI high were further investigated in blood 
samples where they resulted all MSI stable  
 
According to RNA-seq data, each patient was assigned to a CMS subgroup using 
the CMSCaller package for R, with the use Nearest Template Prediction as a core 
algorithm. 
 
 

 
 
Figure 12. CMS distribution in the study population 
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Figure 13. Top 5 enriched terms from Gene Ontology connected to the most 
overrepresented genes in each CMS subtype. No terms were identified for CMS-3 
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Figure 14. CMS subtypes stratified according to MSI and TMB 
 
 
 

       
 

miRNA Target # Evidence miRNA Log2FC Target Log2FC
miR-6777-5p PER1 7 1.37 -1.51

miR-1976 PER1 6 1.51 -1.51
miR-30c-1-3p RBM8A 6 -1.15 1.00
miR-30e-3p KPNA2 6 -1.16 1.51
miR-495-3p KPNA2 6 -1.41 1.51
miR-887-5p RBM8A 6 -1.35 1.00

miR-4444 PER1 5 1.35 -1.51
miR-5094 MYLK 5 1.34 -1.55
let-7c-3p CKS2 4 -1.61 1.70

miR-30e-3p MYC 4 -1.16 1.56
miR-3183 VAV3 4 1.83 -2.31

miR-539-5p SOD2 4 -1.53 1.29
miR-636 BTG2 4 1.28 -1.05

miR-6510-3p UGDH 4 2.01 -1.09
miR-887-5p H4C14 4 -1.35 1.18
miR-149-3p BTG2 3 1.50 -1.05
miR-1910-3p BTG2 3 1.39 -1.05
miR-1910-3p ZBTB7B 3 1.39 -1.06
miR-193a-5p PCSK9 3 -1.02 2.75
miR-224-3p PSMA7 3 -1.00 1.03

CMS 1
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Figure 15. miRNA-Target interactions between the differentially expressed 
miRNAs and genes stratified by CMS subtypes. No interactions were identified 
for CMS-3 
 
 

miRNA Target # Evidence miRNA Log2FC Target Log2FC
miR-6812-5p PLCG2 8 1.01 -1.65
miR-29b-2-5p H2AC12 6 -1.16 1.99
miR-135a-3p KIFC1 5 -1.66 2.01
let-7e-5p ATP6V1F 4 -1.03 1.08
let-7e-5p CCND1 4 -1.03 1.55

miR-130b-5p TNS1 4 1.19 -1.95
miR-22-3p VSNL1 4 -1.10 1.18
miR-466 CDKL1 4 1.26 -1.04

miR-1288-5p DEK 3 -1.78 1.04
miR-130b-5p PDE3A 3 1.19 -1.66
miR-152-3p CCNA2 3 -1.03 2.21
miR-29b-2-5p INSIG1 3 -1.16 1.07
miR-33a-5p ABCA1 3 1.24 -1.09
miR-466 GNAI1 3 1.26 -1.40

miR-511-5p TFDP1 3 -1.10 1.09
miR-552-5p PER1 3 2.76 -1.99
miR-628-3p SINHCAF 3 -1.17 1.19
miR-93-5p PHLPP2 3 1.13 -1.24
miR-93-5p TXNIP 3 1.13 -2.01
let-7e-5p AP1S1 2 -1.03 1.23

CMS2

miRNA Target # Evidence miRNA Log2FC Target Log2FC
miR-200c-3p FN1 3 -1.05 1.91
miR-223-5p F2RL1 3 1.08 -1.13
miR-3180-3p ENTPD5 3 1.02 -1.23
miR-200b-3p FN1 2 -1.16 1.91
miR-708-5p PAQR5 2 1.11 -1.23
miR-196a-3p SLC11A1 1 -1.08 1.77
miR-200b-3p ACSL4 1 -1.16 1.13
miR-200b-3p IGF2 1 -1.16 1.50
miR-200b-3p SERPINH1 1 -1.16 1.13
miR-200b-5p PMEPA1 1 -1.09 1.06
miR-200b-5p SOD2 1 -1.09 1.04
miR-200c-3p ACSL4 1 -1.05 1.13
miR-200c-3p CDH11 1 -1.05 1.29
miR-200c-3p FLNA 1 -1.05 1.13
miR-200c-3p IGF2 1 -1.05 1.50
miR-200c-3p SERPINH1 1 -1.05 1.13
miR-215-5p ELOVL5 1 -1.78 1.01
miR-215-5p FBN1 1 -1.78 1.05
miR-215-5p MCAM 1 -1.78 1.43
miR-215-5p PLAU 1 -1.78 1.57

CMS4
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VI - DISCUSSION 

CRC is a heterogeneous disease that arises due to complex interactions of the 
transcriptome, metabolome, microbiome, immune system and many other 
leading actors.  
The use of omics technologies is an increasingly popular and useful approach 
used by researchers to discover and identify the heterogeneity in cancer disease. 
So far, omics platforms have been applied for several biological and pathological 
processes [45-47]. Literature examining the multi-omics approach on CRC is still 
limited to large-scale data with multiple biospecimens but has started to increase 
in recent years. 80% of CRCs in Western countries are related to dietary factors 
[48]. In fact, diet has been demonstrated to have a crucial impact on the structure 
and composition of the gut microbiome and host metabolism [49, 50].  
Interestingly, the microbiome has a well-defined role in the pathogenesis of CRC, 
as shown by the presence of potential pathogenic bacteria such as Fusobacterium 
as well as beneficial bacteria such as Lactobacillales [51].  
Recently, a free online platform including multiomics and clinico-pathological 
features of CRC, the so called “ColPortal” has been introduced [52]. The platform 
included also detailed and specific information about demographis, location, 
histology, and staging of the tumor, molecular biomarker status and clinical 
outcomes. All these data allow a better knowledge of the pathogenesis, including 
not very common CRC subtypes, as well as of the prognosis, providing a valid 
support for personalized therapeutic strategies.  
In Study I we performed the first large-scale profiling of stool miRNome by deep 
sequencing of samples from patients with CRC, colorectal polyps, or other GI 
diseases and healthy controls. We confirmed previous findings about their 
potential role as non-invasive molecular biomarkers but also reported novel 
evidence on specific markers across different disease conditions. Moreover, a fecal 
miRNA signature was able to accurately distinguish CRC or adenoma patients 
from controls. 
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20 fecal miRNAs emerged as coherently altered in two independent cohorts. The 
analysis showed that the fecal profile of some of these miRNAs reflected their 
altered expression in the tumor tissue or in adjacent colonic mucosa. These results 
were consistent with those described in the literature. In fact, more than half of 
those miRNAs have been already reported in other series [10, 53].  
In the same study we evaluated the minimal set of stool miRNAs able to 
accurately discriminate CRC patients from healthy individuals reproducing a 
signature of five fecal miRNAs (miR-1246-3p, miR-607, miR-6777-5p, miR-4488-
3p, miR-149-3p).  
In this study, we sought to compare stool DEmiRNA profiles of newly diagnosed 
CRC with those of subjects with other bowel precancerous lesions diagnosed at 
colonoscopy. Besides different polyp types, we also included samples from 
several GI diseases, like different types of IBDs and diverticulitis. Notably, we 
found that while CRC-specific miRNAs were down-regulated, most of miRNAs 
in common with adenomas and inflammatory diseases were up-regulated: miR-
21-5p was the clearest example consistently with the literature [54]. As an 
exception, miR-607 was down-regulated in stool miRNA profiles of patients with 
AA and ulcerative colitis. Accordingly, recent studies showed altered miRNA 
profiles in fecal samples of patients with inflammations [55, 56], even in relation 
to microbiota [57]. We can therefore conclude that altered stool miRNA profiles 
reflect either the intestinal response to an inflammatory process or the 
transcriptional alteration related specifically to CRC development. Importantly, 
we clearly highlighted that the fecal levels of known CRC-related miRNAs are 
actually dysregulated in several disease contexts, suggesting that other miRNAs, 
such as miR-6777-3p and miR-149-3p, should be selected to design CRC-specific 
molecular signatures. This is the first evidence of CRC-specific fecal miRNAs 
from a large-scale analysis of subjects with different gastrointestinal diseases and 
it highlights an extensive influence of gut inflammation on the fecal miRNA 
levels. 
 
In Study II we comprehensively analysed the expression profiles of all miRNA 
genes residing in the locus by next-generation sequencing in multiple 
biospecimens from a cohort of CRC patients and healthy controls (tumor tissue 
and paired adjacent mucosa for patients, stool, and plasma EVs for both). In CRC 
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tissues, out of the 54 identified mature miRNAs in the 8q24 region, twelve were 
differentially expressed between tumor and adjacent mucosa, with nine of them 
being up regulated. Some of the latter miRNAs have been previously reported as 
over-expressed also in other cancers tissues [58, 59].  
Similar results were confirmed in the CRC-TCGA dataset with five out of twelve 
miRNAs (miR-151a-3p, miR-151a-5p, miR-30b-5p, miR-4662a-5p, miR-30d-5p) 
dysregulated in the same direction as in our dataset. Those analysis were 
necessary to assess if the dysregulation of these miRNAs was specific of CRC.  
In summary, several dysregulated miRNAs mapping to chromosome 8q24 were 
found in CRC and BC, both in primary and surrogate tissues. The dysregulated 
miRNAs emerged from an investigation of the whole genome miRNome, 
highlighting the importance of the 8q24 locus also at the transcriptomic level. The 
strength of this study is that we took advantage of a large collection of several 
biospecimens from the same patients. Tissues, stool, and plasma samples were 
available for many CRC patients. In this respect, no previous study assessed 8q24 
miRNA profiles in stool of CRC patients and healthy controls.  
 
Study III aimed to provide the first evidence on how the faecal miRNome 
expression is affected by a set of common variables investigated in a population 
of 335 healthy subjects. A total of 203 miRNAs were significantly associated with 
at least one of the considered variables, with 52 associated with more than one. 
Several miRNAs showed a differential expression in agreement with other 
studies on blood or tissue samples [60-62]. Profiles of several miRNAs in stool 
reflect main common traits and lifestyle habits. Our findings were consistent with 
those already reported in the current literature. However, a definitive association 
between variables and miRNA profiles, cannot be established with certainty for 
the failure to rule out the potential for other confounding factors.  
 
Lastly, in Study IV we demonstrated that the integration of TSO, RNA-seq and 
small-RNA-seq data is a feasible approach to shed new light on CRC 
heterogeneity and, potentially, improve the current CMS classification.  
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VII CONCLUSIONS 

The studies included in this PhD project give an overview of how a multi-omics 
approach, including different biospecimens, generating a large amount of data, 
can be useful for understanding the nature of CRC and applying correct 
diagnostic-therapeutic strategies.  
 

• Fecal miRNome analysis identified a predictive signature accurately 
discriminating CRC and precancerous lesions, independently from 
age and sex, for a non-invasive diagnosis aimed at improving the 
effectiveness of current screening programs, potentially increasing 
sensitivity and maintaining high specificity and applicable on a large 
scale, with a reasonable cost/time required.  

• Altered expression of 8q24-related miRNAs may be important for 
the initiation and/or progression of cancer. 

• miRNA profiles in stool may reflect common traits and lifestyle 
habits and should be considered in relation to disease and 
association studies based on faecal miRNA expression. 

• The Integration of TruSight Oncology 500 (TSO) cancer-panel, RNA-
seq and sRNA-seq data is a feasible approach to shed new light on 
CRC heterogeneity and reveals a potential role for stool as less 
invasive biomarker of CRC. 
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VIII – LIMITATIONS AND FUTURE PERSPECTIVES 

Our studies have some limitations. In fact, in Study I although a similar 
approach was used for patients and controls’recruitment, the two cohorts were 
heterogeneous for individual categories. Despite the large number of samples, the 
variegated spectrum of CRC, adenomas and other precancerous lesions was not 
exhaustively represented and deserves further investigation. However, we should 
also consider the major strengths or rather the inclusion of independent cohorts 
from two countries who have different diet and lifestyle habits and CRC rates as 
well as the standardization of stool collection in both cohorts. Moreover, the 
miRNome-wide approach in different biospecimens and different GI diseases 
contexts has allowed us to discriminate miRNAs specifically dysregulated in stool 
of CRC patients.  

 
In Study II we took advantage of a large collection of several biospecimens 

from the same patients firstly assessing 8q24 miRNA profiles in stool of CRC 
patients and healthy controls. Further studies are required to determine the 
possible functions of the altered miRNAs identified in this study and their role in 
tumorigenesis, as well as to expand the investigation also to other cancer types.  

  
In Study III the self-reported data retrieved from the questionnaires may 

contain data entry errors, or individuals may have wrongly answered. 
Furthermore, the limited sample size for some of the categories investigated 
among the variables could have affected the results especially for the obese and 
underweight groups in the analyses on BMI or for the active category for the 
physical activity. Nonetheless, no studies have been performed on stool miRNA 
expression levels in relation to common traits and lifestyle habits in healthy 
individuals, so far.  
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In Study IV even though we reported integration of TSO, RNA-seq and 
small-RNA-seq, a correlation with other omics will be useful in the future to 
validate the results 
 

Overall, in the next trials it will be useful to integrate other omics not 
investigated in the present study such as proteomics, methylation and radiomics. 
Diagnostic images can provide information on the entire tumor volume, reducing 
inaccuracy due to sampling errors in histopathological analyses.  

The growing impact of non-invasive imaging techniques for disease 
diagnosis, in parallel with the evolution of NGS tools, provides powerful methods 
for investigating the phenotype. In fact, thanks to the correlation of radiomic 
features with genomic features, a new field of study called "radiogenomics" was 
born.  

Radiomics has the potential to characterize the intratumoral CRC 
heterogeneity, with promising results in predicting treatment response and 
outcome as well as differentiating the nature of the tumor and assessing the 
relationship with genetics.  
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